aboutsummaryrefslogtreecommitdiff
path: root/src/ModularArithmetic/ModularArithmeticTheorems.v
blob: be9307b50b9ed08519232fa1803e4b342128cf07 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
Require Import Coq.omega.Omega.
Require Import Crypto.Spec.ModularArithmetic.
Require Import Crypto.ModularArithmetic.Pre.

Require Import Coq.Logic.Eqdep_dec.
Require Import Crypto.Tactics.VerdiTactics.
Require Import Coq.ZArith.BinInt Coq.ZArith.Zdiv Coq.ZArith.Znumtheory Coq.NArith.NArith. (* import Zdiv before Znumtheory *)
Require Import Coq.Classes.Morphisms Coq.Setoids.Setoid.
Require Export Coq.setoid_ring.Ring_theory Coq.setoid_ring.Field_theory Coq.setoid_ring.Field_tac.
Require Export Crypto.Util.IterAssocOp.

Require Export Crypto.Util.FixCoqMistakes.

Section ModularArithmeticPreliminaries.
  Context {m:Z}.
  Let ZToFm := ZToField : BinNums.Z -> F m. Hint Unfold ZToFm. Local Coercion ZToFm : Z >-> F.

  Theorem F_eq: forall (x y : F m), x = y <-> FieldToZ x = FieldToZ y.
  Proof.
    destruct x, y; intuition; simpl in *; try congruence.
    subst_max.
    f_equal.
    eapply UIP_dec, Z.eq_dec.
  Qed.

  Lemma F_pow_spec : forall (a:F m),
      pow a 0%N = 1%F /\ forall x, pow a (1 + x)%N = mul a (pow a x).
  Proof.
    intros a.
    pose (@pow_with_spec m) as H.
    change (@pow m) with (proj1_sig H).
    destruct H; eauto.
  Qed.
End ModularArithmeticPreliminaries.

(* Fails iff the input term does some arithmetic with mod'd values. *)
Ltac notFancy E :=
match E with
| - (_ mod _) => idtac
| context[_ mod _] => fail 1
| _ => idtac
end.

Lemma Zplus_neg : forall n m, n + -m = n - m.
Proof.
  auto.
Qed.

Lemma Zmod_eq : forall a b n, a = b -> a mod n = b mod n.
Proof.
  intros; rewrite H; trivial.
Qed.

(* Remove redundant [mod] operations from the conclusion. *)
Ltac demod :=
  repeat match goal with
         | [ |- context[(?x mod _ + _) mod _] ] =>
           notFancy x; rewrite (Zplus_mod_idemp_l x)
         | [ |- context[(_ + ?y mod _) mod _] ] =>
           notFancy y; rewrite (Zplus_mod_idemp_r y)
         | [ |- context[(?x mod _ - _) mod _] ] =>
           notFancy x; rewrite (Zminus_mod_idemp_l x)
         | [ |- context[(_ - ?y mod _) mod _] ] =>
           notFancy y; rewrite (Zminus_mod_idemp_r _ y)
         | [ |- context[(?x mod _ * _) mod _] ] =>
           notFancy x; rewrite (Zmult_mod_idemp_l x)
         | [ |- context[(_ * (?y mod _)) mod _] ] =>
           notFancy y; rewrite (Zmult_mod_idemp_r y)
         | [ |- context[(?x mod _) mod _] ] =>
           notFancy x; rewrite (Zmod_mod x)
         | _ => rewrite Zplus_neg in * || rewrite Z.sub_diag in *
         end.

(* Remove exists under equals: we do this a lot *)
Ltac eq_remove_proofs := lazymatch goal with
| [ |- @eq (F _) ?a ?b ] =>
    assert (Q := F_eq a b);
    simpl in *; apply Q; clear Q
end.

(** TODO FIXME(from jgross): This tactic is way too powerful for
    arcane reasons.  It should not be using so many databases with
    [intuition]. *)
Ltac Fdefn :=
  intros;
  repeat match goal with [ x : F _ |- _ ] => destruct x end;
  try eq_remove_proofs;
  demod;
  rewrite ?Z.mul_1_l;
  intuition auto with zarith lia relations typeclass_instances; demod; try solve [ f_equal; intuition auto with zarith lia relations typeclass_instances ].

Local Open Scope F_scope.

Section FEquality.
  Context {m:Z}.

  (** Equality **)
  Definition F_eqb (x y : F m) : bool :=  Z.eqb x y.

  Lemma F_eqb_eq x y : F_eqb x y = true -> x = y.
  Proof.
    unfold F_eqb; Fdefn; apply Z.eqb_eq; trivial.
  Qed.

  Lemma F_eqb_complete : forall x y: F m, x = y -> F_eqb x y = true.
  Proof.
    intros; subst; apply Z.eqb_refl.
  Qed.

  Lemma F_eqb_refl : forall x, F_eqb x x = true.
  Proof.
    intros; apply F_eqb_complete; trivial.
  Qed.

  Lemma F_eqb_neq x y : F_eqb x y = false -> x <> y.
  Proof.
    intuition; subst y.
    pose proof (F_eqb_refl x).
    congruence.
  Qed.

  Lemma F_eqb_neq_complete x y : x <> y -> F_eqb x y = false.
  Proof.
    intros.
    case_eq (F_eqb x y); intros; trivial.
    pose proof (F_eqb_eq x y); intuition.
  Qed.

  Lemma F_eq_dec : forall x y : F m, {x = y} + {x <> y}.
  Proof.
    intros; case_eq (F_eqb x y); [left|right]; auto using F_eqb_eq, F_eqb_neq.
  Qed.

  Lemma if_F_eq_dec_if_F_eqb : forall {T} x y (a b:T), (if F_eq_dec x y then a else b) = (if F_eqb x y then a else b).
  Proof.
    intros; intuition; break_if.
    - rewrite F_eqb_complete; trivial.
    - rewrite F_eqb_neq_complete; trivial.
  Defined.
End FEquality.

Section FandZ.
  Context {m:Z}.

  Lemma ZToField_small_nonzero : forall z, (0 < z < m)%Z -> ZToField z <> (0:F m).
  Proof.
    intuition; find_inversion; rewrite ?Z.mod_0_l, ?Z.mod_small in *; intuition auto with zarith.
  Qed.

  Require Crypto.Algebra.
  Global Instance commutative_ring_modulo : @Algebra.commutative_ring (F m) Logic.eq (ZToField 0) (ZToField 1) opp add sub mul.
  Proof.
    repeat split; Fdefn; try apply F_eq_dec.
    { rewrite Z.add_0_r. auto. }
    { rewrite Z.mul_1_r. auto. }
  Qed.

  Lemma F_opp_spec : forall (a:F m), add a (opp a) = 0.
    Fdefn.
  Qed.

  Lemma ZToField_0 : @ZToField m 0 = 0.
  Proof.
    Fdefn.
  Qed.

  Lemma FieldToZ_ZToField : forall z, FieldToZ (@ZToField m z) = z mod m.
  Proof.
    Fdefn.
  Qed.

  Lemma mod_FieldToZ : forall x,  (@FieldToZ m x) mod m = FieldToZ x.
  Proof.
    Fdefn.
  Qed.

  (** ZToField distributes over operations **)
  Lemma ZToField_add : forall (x y : Z),
      @ZToField m (x + y) = ZToField x + ZToField y.
  Proof.
    Fdefn.
  Qed.

  Lemma FieldToZ_add : forall x y : F m,
      FieldToZ (x + y) = ((FieldToZ x + FieldToZ y) mod m)%Z.
  Proof.
    Fdefn.
  Qed.

  Lemma FieldToZ_mul : forall x y : F m,
      FieldToZ (x * y) = ((FieldToZ x * FieldToZ y) mod m)%Z.
  Proof.
    Fdefn.
  Qed.

  Lemma FieldToZ_pow_Zpow_mod : forall (x : F m) n,
    (FieldToZ x ^ Z.of_N n mod m = FieldToZ (x ^ n)%F)%Z.
  Proof.
    intros.
    induction n using N.peano_ind;
      destruct (F_pow_spec x) as [pow_0 pow_succ] . {
      rewrite pow_0.
      rewrite Z.pow_0_r; auto.
    } {
      rewrite N2Z.inj_succ.
      rewrite Z.pow_succ_r by apply N2Z.is_nonneg.
      rewrite <- N.add_1_l.
      rewrite pow_succ.
      rewrite <- Zmult_mod_idemp_r.
      rewrite IHn.
      apply FieldToZ_mul.
    }
  Qed.

  Lemma FieldToZ_pow_efficient : forall (x : F m) n, FieldToZ (x^n) = powmod m (FieldToZ x) n.
  Proof.
    intros.
    rewrite powmod_Zpow_mod.
    rewrite <-FieldToZ_pow_Zpow_mod.
    reflexivity.
  Qed.

  Lemma pow_nat_iter_op_correct: forall (x:F m) n, (@nat_iter_op _ mul 1) (N.to_nat n) x = x^n.
  Proof.
    induction n using N.peano_ind;
      destruct (F_pow_spec x) as [pow_0 pow_succ];
      rewrite ?N2Nat.inj_succ, ?pow_0, <-?N.add_1_l, ?pow_succ;
      simpl; congruence.
  Qed.

  Lemma mod_plus_zero_subproof a b : 0 mod m = (a + b) mod m ->
                                     b mod m =  (- a)  mod m.
  Proof.
    rewrite <-Z.sub_0_l; intros.
    replace (0-a)%Z with (b-(a + b))%Z by omega.
    rewrite Zminus_mod.
    rewrite <- H.
    rewrite Zmod_0_l.
    replace (b mod m - 0)%Z with (b mod m) by omega.
    rewrite Zmod_mod.
    reflexivity.
  Qed.

  Lemma FieldToZ_opp' : forall x, FieldToZ (@opp m x) mod m = -x mod m.
  Proof.
    intros.
    pose proof (FieldToZ_add x (opp x)) as H.
    rewrite F_opp_spec, FieldToZ_ZToField in H.
    auto using mod_plus_zero_subproof.
  Qed.

  Lemma FieldToZ_opp : forall x, FieldToZ (@opp m x) = -x mod m.
  Proof.
    intros.
    pose proof (FieldToZ_opp' x) as H; rewrite mod_FieldToZ in H; trivial.
  Qed.

  Lemma sub_intersperse_modulus : forall x y, ((x - y) mod m = (x + (m - y)) mod m)%Z.
  Proof.
    intros.
    replace (x + (m - y))%Z with (m+(x-y))%Z by omega.
    rewrite Zplus_mod.
    rewrite Z_mod_same_full; simpl Z.add.
    rewrite Zmod_mod.
    reflexivity.
  Qed.

  (* Compatibility between inject and subtraction *)
  Lemma ZToField_sub : forall (x y : Z),
      @ZToField m (x - y) = ZToField x - ZToField y.
  Proof.
    Fdefn.
  Qed.

  (* Compatibility between inject and multiplication *)
  Lemma ZToField_mul : forall (x y : Z),
      @ZToField m (x * y) = ZToField x * ZToField y.
  Proof.
    Fdefn.
  Qed.

  (* Compatibility between inject and GFtoZ *)
  Lemma ZToField_idempotent : forall (x : F m), ZToField x = x.
  Proof.
    Fdefn.
  Qed.
  Definition ZToField_FieldToZ := ZToField_idempotent. (* alias *)

  (* Compatibility between inject and mod *)
  Lemma ZToField_mod : forall x, @ZToField m x = ZToField (x mod m).
  Proof.
    Fdefn.
  Qed.

  (* Compatibility between inject and pow *)
  Lemma ZToField_pow : forall x n,
    @ZToField m x ^ n = ZToField (x ^ (Z.of_N n) mod m).
  Proof.
    intros.
    induction n using N.peano_ind;
      destruct (F_pow_spec (@ZToField m x)) as [pow_0 pow_succ] . {
      rewrite pow_0.
      Fdefn.
    } {
      rewrite N2Z.inj_succ.
      rewrite Z.pow_succ_r by apply N2Z.is_nonneg.
      rewrite <- N.add_1_l.
      rewrite pow_succ.
      rewrite IHn.
      Fdefn.
    }
  Qed.

  Lemma ZToField_eqmod : forall x y : Z, x mod m = y mod m -> ZToField x = @ZToField m y.
    Fdefn.
  Qed.

  Lemma FieldToZ_nonzero:
    forall x0 : F m, x0 <> 0 -> FieldToZ x0 <> 0%Z.
  Proof.
    intros x0 Hnz Hz.
    rewrite <- Hz, ZToField_FieldToZ in Hnz; auto.
  Qed.

End FandZ.

Section RingModuloPre.
  Context {m:Z}.
  Let ZToFm := ZToField : Z -> F m. Hint Unfold ZToFm. Local Coercion ZToFm : Z >-> F.
  (* Substitution to prove all Compats *)
  Ltac compat := repeat intro; subst; trivial.

  Instance Fplus_compat : Proper (eq==>eq==>eq) (@add m).
  Proof.
    compat.
  Qed.

  Instance Fminus_compat : Proper (eq==>eq==>eq) (@sub m).
  Proof.
    compat.
  Qed.

  Instance Fmult_compat : Proper (eq==>eq==>eq) (@mul m).
  Proof.
    compat.
  Qed.

  Instance Fopp_compat : Proper (eq==>eq) (@opp m).
  Proof.
    compat.
  Qed.

  Instance Finv_compat : Proper (eq==>eq) (@inv m).
  Proof.
    compat.
  Qed.

  Instance Fdiv_compat : Proper (eq==>eq==>eq) (@div m).
  Proof.
    compat.
  Qed.

  (***** Ring Theory *****)
  Definition Fring_theory : ring_theory 0%F 1%F (@add m) (@mul m) (@sub m) (@opp m) eq.
  Proof.
    constructor; Fdefn.
  Qed.

  Lemma F_mul_1_r:
    forall x : F m, x * 1 = x.
  Proof.
    Fdefn; rewrite Z.mul_1_r; auto.
  Qed.

  Lemma F_mul_assoc:
    forall x y z : F m, x * (y * z) = x * y * z.
  Proof.
    Fdefn.
  Qed.

  Lemma F_pow_pow_N (x : F m) : forall (n : N), (x ^ id n)%F = pow_N 1%F mul x n.
  Proof.
    destruct (F_pow_spec x) as [HO HS]; intros.
    destruct n; auto; unfold id.
    rewrite Pre.N_pos_1plus at 1.
    rewrite HS.
    simpl.
    induction p using Pos.peano_ind.
    - simpl. rewrite HO; apply F_mul_1_r.
    - rewrite (@pow_pos_succ (F m) (@mul m) eq _ _ F_mul_assoc x).
      rewrite <-IHp, Pos.pred_N_succ, Pre.N_pos_1plus, HS.
      f_equal.
  Qed.

  (***** Power theory *****)
  Lemma Fpower_theory : power_theory 1%F (@mul m) eq id (@pow m).
  Proof.
    constructor; apply F_pow_pow_N.
  Qed.

  (***** Division Theory *****)
  Definition Fquotrem(a b: F m): F m * F m :=
    let '(q, r) := (Z.quotrem a b) in (q : F m, r : F m).
  Lemma Fdiv_theory : div_theory eq (@add m) (@mul m) (@id _) Fquotrem.
  Proof.
    constructor; intros; unfold Fquotrem, id.

    replace (Z.quotrem a b) with (Z.quot a b, Z.rem a b) by
      try (unfold Z.quot, Z.rem; rewrite <- surjective_pairing; trivial).

    Fdefn; rewrite <-Z.quot_rem'; trivial.
  Qed.

  Lemma Z_mul_mod_modulus_r : forall x m, ((x*m) mod m = 0)%Z.
    intros.
    rewrite Zmult_mod, Z_mod_same_full.
    rewrite Z.mul_0_r, Zmod_0_l.
    reflexivity.
  Qed.

  Lemma Z_mod_opp_equiv : forall x y m,  x  mod m = (-y) mod m ->
                                       (-x) mod m =   y  mod m.
  Proof.
    intros.
    rewrite <-Z.sub_0_l.
    rewrite Zminus_mod. rewrite H.
    rewrite ?Zminus_mod_idemp_l, ?Zminus_mod_idemp_r; f_equal.
    destruct y; auto.
  Qed.

  Lemma Z_opp_opp : forall x : Z, (-(-x)) = x.
    destruct x; auto.
  Qed.

  Lemma Z_mod_opp : forall x m, (- x) mod m = (- (x mod m)) mod m.
    intros.
    apply Z_mod_opp_equiv.
    rewrite Z_opp_opp.
    demod; auto.
  Qed.

  (* Define a "ring morphism" between GF and Z, i.e. an equivalence
   * between 'inject (ZFunction (X))' and 'GFFunction (inject (X))'.
   *
   * Doing this allows us to do our coefficient manipulations in Z
   * rather than GF, because we know it's equivalent to inject the
   * result afterward.
   *)
  Lemma Fring_morph:
      ring_morph 0%F 1%F (@add m) (@mul m) (@sub m) (@opp m) eq
                 0%Z 1%Z Z.add    Z.mul    Z.sub    Z.opp  Z.eqb
                 (@ZToField m).
  Proof.
    constructor; intros; try Fdefn; unfold id;
      try (apply gf_eq; simpl; intuition).
    - apply Z_mod_opp_equiv; rewrite Z_opp_opp, Zmod_mod; reflexivity.
    - rewrite (proj1 (Z.eqb_eq x y)); trivial.
  Qed.

  (* Redefine our division theory under the ring morphism *)
  Lemma Fmorph_div_theory:
      div_theory eq Zplus Zmult (@ZToField m) Z.quotrem.
  Proof.
    constructor; intros; intuition.
    replace (Z.quotrem a b) with (Z.quot a b, Z.rem a b);
      try (unfold Z.quot, Z.rem; rewrite <- surjective_pairing; trivial).

    eq_remove_proofs; demod;
      rewrite <- (Z.quot_rem' a b);
      destruct a; simpl; trivial.
  Qed.

  Lemma ZToField_1 : @ZToField m 1 = 1.
  Proof.
    Fdefn.
  Qed.
End RingModuloPre.

Ltac Fconstant t := match t with @ZToField _ ?x => x | _ => NotConstant end.
Ltac Fexp_tac t := Ncst t.
Ltac Fpreprocess := rewrite <-?ZToField_0, ?ZToField_1.
Ltac Fpostprocess := repeat split;
  repeat match goal with [ |- context[exist ?a ?b (Pre.Z_mod_mod ?x ?q)] ] =>
    change (exist a b (Pre.Z_mod_mod x q)) with (@ZToField q x%Z) end;
  rewrite ?ZToField_0, ?ZToField_1.

Module Type Modulus.
  Parameter modulus : Z.
End Modulus.

(* Example of how to instantiate the ring tactic *)
Module RingModulo (Export M : Modulus).
  Definition ring_theory_modulo := @Fring_theory modulus.
  Definition ring_morph_modulo := @Fring_morph modulus.
  Definition morph_div_theory_modulo := @Fmorph_div_theory modulus.
  Definition power_theory_modulo := @Fpower_theory modulus.

  Add Ring GFring_Z : ring_theory_modulo
    (morphism ring_morph_modulo,
     constants [Fconstant],
     div morph_div_theory_modulo,
     power_tac power_theory_modulo [Fexp_tac]).
End RingModulo.

Section VariousModulo.
  Context {m:Z}.

  Add Ring GFring_Z : (@Fring_theory m)
    (morphism (@Fring_morph m),
     constants [Fconstant],
     div (@Fmorph_div_theory m),
     power_tac (@Fpower_theory m) [Fexp_tac]).

  Lemma F_mul_0_l : forall x : F m, 0 * x = 0.
  Proof.
    intros; ring.
  Qed.

  Lemma F_mul_0_r : forall x : F m, x * 0 = 0.
  Proof.
    intros; ring.
  Qed.

  Lemma F_mul_nonzero_l : forall a b : F m, a*b <> 0 -> a <> 0.
    intros; intuition; subst.
    assert (0 * b = 0) by ring; intuition.
  Qed.

  Lemma F_mul_nonzero_r : forall a b : F m, a*b <> 0 -> b <> 0.
    intros; intuition; subst.
    assert (a * 0 = 0) by ring; intuition.
  Qed.

  Lemma F_pow_distr_mul : forall (x y:F m) z, (0 <= z)%N ->
    (x ^ z) * (y ^ z) = (x * y) ^ z.
  Proof.
    intros.
    replace z with (Z.to_N (Z.of_N z)) by apply N2Z.id.
    apply natlike_ind with (x := Z.of_N z); simpl; [ ring | |
      replace 0%Z with (Z.of_N 0%N) by auto; apply N2Z.inj_le; auto].
    intros z' z'_nonneg IHz'.
    rewrite Z2N.inj_succ by auto.
    rewrite <-N.add_1_l.
    rewrite !(proj2 (@F_pow_spec m _) _).
    rewrite <- IHz'.
    ring.
  Qed.

  Lemma F_opp_0 : opp (0 : F m) = 0%F.
  Proof.
    intros; ring.
  Qed.

  Lemma F_opp_swap : forall x y : F m, opp x = y <-> x = opp y.
  Proof.
    split; intro; subst; ring.
  Qed.

  Lemma F_opp_involutive : forall x : F m, opp (opp x) = x.
  Proof.
    intros; ring.
  Qed.

  Lemma F_square_opp : forall x : F m, (opp x ^ 2 = x ^ 2)%F.
  Proof.
    intros; ring.
  Qed.

  Lemma F_mul_opp_r : forall x y : F m, (x * opp y = opp (x * y))%F.
    intros; ring.
  Qed.

  Lemma F_mul_opp_l : forall x y : F m, (opp x * y = opp (x * y))%F.
    intros; ring.
  Qed.

  Lemma F_mul_opp_both : forall x y : F m, (opp x * opp y = x * y)%F.
    intros; ring.
  Qed.

  Lemma F_add_0_r : forall x : F m, (x + 0)%F = x.
  Proof.
    intros; ring.
  Qed.

  Lemma F_add_0_l : forall x : F m, (0 + x)%F = x.
  Proof.
    intros; ring.
  Qed.

  Lemma F_add_reg_r : forall x y z : F m, y + x = z + x -> y = z.
  Proof.
    intros ? ? ? A.
    replace y with (y + x - x) by ring.
    rewrite A; ring.
  Qed.

  Lemma F_add_reg_l : forall x y z : F m, x + y = x + z -> y = z.
  Proof.
    intros ? ? ? A.
    replace y with (x + y - x) by ring.
    rewrite A; ring.
  Qed.

  Lemma F_sub_0_r : forall x : F m, (x - 0)%F = x.
  Proof.
    intros; ring.
  Qed.

  Lemma F_sub_0_l : forall x : F m, (0 - x)%F = opp x.
  Proof.
    intros; ring.
  Qed.

  Lemma F_mul_1_l : forall x : F m, (1 * x)%F = x.
  Proof.
    intros; ring.
  Qed.

  Lemma F_ZToField_m : ZToField m = @ZToField m 0.
  Proof.
    Fdefn.
    rewrite Zmod_0_l.
    apply Z_mod_same_full.
  Qed.

  Lemma F_sub_m_l : forall x : F m, opp x = ZToField m - x.
  Proof.
    rewrite F_ZToField_m.
    symmetry.
    apply F_sub_0_l.
  Qed.

  Lemma opp_ZToField : forall x : Z, opp (ZToField x) = @ZToField m (m - x).
  Proof.
    Fdefn.
    rewrite Zminus_mod, Z_mod_same_full, (Z.sub_0_l (x mod m)); reflexivity.
  Qed.

  Lemma F_pow_2_r : forall x : F m, x^2 = x*x.
  Proof.
    intros. ring.
  Qed.

  Lemma F_pow_3_r : forall x : F m, x^3 = x*x*x.
  Proof.
    intros. ring.
  Qed.

  Lemma F_pow_add : forall (x : F m) k j, x ^ j * x ^ k = x ^ (j + k).
  Proof.
    intros.
    destruct (F_pow_spec x) as [exp_zero exp_succ].
    induction j using N.peano_ind.
    + rewrite exp_zero.
      ring_simplify; eauto.
    +
    rewrite N.add_succ_l.
    do 2 rewrite <- N.add_1_l.
    do 2 rewrite exp_succ by apply N.neq_succ_0.
    rewrite <- IHj.
    ring.
  Qed.

  Lemma F_pow_compose : forall (x : F m) k j, (x ^ j) ^ k = x ^ (k * j).
  Proof.
    intros.
    induction k using N.peano_ind; [rewrite Nmult_0_l; ring | ].
    rewrite Nmult_Sn_m.
    rewrite <- F_pow_add.
    rewrite <- IHk.
    rewrite <- N.add_1_l.
    rewrite (proj2 (F_pow_spec _)).
    ring.
  Qed.

  Lemma F_sub_add_swap : forall w x y z : F m, w - x = y - z <-> w + z = y + x.
  Proof.
    split; intro A;
      [ replace w with (w - x + x) by ring
      | replace w with (w + z - z) by ring ]; rewrite A; ring.
  Qed.

  Definition isSquare (x : F m) := exists sqrt_x, sqrt_x ^ 2 = x.

  Lemma square_Zmod_F : forall (a : F m), isSquare a <->
    (exists b : Z, ((b * b) mod m)%Z = a).
  Proof.
    split; intro A; destruct A as [sqrt_a sqrt_a_id]. {
      exists sqrt_a.
      rewrite <- FieldToZ_mul.
      apply F_eq.
      ring_simplify; auto.
    } {
      exists (ZToField sqrt_a).
      rewrite ZToField_pow.
      replace (Z.of_N 2) with 2%Z by auto.
      rewrite Z.pow_2_r.
      rewrite sqrt_a_id.
      apply ZToField_FieldToZ.
    }
  Qed.

  Lemma FieldToZ_range : forall x : F m, 0 < m -> 0 <= x < m.
  Proof.
    intros.
    rewrite <- mod_FieldToZ.
    apply Z.mod_pos_bound.
    omega.
  Qed.

  Lemma FieldToZ_nonzero_range : forall x : F m, (x <> 0) -> 0 < m ->
    (1 <= x < m)%Z.
  Proof.
    intros.
    pose proof (FieldToZ_range x).
    unfold not in *.
    rewrite F_eq in H.
    replace (FieldToZ 0) with 0%Z in H by auto.
    omega.
  Qed.

  Lemma F_mul_comm : forall x y : F m, x*y = y*x.
    intros; ring.
  Qed.

  Lemma Fq_sub_eq : forall x y a b : F m, a = b -> x-a = y-b -> x = y.
  Proof.
    intros x y a b Hab Hxayb; subst.
    replace x with ((x - b) + b) by ring.
    replace y with ((y - b) + b) by ring.
    rewrite Hxayb; ring.
  Qed.

  Lemma F_FieldToZ_add_opp : forall x : F m, x <> 0 -> (FieldToZ x + FieldToZ (opp x) = m)%Z.
  Proof.
    intros.
    rewrite FieldToZ_opp.
    rewrite Z_mod_nz_opp_full, mod_FieldToZ; try omega.
    rewrite mod_FieldToZ.
    replace 0%Z with (@FieldToZ m 0) by auto.
    intro false_eq.
    rewrite <-F_eq in false_eq.
    congruence.
  Qed.

End VariousModulo.