aboutsummaryrefslogtreecommitdiff
path: root/src/ModularArithmetic/Pow2BaseProofs.v
blob: 9255f033f2ad08edf4dd6b4abb31aa3d4c688e06 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
Require Import Coq.ZArith.Zpower Coq.ZArith.ZArith Coq.micromega.Psatz.
Require Import Coq.Numbers.Natural.Peano.NPeano.
Require Import Coq.Lists.List.
Require Import Crypto.Util.ListUtil Crypto.Util.ZUtil Crypto.Util.NatUtil.
Require Import Crypto.Util.Tactics.
Require Import Crypto.ModularArithmetic.Pow2Base Crypto.BaseSystemProofs.
Require Crypto.BaseSystem.
Local Open Scope Z_scope.

Create HintDb simpl_add_to_nth discriminated.

Section Pow2BaseProofs.
  Context {limb_widths} (limb_widths_nonneg : forall w, In w limb_widths -> 0 <= w).
  Local Notation base := (base_from_limb_widths limb_widths).

  Lemma base_from_limb_widths_length : length base = length limb_widths.
  Proof.
    clear limb_widths_nonneg.
    induction limb_widths; [ reflexivity | simpl in * ].
    autorewrite with distr_length; auto.
  Qed.
  Hint Rewrite base_from_limb_widths_length : distr_length.

  Lemma sum_firstn_limb_widths_nonneg : forall n, 0 <= sum_firstn limb_widths n.
  Proof.
    unfold sum_firstn; intros.
    apply fold_right_invariant; try omega.
    eauto using Z.add_nonneg_nonneg, limb_widths_nonneg, In_firstn.
  Qed. Hint Resolve sum_firstn_limb_widths_nonneg.

  Lemma two_sum_firstn_limb_widths_pos n : 0 < 2^sum_firstn limb_widths n.
  Proof. auto with zarith. Qed.

  Lemma two_sum_firstn_limb_widths_nonzero n : 2^sum_firstn limb_widths n <> 0.
  Proof. pose proof (two_sum_firstn_limb_widths_pos n); omega. Qed.

  Lemma base_from_limb_widths_step : forall i b w, (S i < length base)%nat ->
    nth_error base i = Some b ->
    nth_error limb_widths i = Some w ->
    nth_error base (S i) = Some (two_p w * b).
  Proof.
    induction limb_widths; intros ? ? ? ? nth_err_w nth_err_b;
      unfold base_from_limb_widths in *; fold base_from_limb_widths in *;
      [rewrite (@nil_length0 Z) in *; omega | ].
    simpl in *; rewrite map_length in *.
    case_eq i; intros; subst.
    + subst; apply nth_error_first in nth_err_w.
      apply nth_error_first in nth_err_b; subst.
      apply map_nth_error.
      case_eq l; intros; subst; [simpl in *; omega | ].
      unfold base_from_limb_widths; fold base_from_limb_widths.
      reflexivity.
    + simpl in nth_err_w.
      apply nth_error_map in nth_err_w.
      destruct nth_err_w as [x [A B]].
      subst.
      replace (two_p w * (two_p a * x)) with (two_p a * (two_p w * x)) by ring.
      apply map_nth_error.
      apply IHl; auto. omega.
  Qed.


  Lemma nth_error_base : forall i, (i < length base)%nat ->
    nth_error base i = Some (two_p (sum_firstn limb_widths i)).
  Proof.
    induction i; intros.
    + unfold sum_firstn, base_from_limb_widths in *; case_eq limb_widths; try reflexivity.
      intro lw_nil; rewrite lw_nil, (@nil_length0 Z) in *; omega.
    + assert (i < length base)%nat as lt_i_length by omega.
      specialize (IHi lt_i_length).
      rewrite base_from_limb_widths_length in lt_i_length.
      destruct (nth_error_length_exists_value _ _ lt_i_length) as [w nth_err_w].
      erewrite base_from_limb_widths_step; eauto.
      f_equal.
      simpl.
      destruct (NPeano.Nat.eq_dec i 0).
      - subst; unfold sum_firstn; simpl.
        apply nth_error_exists_first in nth_err_w.
        destruct nth_err_w as [l' lw_destruct]; subst.
        simpl; ring_simplify.
        f_equal; ring.
      - erewrite sum_firstn_succ; eauto.
        symmetry.
        apply two_p_is_exp; auto using sum_firstn_limb_widths_nonneg.
        apply limb_widths_nonneg.
        eapply nth_error_value_In; eauto.
  Qed.

  Lemma nth_default_base : forall d i, (i < length base)%nat ->
    nth_default d base i = 2 ^ (sum_firstn limb_widths i).
  Proof.
    intros ? ? i_lt_length.
    destruct (nth_error_length_exists_value _ _ i_lt_length) as [x nth_err_x].
    unfold nth_default.
    rewrite nth_err_x.
    rewrite nth_error_base in nth_err_x by assumption.
    rewrite two_p_correct in nth_err_x.
    congruence.
  Qed.

  Lemma base_succ : forall i, ((S i) < length base)%nat ->
    nth_default 0 base (S i) mod nth_default 0 base i = 0.
  Proof.
    intros.
    repeat rewrite nth_default_base by omega.
    apply Z.mod_same_pow.
    split; [apply sum_firstn_limb_widths_nonneg | ].
    destruct (NPeano.Nat.eq_dec i 0); subst.
      + case_eq limb_widths; intro; unfold sum_firstn; simpl; try omega; intros l' lw_eq.
        apply Z.add_nonneg_nonneg; try omega.
        apply limb_widths_nonneg.
        rewrite lw_eq.
        apply in_eq.
      + assert (i < length base)%nat as i_lt_length by omega.
        rewrite base_from_limb_widths_length in *.
        apply nth_error_length_exists_value in i_lt_length.
        destruct i_lt_length as [x nth_err_x].
        erewrite sum_firstn_succ; eauto.
        apply nth_error_value_In in nth_err_x.
        apply limb_widths_nonneg in nth_err_x.
        omega.
   Qed.

   Lemma nth_error_subst : forall i b, nth_error base i = Some b ->
     b = 2 ^ (sum_firstn limb_widths i).
   Proof.
     intros i b nth_err_b.
     pose proof (nth_error_value_length _ _ _ _ nth_err_b).
     rewrite nth_error_base in nth_err_b by assumption.
     rewrite two_p_correct in nth_err_b.
     congruence.
   Qed.

   Lemma base_positive : forall b : Z, In b base -> b > 0.
   Proof.
     intros b In_b_base.
     apply In_nth_error_value in In_b_base.
     destruct In_b_base as [i nth_err_b].
     apply nth_error_subst in nth_err_b.
     rewrite nth_err_b.
     apply Z.gt_lt_iff.
     apply Z.pow_pos_nonneg; omega || auto using sum_firstn_limb_widths_nonneg.
   Qed.

   Lemma b0_1 : forall x : Z, limb_widths <> nil -> nth_default x base 0 = 1.
   Proof.
     case_eq limb_widths; intros; [congruence | reflexivity].
   Qed.

  Lemma base_from_limb_widths_cons : forall l0 l,
    base_from_limb_widths (l0 :: l) = 1 :: map (Z.mul (two_p l0)) (base_from_limb_widths l).
  Proof.
    reflexivity.
  Qed.

  Lemma base_from_limb_widths_app : forall l0 l
                                           (l0_nonneg : forall x, In x l0 -> 0 <= x)
                                           (l_nonneg : forall x, In x l -> 0 <= x),
      base_from_limb_widths (l0 ++ l)
      = base_from_limb_widths l0 ++ map (Z.mul (two_p (sum_firstn l0 (length l0)))) (base_from_limb_widths l).
  Proof.
    induction l0 as [|?? IHl0].
    { simpl; intros; rewrite <- map_id at 1; apply map_ext; intros; omega. }
    { simpl; intros; rewrite !IHl0, !map_app, map_map, sum_firstn_succ_cons, two_p_is_exp by auto with znonzero.
      do 2 f_equal; apply map_ext; intros; lia. }
  Qed.

  Section make_base_vector.
    Local Notation k := (sum_firstn limb_widths (length limb_widths)).
    Context (limb_widths_match_modulus : forall i j,
                (i < length limb_widths)%nat ->
                (j < length limb_widths)%nat ->
                (i + j >= length limb_widths)%nat ->
                let w_sum := sum_firstn limb_widths in
                k + w_sum (i + j - length limb_widths)%nat <= w_sum i + w_sum j)
            (limb_widths_good : forall i j, (i + j < length limb_widths)%nat ->
                                            sum_firstn limb_widths (i + j) <=
                                            sum_firstn limb_widths i + sum_firstn limb_widths j).

    Lemma base_matches_modulus: forall i j,
      (i   <  length limb_widths)%nat ->
      (j   <  length limb_widths)%nat ->
      (i+j >= length limb_widths)%nat->
      let b := nth_default 0 base in
      let r := (b i * b j)  /   (2^k * b (i+j-length base)%nat) in
                b i * b j = r * (2^k * b (i+j-length base)%nat).
    Proof.
      intros.
      rewrite (Z.mul_comm r).
      subst r.
      assert (i + j - length limb_widths < length limb_widths)%nat by omega.
      rewrite Z.mul_div_eq by (apply Z.gt_lt_iff; apply Z.mul_pos_pos;
        subst b; rewrite ?nth_default_base; zero_bounds; rewrite ?base_from_limb_widths_length;
        auto using sum_firstn_limb_widths_nonneg, limb_widths_nonneg).
      rewrite (Zminus_0_l_reverse (b i * b j)) at 1.
      f_equal.
      subst b.
      repeat rewrite nth_default_base by (rewrite ?base_from_limb_widths_length; auto).
      do 2 rewrite <- Z.pow_add_r by auto using sum_firstn_limb_widths_nonneg.
      symmetry.
      apply Z.mod_same_pow.
      split.
      + apply Z.add_nonneg_nonneg; auto using sum_firstn_limb_widths_nonneg.
      + rewrite base_from_limb_widths_length; auto using limb_widths_nonneg, limb_widths_match_modulus.
    Qed.

    Lemma base_good : forall i j : nat,
                 (i + j < length base)%nat ->
                 let b := nth_default 0 base in
                 let r := b i * b j / b (i + j)%nat in
                 b i * b j = r * b (i + j)%nat.
    Proof.
      intros; subst b r.
      repeat rewrite nth_default_base by (omega || auto).
      rewrite (Z.mul_comm _ (2 ^ (sum_firstn limb_widths (i+j)))).
      rewrite Z.mul_div_eq by (apply Z.gt_lt_iff; zero_bounds;
        auto using sum_firstn_limb_widths_nonneg).
      rewrite <- Z.pow_add_r by auto using sum_firstn_limb_widths_nonneg.
      rewrite Z.mod_same_pow; try ring.
      split; [ auto using sum_firstn_limb_widths_nonneg | ].
      apply limb_widths_good.
      rewrite <-base_from_limb_widths_length; auto using limb_widths_nonneg.
    Qed.
  End make_base_vector.
End Pow2BaseProofs.

Section BitwiseDecodeEncode.
  Context {limb_widths} (bv : BaseSystem.BaseVector (base_from_limb_widths limb_widths))
          (limb_widths_nonneg : forall w, In w limb_widths -> 0 <= w).
  Local Hint Resolve limb_widths_nonneg.
  Local Notation "w[ i ]" := (nth_default 0 limb_widths i).
  Local Notation base := (base_from_limb_widths limb_widths).
  Local Notation upper_bound := (upper_bound limb_widths).

  Lemma encode'_spec : forall x i, (i <= length base)%nat ->
    encode' limb_widths x i = BaseSystem.encode' base x upper_bound i.
  Proof.
    induction i; intros.
    + rewrite encode'_zero. reflexivity.
    + rewrite encode'_succ, <-IHi by omega.
      simpl; do 2 f_equal.
      rewrite Z.land_ones, Z.shiftr_div_pow2 by auto using sum_firstn_limb_widths_nonneg.
      match goal with H : (S _ <= length base)%nat |- _ =>
        apply le_lt_or_eq in H; destruct H end.
      - repeat f_equal; rewrite nth_default_base by (omega || auto); reflexivity.
      - repeat f_equal; try solve [rewrite nth_default_base by (omega || auto); reflexivity].
        rewrite nth_default_out_of_bounds by omega.
        unfold Pow2Base.upper_bound.
        rewrite <-base_from_limb_widths_length by auto.
        congruence.
  Qed.

  Lemma nth_default_limb_widths_nonneg : forall i, 0 <= w[i].
  Proof.
    intros; apply nth_default_preserves_properties; auto; omega.
  Qed. Hint Resolve nth_default_limb_widths_nonneg.

  Lemma base_upper_bound_compatible : @base_max_succ_divide base upper_bound.
  Proof.
    unfold base_max_succ_divide; intros i lt_Si_length.
    rewrite Nat.lt_eq_cases in lt_Si_length; destruct lt_Si_length;
      rewrite !nth_default_base by (omega || auto).
    + erewrite sum_firstn_succ by (eapply nth_error_Some_nth_default with (x := 0);
         rewrite <-base_from_limb_widths_length by auto; omega).
      rewrite Z.pow_add_r; auto using sum_firstn_limb_widths_nonneg.
      apply Z.divide_factor_r.
    + rewrite nth_default_out_of_bounds by omega.
      unfold Pow2Base.upper_bound.
      replace (length limb_widths) with (S (pred (length limb_widths))) by
        (rewrite base_from_limb_widths_length in H by auto; omega).
      replace i with (pred (length limb_widths)) by
        (rewrite base_from_limb_widths_length in H by auto; omega).
      erewrite sum_firstn_succ by (eapply nth_error_Some_nth_default with (x := 0);
         rewrite <-base_from_limb_widths_length by auto; omega).
      rewrite Z.pow_add_r; auto using sum_firstn_limb_widths_nonneg.
      apply Z.divide_factor_r.
  Qed.
  Hint Resolve base_upper_bound_compatible.

  Lemma encodeZ_spec : forall x,
    BaseSystem.decode base (encodeZ limb_widths x) = x mod upper_bound.
  Proof.
    intros.
    assert (length base = length limb_widths) by auto using base_from_limb_widths_length.
    unfold encodeZ; rewrite encode'_spec by omega.
    rewrite BaseSystemProofs.encode'_spec; unfold Pow2Base.upper_bound; try zero_bounds;
      auto using sum_firstn_limb_widths_nonneg.
    rewrite nth_default_out_of_bounds by omega.
    reflexivity.
  Qed.

  Lemma decode_bitwise'_nil : forall i,
    decode_bitwise' limb_widths nil i 0 = 0.
  Proof.
    induction i; intros.
    + reflexivity.
    + cbv [decode_bitwise'].
      rewrite nth_default_nil, Z.shiftl_0_l.
      apply IHi.
  Qed.

  Lemma decode_bitwise_nil : decode_bitwise limb_widths nil = 0.
  Proof.
    cbv [decode_bitwise].
    apply decode_bitwise'_nil.
  Qed.

  Lemma decode_bitwise'_succ : forall us i acc, bounded limb_widths us ->
    decode_bitwise' limb_widths us (S i) acc =
    decode_bitwise' limb_widths us i (acc * (2 ^ w[i]) + nth_default 0 us i).
  Proof.
    intros.
    simpl; f_equal.
    match goal with H : bounded _ _ |- _ =>
      rewrite Z.lor_shiftl by (auto; unfold bounded in H; specialize (H i); assumption) end.
    rewrite Z.shiftl_mul_pow2 by auto.
    ring.
  Qed.

  (* c is a counter, allows i to count up rather than down *)
  Fixpoint partial_decode us i c :=
    match c with
    | O => 0
    | S c' => (partial_decode us (S i) c' *  2 ^ w[i]) + nth_default 0 us i
    end.

  Lemma partial_decode_counter_over : forall c us i, (c >= length us - i)%nat ->
    partial_decode us i c = partial_decode us i (length us - i).
  Proof.
    induction c; intros.
    + f_equal. omega.
    + simpl. rewrite IHc by omega.
      case_eq (length us - i)%nat; intros.
      - rewrite nth_default_out_of_bounds with (us0 := us) by omega.
        replace (length us - S i)%nat with 0%nat by omega.
        reflexivity.
      - simpl. repeat f_equal. omega.
  Qed.

  Lemma partial_decode_counter_subst : forall c c' us i,
    (c >= length us - i)%nat -> (c' >= length us - i)%nat ->
    partial_decode us i c = partial_decode us i c'.
  Proof.
    intros.
    rewrite partial_decode_counter_over by assumption.
    symmetry.
    auto using partial_decode_counter_over.
  Qed.

  Lemma partial_decode_succ : forall c us i, (c >= length us - i)%nat ->
    partial_decode us (S i) c * 2 ^ w[i] + nth_default 0 us i =
    partial_decode us i c.
  Proof.
    intros.
    rewrite partial_decode_counter_subst with (i := i) (c' := S c) by omega.
    reflexivity.
  Qed.

  Lemma partial_decode_intermediate : forall c us i, length us = length limb_widths ->
    (c >= length us - i)%nat ->
    partial_decode us i c = BaseSystem.decode' (base_from_limb_widths (skipn i limb_widths)) (skipn i us).
  Proof.
    induction c; intros.
    + simpl. rewrite skipn_all by omega.
      symmetry; apply decode_base_nil.
    + simpl.
      destruct (lt_dec i (length limb_widths)).
      - rewrite IHc by omega.
        do 2 (rewrite skipn_nth_default with (n := i) (d := 0) by omega).
        unfold base_from_limb_widths; fold base_from_limb_widths.
        rewrite peel_decode.
        fold (BaseSystem.mul_each (two_p w[i])).
        rewrite <-mul_each_base, mul_each_rep, two_p_correct.
        ring_simplify.
        f_equal; ring.
     - rewrite <- IHc by omega.
       apply partial_decode_succ; omega.
  Qed.


  Lemma decode_bitwise'_succ_partial_decode : forall us i c,
    bounded limb_widths us -> length us = length limb_widths ->
    decode_bitwise' limb_widths us (S i) (partial_decode us (S i) c) =
    decode_bitwise' limb_widths us i (partial_decode us i (S c)).
  Proof.
    intros.
    rewrite decode_bitwise'_succ by auto.
    f_equal.
  Qed.

  Lemma decode_bitwise'_spec : forall us i, (i <= length limb_widths)%nat ->
    bounded limb_widths us -> length us = length limb_widths ->
    decode_bitwise' limb_widths us i (partial_decode us i (length us - i)) =
    BaseSystem.decode base us.
  Proof.
    induction i; intros.
    + rewrite partial_decode_intermediate by auto.
      reflexivity.
    + rewrite decode_bitwise'_succ_partial_decode by auto.
      replace (S (length us - S i)) with (length us - i)%nat by omega.
      apply IHi; auto; omega.
  Qed.

  Lemma decode_bitwise_spec : forall us, bounded limb_widths us ->
    length us = length limb_widths ->
    decode_bitwise limb_widths us = BaseSystem.decode base us.
  Proof.
    unfold decode_bitwise; intros.
    replace 0 with (partial_decode us (length us) (length us - length us)) by
      (rewrite Nat.sub_diag; reflexivity).
    apply decode_bitwise'_spec; auto; omega.
  Qed.

End BitwiseDecodeEncode.

Section Conversion.
  Context {limb_widthsA} (limb_widthsA_nonneg : forall w, In w limb_widthsA -> 0 <= w)
          {limb_widthsB} (limb_widthsB_nonneg : forall w, In w limb_widthsB -> 0 <= w).
  Local Notation baseA := (base_from_limb_widths limb_widthsA).
  Local Notation baseB := (base_from_limb_widths limb_widthsB).
  Context (bvB : BaseSystem.BaseVector baseB).

  Definition convert xs := @encodeZ limb_widthsB (@decode_bitwise limb_widthsA xs).

  Lemma convert_spec : forall xs, @bounded limb_widthsA xs -> length xs = length limb_widthsA ->
    BaseSystem.decode baseA xs mod (@upper_bound limb_widthsB) = BaseSystem.decode baseB (convert xs).
  Proof.
    unfold convert; intros.
    rewrite encodeZ_spec, decode_bitwise_spec by auto.
    reflexivity.
  Qed.

End Conversion.

Section UniformBase.
  Context {width : Z} (limb_width_pos : 0 < width).
  Context (limb_widths : list Z) (limb_widths_nonnil : limb_widths <> nil)
    (limb_widths_uniform : forall w, In w limb_widths -> w = width).
  Local Notation base := (base_from_limb_widths limb_widths).

   Lemma bounded_uniform : forall us, (length us <= length limb_widths)%nat ->
     (bounded limb_widths us <-> (forall u, In u us -> 0 <= u < 2 ^ width)).
   Proof.
     cbv [bounded]; split; intro A; intros.
     + let G := fresh "G" in
       match goal with H : In _ us |- _ =>
         eapply In_nth in H; destruct H as [? G]; destruct G as [? G];
         rewrite <-nth_default_eq in G; rewrite <-G end.
       specialize (A x).
       split; try eapply A.
       eapply Z.lt_le_trans; try apply A.
       apply nth_default_preserves_properties; [ | apply Z.pow_le_mono_r; omega ] .
       intros; apply Z.eq_le_incl.
       f_equal; auto.
     + apply nth_default_preserves_properties_length_dep;
         try solve [apply nth_default_preserves_properties; split; zero_bounds; rewrite limb_widths_uniform; auto || omega].
      intros; apply nth_default_preserves_properties_length_dep; try solve [intros; omega].
       let x := fresh "x" in intro x; intros;
         replace x with width; try symmetry; auto.
   Qed.

  Lemma decode'_tl_base_shift' : forall us lw,
    (forall w, In w lw -> w = width) ->
    (length us <= length lw)%nat ->
    BaseSystem.decode' (map (Z.mul (2 ^ width)) (base_from_limb_widths lw)) us =
    (BaseSystem.decode' (1 :: map (Z.mul (2 ^ width)) (base_from_limb_widths lw)) us) << width.
  Proof.
    induction us; intros ? Hin Hlength.
    + rewrite !decode_nil, Z.shiftl_0_l; reflexivity.
    + edestruct (destruct_repeat lw) as [? | [tl_lw [Heq_lw tl_lw_uniform]]]; eauto.
      - subst lw; rewrite !length_cons, nil_length0 in Hlength; omega.
      - rewrite Heq_lw in Hlength |- *.
        rewrite base_from_limb_widths_cons, decode'_cons, two_p_correct.
        cbv [tl].
        fold (BaseSystem.mul_each (2 ^ width)).
        rewrite <-!mul_each_base, !mul_each_rep.
        rewrite decode'_cons, Z.mul_add_distr_l.
        rewrite Z.shiftl_mul_pow2 by omega. rewrite Z.mul_add_distr_r.
        f_equal; try ring.
        rewrite <-Z.mul_assoc. f_equal; try ring.
        rewrite IHus by (simpl in Hlength; auto || omega).
        rewrite Z.shiftl_mul_pow2 by omega.
        reflexivity.
  Qed.

  Lemma decode_tl_base_shift : forall us, (length us < length limb_widths)%nat ->
    BaseSystem.decode (tl base) us = BaseSystem.decode base us << width.
  Proof.
    intros ? Hlength.
    edestruct (destruct_repeat limb_widths) as [? | [tl_lw [Heq_lw tl_lw_uniform]]];
        eauto; try congruence.
    rewrite Heq_lw in Hlength |- *.
    rewrite base_from_limb_widths_cons, two_p_correct.
    cbv [tl].
    apply decode'_tl_base_shift';
      auto; simpl in *; omega.
  Qed.

  Lemma decode_shift : forall us u0, (length (u0 :: us) <= length limb_widths)%nat ->
    BaseSystem.decode base (u0 :: us) = u0 + ((BaseSystem.decode base us) << width).
  Proof.
    intros.
    rewrite <-decode_tl_base_shift by (simpl in *; omega).
    case_eq limb_widths; try congruence; intros.
    rewrite base_from_limb_widths_cons, decode'_cons.
    cbv [tl].
    f_equal; ring.
  Qed.

  Lemma uniform_limb_widths_nonneg : forall w, In w limb_widths -> 0 <= w.
  Proof.
    intros.
    apply Z.lt_le_incl.
    replace w with width by (symmetry; auto).
    assumption.
  Qed.
End UniformBase.

Section carrying_helper.
  Context {limb_widths} (limb_widths_nonneg : forall w, In w limb_widths -> 0 <= w).
  Local Notation base := (base_from_limb_widths limb_widths).
  Local Notation log_cap i := (nth_default 0 limb_widths i).

  Lemma update_nth_sum : forall n f us, (n < length us \/ n >= length base)%nat ->
    BaseSystem.decode base (update_nth n f us) =
    (let v := nth_default 0 us n in f v - v) * nth_default 0 base n + BaseSystem.decode base us.
  Proof.
    intros.
    unfold BaseSystem.decode.
    destruct H as [H|H].
    { nth_inbounds; auto. (* TODO(andreser): nth_inbounds should do this auto*)
      erewrite nth_error_value_eq_nth_default by eassumption.
      unfold splice_nth.
      rewrite <- (firstn_skipn n us) at 3.
      do 2 rewrite decode'_splice.
      remember (length (firstn n us)) as n0.
      ring_simplify.
      remember (BaseSystem.decode' (firstn n0 base) (firstn n us)).
      rewrite (skipn_nth_default n us 0) by omega.
      erewrite (nth_error_value_eq_nth_default _ _ us) by eassumption.
      rewrite firstn_length in Heqn0.
      rewrite Min.min_l in Heqn0 by omega; subst n0.
      destruct (le_lt_dec (length base) n). {
        rewrite (@nth_default_out_of_bounds _ _ base) by auto.
        rewrite skipn_all by omega.
        do 2 rewrite decode_base_nil.
        ring_simplify; auto.
      } {
        rewrite (skipn_nth_default n base 0) by omega.
        do 2 rewrite decode'_cons.
        ring_simplify; ring.
      } }
    { rewrite (nth_default_out_of_bounds _ base) by omega; ring_simplify.
      etransitivity; rewrite BaseSystem.decode'_truncate; [ reflexivity | ].
      apply f_equal.
      autorewrite with push_firstn simpl_update_nth.
      rewrite update_nth_out_of_bounds by (distr_length; omega * ).
      reflexivity. }
  Qed.

  Lemma unfold_add_to_nth n x
    : forall xs,
      add_to_nth n x xs
      = match n with
        | O => match xs with
	       | nil => nil
	       | x'::xs' => x + x'::xs'
	       end
        | S n' =>  match xs with
		   | nil => nil
		   | x'::xs' => x'::add_to_nth n' x xs'
		   end
        end.
  Proof.
    induction n; destruct xs; reflexivity.
  Qed.

  Lemma simpl_add_to_nth_0 x
    : forall xs,
      add_to_nth 0 x xs
      = match xs with
        | nil => nil
        | x'::xs' => x + x'::xs'
        end.
  Proof. intro; rewrite unfold_add_to_nth; reflexivity. Qed.

  Lemma simpl_add_to_nth_S x n
    : forall xs,
      add_to_nth (S n) x xs
      = match xs with
        | nil => nil
        | x'::xs' => x'::add_to_nth n x xs'
        end.
  Proof. intro; rewrite unfold_add_to_nth; reflexivity. Qed.

  Hint Rewrite @simpl_set_nth_S @simpl_set_nth_0 : simpl_add_to_nth.

  Lemma add_to_nth_cons : forall x u0 us, add_to_nth 0 x (u0 :: us) = x + u0 :: us.
  Proof. reflexivity. Qed.

  Hint Rewrite @add_to_nth_cons : simpl_add_to_nth.

  Lemma cons_add_to_nth : forall n f y us,
      y :: add_to_nth n f us = add_to_nth (S n) f (y :: us).
  Proof.
    induction n; boring.
  Qed.

  Hint Rewrite <- @cons_add_to_nth : simpl_add_to_nth.

  Lemma add_to_nth_nil : forall n f, add_to_nth n f nil = nil.
  Proof.
    induction n; boring.
  Qed.

  Hint Rewrite @add_to_nth_nil : simpl_add_to_nth.

  Lemma add_to_nth_set_nth n x xs
    : add_to_nth n x xs
      = set_nth n (x + nth_default 0 xs n) xs.
  Proof.
    revert xs; induction n; destruct xs;
      autorewrite with simpl_set_nth simpl_add_to_nth;
      try rewrite IHn;
      reflexivity.
  Qed.
  Lemma add_to_nth_update_nth n x xs
    : add_to_nth n x xs
      = update_nth n (fun y => x + y) xs.
  Proof.
    revert xs; induction n; destruct xs;
      autorewrite with simpl_update_nth simpl_add_to_nth;
      try rewrite IHn;
      reflexivity.
  Qed.

  Lemma length_add_to_nth i x xs : length (add_to_nth i x xs) = length xs.
  Proof. unfold add_to_nth; distr_length; reflexivity. Qed.

  Hint Rewrite @length_add_to_nth : distr_length.

  Lemma set_nth_sum : forall n x us, (n < length us \/ n >= length base)%nat ->
    BaseSystem.decode base (set_nth n x us) =
    (x - nth_default 0 us n) * nth_default 0 base n + BaseSystem.decode base us.
  Proof. intros; unfold set_nth; rewrite update_nth_sum by assumption; reflexivity. Qed.

  Lemma add_to_nth_sum : forall n x us, (n < length us \/ n >= length base)%nat ->
    BaseSystem.decode base (add_to_nth n x us) =
    x * nth_default 0 base n + BaseSystem.decode base us.
  Proof. intros; rewrite add_to_nth_set_nth, set_nth_sum; try ring_simplify; auto. Qed.

  Lemma add_to_nth_nth_default_full : forall n x l i d,
    nth_default d (add_to_nth n x l) i =
    if lt_dec i (length l) then
      if (eq_nat_dec i n) then x + nth_default d l i
      else nth_default d l i
    else d.
  Proof. intros; rewrite add_to_nth_update_nth; apply update_nth_nth_default_full; assumption. Qed.
  Hint Rewrite @add_to_nth_nth_default_full : push_nth_default.

  Lemma add_to_nth_nth_default : forall n x l i, (0 <= i < length l)%nat ->
    nth_default 0 (add_to_nth n x l) i =
    if (eq_nat_dec i n) then x + nth_default 0 l i else nth_default 0 l i.
  Proof. intros; rewrite add_to_nth_update_nth; apply update_nth_nth_default; assumption. Qed.
  Hint Rewrite @add_to_nth_nth_default using omega : push_nth_default.

  Lemma log_cap_nonneg : forall i, 0 <= log_cap i.
  Proof.
    unfold nth_default; intros.
    case_eq (nth_error limb_widths i); intros; try omega.
    apply limb_widths_nonneg.
    eapply nth_error_value_In; eauto.
  Qed. Local Hint Resolve log_cap_nonneg.
End carrying_helper.

Hint Rewrite @simpl_set_nth_S @simpl_set_nth_0 : simpl_add_to_nth.
Hint Rewrite @add_to_nth_cons : simpl_add_to_nth.
Hint Rewrite <- @cons_add_to_nth : simpl_add_to_nth.
Hint Rewrite @add_to_nth_nil : simpl_add_to_nth.
Hint Rewrite @length_add_to_nth : distr_length.
Hint Rewrite @add_to_nth_nth_default_full : push_nth_default.
Hint Rewrite @add_to_nth_nth_default using (omega || distr_length; omega) : push_nth_default.

Section carrying.
  Context {limb_widths} (limb_widths_nonneg : forall w, In w limb_widths -> 0 <= w).
  Local Notation base := (base_from_limb_widths limb_widths).
  Local Notation log_cap i := (nth_default 0 limb_widths i).
  Local Hint Resolve limb_widths_nonneg sum_firstn_limb_widths_nonneg.

  Lemma length_carry_gen : forall fc fi i us, length (carry_gen limb_widths fc fi i us) = length us.
  Proof. intros; unfold carry_gen, carry_single; distr_length; reflexivity. Qed.

  Hint Rewrite @length_carry_gen : distr_length.

  Lemma length_carry_simple : forall i us, length (carry_simple limb_widths i us) = length us.
  Proof. intros; unfold carry_simple; distr_length; reflexivity. Qed.
  Hint Rewrite @length_carry_simple : distr_length.

  Lemma nth_default_base_succ : forall i, (S i < length base)%nat ->
    nth_default 0 base (S i) = 2 ^ log_cap i * nth_default 0 base i.
  Proof.
    intros.
    rewrite !nth_default_base, <- Z.pow_add_r by (omega || eauto using log_cap_nonneg).
    autorewrite with simpl_sum_firstn; reflexivity.
  Qed.

  Lemma carry_gen_decode_eq : forall fc fi i' us
                                     (i := fi (length base) i')
                                     (Si := fi (length base) (S i)),
    (length us = length base) ->
    BaseSystem.decode base (carry_gen limb_widths fc fi i' us)
    =  (fc (nth_default 0 us i / 2 ^ log_cap i) *
        (if eq_nat_dec Si (S i)
         then if lt_dec (S i) (length base)
              then 2 ^ log_cap i * nth_default 0 base i
              else 0
         else nth_default 0 base Si)
        - 2 ^ log_cap i * (nth_default 0 us i / 2 ^ log_cap i) * nth_default 0 base i)
      + BaseSystem.decode base us.
  Proof.
    intros fc fi i' us i Si H; intros.
    destruct (eq_nat_dec 0 (length base));
      [ destruct limb_widths, us, i; simpl in *; try congruence;
        break_match;
        unfold carry_gen, carry_single, add_to_nth;
        autorewrite with zsimplify simpl_nth_default simpl_set_nth simpl_update_nth distr_length;
        reflexivity
      | ].
    (*assert (0 <= i < length base)%nat by (subst i; auto with arith).*)
    assert (0 <= log_cap i) by auto using log_cap_nonneg.
    assert (2 ^ log_cap i <> 0) by (apply Z.pow_nonzero; lia).
    unfold carry_gen, carry_single.
    rewrite H; change (i' mod length base)%nat with i.
    rewrite add_to_nth_sum by (rewrite length_set_nth; omega).
    rewrite set_nth_sum by omega.
    unfold Z.pow2_mod.
    rewrite Z.land_ones by auto using log_cap_nonneg.
    rewrite Z.shiftr_div_pow2 by auto using log_cap_nonneg.
    change (fi (length base) i') with i.
    subst Si.
    repeat first [ ring
                 | match goal with H : _ = _ |- _ => rewrite !H in * end
                 | rewrite nth_default_base_succ by omega
                 | rewrite !(nth_default_out_of_bounds _ base) by omega
                 | rewrite !(nth_default_out_of_bounds _ us) by omega
                 | rewrite Z.mod_eq by assumption
                 | progress distr_length
                 | progress autorewrite with natsimplify zsimplify in *
                 | progress break_match ].
  Qed.

  Lemma carry_simple_decode_eq : forall i us,
    (length us = length base) ->
    (i < (pred (length base)))%nat ->
    BaseSystem.decode base (carry_simple limb_widths i us) = BaseSystem.decode base us.
  Proof.
    unfold carry_simple; intros; rewrite carry_gen_decode_eq by assumption.
    autorewrite with natsimplify.
    break_match; lia.
  Qed.


  Lemma length_carry_simple_sequence : forall is us, length (carry_simple_sequence limb_widths is us) = length us.
  Proof.
    unfold carry_simple_sequence.
    induction is; [ reflexivity | simpl; intros ].
    distr_length.
    congruence.
  Qed.
  Hint Rewrite @length_carry_simple_sequence : distr_length.

  Lemma length_make_chain : forall i, length (make_chain i) = i.
  Proof. induction i; simpl; congruence. Qed.
  Hint Rewrite @length_make_chain : distr_length.

  Lemma length_full_carry_chain : length (full_carry_chain limb_widths) = length limb_widths.
  Proof. unfold full_carry_chain; distr_length; reflexivity. Qed.
  Hint Rewrite @length_full_carry_chain : distr_length.

  Lemma length_carry_simple_full us : length (carry_simple_full limb_widths us) = length us.
  Proof. unfold carry_simple_full; distr_length; reflexivity. Qed.
  Hint Rewrite @length_carry_simple_full : distr_length.

  (* TODO : move? *)
  Lemma make_chain_lt : forall x i : nat, In i (make_chain x) -> (i < x)%nat.
  Proof.
    induction x; simpl; intuition.
  Qed.

  Lemma nth_default_carry_gen_full fc fi d i n us
    : nth_default d (carry_gen limb_widths fc fi i us) n
      = if lt_dec n (length us)
        then (if eq_nat_dec n (fi (length us) i)
              then Z.pow2_mod (nth_default 0 us n) (log_cap n)
              else nth_default 0 us n) +
             if eq_nat_dec n (fi (length us) (S (fi (length us) i)))
             then fc (nth_default 0 us (fi (length us) i) >> log_cap (fi (length us) i))
             else 0
        else d.
  Proof.
    unfold carry_gen, carry_single.
    intros; autorewrite with push_nth_default natsimplify distr_length.
    edestruct (lt_dec n (length us)) as [H|H]; [ | reflexivity ].
    rewrite !(@nth_default_in_bounds Z 0 d) by assumption.
    repeat break_match; subst; try omega; try rewrite_hyp *; omega.
  Qed.

  Hint Rewrite @nth_default_carry_gen_full : push_nth_default.

  Lemma nth_default_carry_simple_full : forall d i n us,
      nth_default d (carry_simple limb_widths i us) n
      = if lt_dec n (length us)
        then if eq_nat_dec n i
             then Z.pow2_mod (nth_default 0 us n) (log_cap n)
             else nth_default 0 us n +
                  if eq_nat_dec n (S i) then nth_default 0 us i >> log_cap i else 0
        else d.
  Proof.
    intros; unfold carry_simple; autorewrite with push_nth_default.
    repeat break_match; try omega; try reflexivity.
  Qed.

  Hint Rewrite @nth_default_carry_simple_full : push_nth_default.

  Lemma nth_default_carry_gen
    : forall fc fi i us,
      (0 <= i < length us)%nat
      -> nth_default 0 (carry_gen limb_widths fc fi i us) i
         = (if eq_nat_dec i (fi (length us) i)
            then Z.pow2_mod (nth_default 0 us i) (log_cap i)
            else nth_default 0 us i) +
           if eq_nat_dec i (fi (length us) (S (fi (length us) i)))
           then fc (nth_default 0 us (fi (length us) i) >> log_cap (fi (length us) i))
           else 0.
  Proof.
    intros; autorewrite with push_nth_default natsimplify; break_match; omega.
  Qed.
  Hint Rewrite @nth_default_carry_gen using (omega || distr_length; omega) : push_nth_default.

  Lemma nth_default_carry_simple
    : forall i us,
      (0 <= i < length us)%nat
      -> nth_default 0 (carry_simple limb_widths i us) i
         = Z.pow2_mod (nth_default 0 us i) (log_cap i).
  Proof.
    intros; autorewrite with push_nth_default natsimplify; break_match; omega.
  Qed.
  Hint Rewrite @nth_default_carry_simple using (omega || distr_length; omega) : push_nth_default.
End carrying.

Hint Rewrite @length_carry_gen @base_from_limb_widths_length : distr_length.
Hint Rewrite @length_carry_simple @length_carry_simple_sequence @length_make_chain @length_full_carry_chain @length_carry_simple_full : distr_length.
Hint Rewrite @nth_default_carry_simple_full @nth_default_carry_gen_full : push_nth_default.
Hint Rewrite @nth_default_carry_simple @nth_default_carry_gen using (omega || distr_length; omega) : push_nth_default.