aboutsummaryrefslogtreecommitdiff
path: root/src/Fancy/Prod.v
blob: de56807276c35c7e78598b26d750feddb79ced11 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
Require Import Coq.ZArith.ZArith.
Require Import Coq.micromega.Lia.
Require Import Coq.Lists.List. Import ListNotations.
Require Import Crypto.Algebra.Ring. (* for ring_simplify_subterms *)
Require Import Crypto.Fancy.Spec. Import Spec.Registers.
Require Import Crypto.Fancy.Compiler.
Require Import Crypto.Util.Tactics.BreakMatch.
Require Import Crypto.Util.ZUtil.Tactics.PullPush.Modulo.
Require Import Crypto.Util.ZUtil.Tactics.ZeroBounds.
Local Open Scope Z_scope.

Module Z.
(* TODO: move to Div *)
Lemma div_add_mod_cond_l' x y d :
  d <> 0 ->
  (x mod d + y) / d = (x + y) / d - x / d.
Proof.
  intros.
  rewrite (Div.Z.div_add_mod_cond_l x y d) by omega.
  ring.
Qed.
Lemma div_add_mod_cond_r' x y d :
  d <> 0 ->
  (x + y mod d) / d = (x + y) / d - y / d.
Proof.
  intros.
  rewrite (Div.Z.div_add_mod_cond_r x y d) by omega.
  ring.
Qed.
End Z.

Section Prod.
  Definition Mul256 (out src1 src2 tmp : register) (cont : expr) : expr :=
    Instr MUL128LL out (src1, src2)
          (Instr MUL128UL tmp (src1, src2)
                 (Instr (ADD 128) out (out, tmp)
                        (Instr MUL128LU tmp (src1, src2)
                               (Instr (ADD 128) out (out, tmp) cont)))).
  Definition Mul256x256 (out outHigh src1 src2 tmp : register) (cont : expr) : expr :=
    Instr MUL128LL out (src1, src2)
          (Instr MUL128UU outHigh (src1, src2)
                 (Instr MUL128UL tmp (src1, src2)
                        (Instr (ADD 128) out (out, tmp)
                               (Instr (ADDC (-128)) outHigh (outHigh, tmp)
                                      (Instr MUL128LU tmp (src1, src2)
                                             (Instr (ADD 128) out (out, tmp)
                                                    (Instr (ADDC (-128)) outHigh (outHigh, tmp) cont))))))).

  Definition MontRed256 lo hi y t1 t2 scratch RegPInv : @expr register :=
    Mul256 y lo RegPInv t1
           (Mul256x256 t1 t2 y RegMod scratch
                       (Instr (ADD 0) lo (lo, t1)
                              (Instr (ADDC 0) hi (hi, t2)
                                     (Instr SELC y (RegMod, RegZero)
                                            (Instr (SUB 0) lo (hi, y)
                                                   (Instr ADDM lo (lo, RegZero, RegMod)
                                                          (Ret lo))))))).

  (* Barrett reduction -- this is only the "reduce" part, excluding the initial multiplication. *)
  Definition MulMod x xHigh RegMuLow scratchp1 scratchp2 scratchp3 scratchp4 scratchp5 : @expr register :=
    let q1Bottom256 := scratchp1 in
    let muSelect := scratchp2 in
    let q2 := scratchp3 in
    let q2High := scratchp4 in
    let q2High2 := scratchp5 in
    let q3 := scratchp1 in
    let r2 := scratchp2 in
    let r2High := scratchp3 in
    let maybeM := scratchp1 in
    Instr SELM muSelect (RegMuLow, RegZero)
          (Instr (RSHI 255) q1Bottom256 (xHigh, x)
                 (Mul256x256 q2 q2High q1Bottom256 RegMuLow scratchp5
                             (Instr (RSHI 255) q2High2 (RegZero, xHigh)
                                    (Instr (ADD 0) q2High (q2High, q1Bottom256)
                                           (Instr (ADDC 0) q2High2 (q2High2, RegZero)
                                                  (Instr (ADD 0) q2High (q2High, muSelect)
                                                         (Instr (ADDC 0) q2High2 (q2High2, RegZero)
                                                                (Instr (RSHI 1) q3 (q2High2, q2High)
                                                                       (Mul256x256 r2 r2High RegMod q3 scratchp4
                                                                                   (Instr (SUB 0) muSelect (x, r2)
                                                                                          (Instr (SUBC 0) xHigh (xHigh, r2High)
                                                                                                 (Instr SELL maybeM (RegMod, RegZero)
                                                                                                        (Instr (SUB 0) q3 (muSelect, maybeM)
                                                                                                               (Instr ADDM x (q3, RegZero, RegMod)
                                                                                                                      (Ret x))))))))))))))).
End Prod.

(* Solves subgoals for commutativity proofs and simplifies register
lookup expressions *)
Ltac simplify_with_register_properties :=
  repeat
    match goal with
    | _ => rewrite reg_eqb_refl
    | _ => rewrite reg_eqb_neq by (assumption || congruence) 
    | H:?y = _ mod ?m |- 0 <= ?y < _ => rewrite H; apply Z.mod_pos_bound; lia
    | _ => assumption
    end.
Ltac cleanup :=
  cbn - [interp spec cc_spec];
  simplify_with_register_properties;
  cbv [CC.update in_dec list_rec list_rect
                 CC.code_dec];
  cbn [CC.cc_c CC.cc_m CC.cc_z CC.cc_l].
Ltac step_and_remember := 
  rewrite interp_step; cleanup;
  remember_single_result.
Ltac step_lhs :=
  match goal with
  | |- Spec.interp _ _ _ (Instr _ _ _ _) _ _ = _ =>
    step_and_remember
  end.
Ltac step_rhs :=
  rewrite interp_step; cleanup;
  match goal with
  | H: ?x = spec ?i ?args _
    |- context [spec ?i ?args ?cc] =>
    replace (spec i args cc) with x by idtac
  end;
  match goal with
  | H : ?y = (?x mod ?m)%Z |- context [(?x mod ?m)%Z] =>
    rewrite <-H
  end.
Ltac prove_programs_equivalent :=
  repeat step_lhs; (* remember the results of each step on the LHS *)
  repeat match goal with
         | _ => step_rhs
         | |- ?x = ?x => reflexivity
         | _ => rewrite mulhh_comm by simplify_with_register_properties; step_rhs
         | _ => rewrite mulll_comm by simplify_with_register_properties; step_rhs
         | _ => rewrite add_comm by simplify_with_register_properties; step_rhs
         | _ => rewrite addc_comm by simplify_with_register_properties; step_rhs
         | _ => rewrite mullh_mulhl; step_rhs
         | _ => rewrite <-mullh_mulhl; step_rhs
         end.

Section ProdEquiv.
  Context (wordmax : Z).

  Let interp256 := interp reg_eqb wordmax cc_spec.
  Lemma cc_overwrite_full x1 x2 l1 cc :
    CC.update [CC.C; CC.M; CC.L; CC.Z] x2 cc_spec (CC.update l1 x1 cc_spec cc) = CC.update [CC.C; CC.M; CC.L; CC.Z] x2 cc_spec cc.
  Proof.
    cbv [CC.update]. cbn [CC.cc_c CC.cc_m CC.cc_l CC.cc_z].
    break_match; try match goal with H : ~ In _ _ |- _ => cbv [In] in H; tauto end.
    reflexivity.
  Qed.

  Definition value_unused r e : Prop :=
    forall x cc ctx, interp256 e cc ctx = interp256 e cc (fun r' => if reg_eqb r' r then x else ctx r').

  Lemma value_unused_skip r i rd args cont (Hcont: value_unused r cont) :
    r <> rd ->
    (~ In r (Tuple.to_list _ args)) ->
    value_unused r (Instr i rd args cont).
  Proof.
    cbv [value_unused interp256] in *; intros.
    rewrite !interp_step; cbv zeta.
    rewrite Hcont with (x:=x).
    match goal with |- ?lhs = ?rhs =>
                    match lhs with context [Tuple.map ?f ?t] =>
                                   match rhs with context [Tuple.map ?g ?t] =>
                                                  rewrite (Tuple.map_ext_In f g) by (intros; cbv [reg_eqb]; break_match; congruence)
                                   end end end.
    apply interp_state_equiv; [ congruence | ].
    { intros; cbv [reg_eqb] in *; break_match; congruence. }
  Qed.

  Lemma value_unused_overwrite r i args cont :
    (~ In r (Tuple.to_list _ args)) ->
    value_unused r (Instr i r args cont).
  Proof.
    cbv [value_unused interp256]; intros; rewrite !interp_step; cbv zeta.
    match goal with |- ?lhs = ?rhs =>
                    match lhs with context [Tuple.map ?f ?t] =>
                                   match rhs with context [Tuple.map ?g ?t] =>
                                                  rewrite (Tuple.map_ext_In f g) by (intros; cbv [reg_eqb]; break_match; congruence)
                                   end end end.
    apply interp_state_equiv; [ congruence | ].
    { intros; cbv [reg_eqb] in *; break_match; congruence. }
  Qed.

  Lemma value_unused_ret r r' :
    r <> r' ->
    value_unused r (Ret r').
  Proof.
    cbv - [reg_dec]; intros.
    break_match; congruence.
  Qed.

  Lemma interp_Mul256 out src1 src2 tmp tmp2 cont cc ctx:
    out <> src1 ->
    out <> src2 ->
    out <> tmp ->
    out <> tmp2 ->
    src1 <> src2 ->
    src1 <> tmp ->
    src1 <> tmp2 ->
    src2 <> tmp ->
    src2 <> tmp2 ->
    tmp <> tmp2 ->
    value_unused tmp cont ->
    value_unused tmp2 cont ->
    interp256 (Mul256 out src1 src2 tmp cont) cc ctx =
    interp256 (
        Instr MUL128LU tmp (src1, src2)
              (Instr MUL128UL tmp2 (src1, src2)
                     (Instr MUL128LL out (src1, src2)
                                 (Instr (ADD 128) out (out, tmp2)
                                        (Instr (ADD 128) out (out, tmp) cont))))) cc ctx.
  Proof.
    intros; cbv [Mul256 interp256].
    repeat step_lhs.
    repeat step_rhs.

    match goal with H : value_unused tmp _ |- _ => erewrite H end.
    match goal with H : value_unused tmp2 _ |- _ => erewrite H end.
    apply interp_state_equiv.
    { reflexivity. }
    { intros; cbv [reg_eqb].
      break_innermost_match; try congruence; reflexivity. }
  Qed.

  Lemma interp_Mul256x256 out outHigh src1 src2 tmp tmp2 cont cc ctx:
    out <> src1 ->
    out <> outHigh ->
    out <> src2 ->
    out <> tmp ->
    out <> tmp2 ->
    outHigh <> src1 ->
    outHigh <> src2 ->
    outHigh <> tmp ->
    outHigh <> tmp2 ->
    src1 <> src2 ->
    src1 <> tmp ->
    src1 <> tmp2 ->
    src2 <> tmp ->
    src2 <> tmp2 ->
    tmp <> tmp2 ->
    value_unused tmp cont ->
    value_unused tmp2 cont ->
    interp256 (Mul256x256 out outHigh src1 src2 tmp cont) cc ctx =
    interp256 (
        Instr MUL128UU outHigh (src1, src2)
              (Instr MUL128LU tmp (src1, src2)
                     (Instr MUL128UL tmp2 (src1, src2)
                            (Instr MUL128LL out (src1, src2)
                                   (Instr (ADD 128) out (out, tmp2)
                                          (Instr (ADDC (-128)) outHigh (outHigh, tmp2)
                                                 (Instr (ADD 128) out (out, tmp)
                                                        (Instr (ADDC (-128)) outHigh (outHigh, tmp) cont)))))))) cc ctx.
  Proof.
    intros; cbv [Mul256x256 interp256].
    repeat step_lhs.
    repeat step_rhs.

    match goal with H : value_unused tmp _ |- _ => erewrite H end.
    match goal with H : value_unused tmp2 _ |- _ => erewrite H end.
    apply interp_state_equiv; [ reflexivity | ].
    intros; cbv [reg_eqb].
    break_innermost_match; try congruence; reflexivity.
  Qed.

  Lemma interp_add_chain a b c cont cc ctx:
    a <> b -> 
    a <> c -> 
    b <> c ->
    (0 <= ctx a < wordmax)%Z ->
    (0 <= ctx b < wordmax)%Z ->
    (0 <= ctx c < wordmax)%Z ->
    (wordmax = 2 ^ 256)%Z ->
    let result := (ctx a + Z.shiftl (ctx c) 128 + ctx b * wordmax)%Z in
    interp256 (
        Instr (ADD 128) a (a, c)
              (Instr (ADDC (-128)) b (b, c) cont))
              cc ctx =
    interp256 cont
              (CC.update [CC.C; CC.M; CC.L; CC.Z]
                         (result / wordmax) cc_spec cc)
              (fun r =>
                 if reg_eqb r a
                 then (result mod wordmax)%Z
                 else
                   if reg_eqb r b
                   then ((result / wordmax) mod wordmax)%Z
                   else ctx r).
  Proof.
    intros; cbv [interp256].
    repeat step_and_remember.
    cbn [spec ADD ADDC CC.cc_c] in *.
    replace x0 with (result / wordmax)%Z in *.

    { apply interp_state_equiv; [ reflexivity | ].
      intros; cbv [reg_eqb].
      break_innermost_match; try congruence; try reflexivity.
      { subst. subst result.
        autorewrite with zsimplify.
        pull_Zmod. reflexivity. } }

    (* TODO: this is a stupidly ugly arithmetic proof *)
    { subst. subst result.
      rewrite Z.shiftl_mul_pow2 by omega.
      rewrite Z.shiftl_div_pow2 by omega.
      rewrite Pos2Z.opp_neg. (* TODO : add to zsimplify? *)
      autorewrite with zsimplify.

      match goal with
        |- context [if ?x then 1 else 0] =>
        change (if x then 1 else 0) with (Z.b2z x)
      end.
      cbv [cc_spec].
      rewrite Z.testbit_spec' by omega.

      rewrite Z.mod_small with (b:=2) by
          (split; [ Z.zero_bounds | ];
            apply Z.div_lt_upper_bound; try lia;
            match goal with
              |- context [ ?x mod ?y ] =>
              pose proof (Z.mod_pos_bound x y ltac:(lia))
            end; lia).
      
      autorewrite with zsimplify.

      rewrite Z.div_add_mod_cond_r' by omega.
      rewrite Z.mod_small with (a := ctx c / 2 ^ 128)
        by (split; [ Z.zero_bounds | apply Z.div_lt_upper_bound; lia ]).
      assert (0 < 2 ^ 128) by (cbn; omega).
      change (2 ^ 256)%Z with (2 ^ 128 * 2 ^ 128)%Z.
      rewrite Z.div_mul_cancel_r by omega.
      ring. }
  Qed.

  Definition flags_unused e wordmax : Prop :=
    forall cc x ctx,
      interp reg_eqb wordmax cc_spec e cc ctx =
      interp reg_eqb wordmax cc_spec e (CC.update [CC.C; CC.M; CC.L; CC.Z] x cc_spec cc) ctx.

  Lemma swap_add_chain a b c d cont cc ctx:
    a <> b -> 
    a <> c -> 
    a <> d -> 
    b <> c ->
    b <> d ->
    c <> d ->
    0 <= ctx a < wordmax ->
    0 <= ctx b < wordmax ->
    0 <= ctx c < wordmax ->
    0 <= ctx d < wordmax ->
    wordmax = 2 ^ 256 ->
    flags_unused cont wordmax ->
    interp256 (
        Instr (ADD 128) a (a, c)
              (Instr (ADDC (-128)) b (b, c)
                     (Instr (ADD 128) a (a, d)
                            (Instr (ADDC (-128)) b (b, d) cont))))
              cc ctx =
    interp256 (
        Instr (ADD 128) a (a, d)
              (Instr (ADDC (-128)) b (b, d)
                     (Instr (ADD 128) a (a, c)
                            (Instr (ADDC (-128)) b (b, c) cont))))
              cc ctx.
  Proof.
    intros.
    assert (0 < wordmax) by omega.
    repeat (rewrite interp_add_chain by (rewrite ?reg_eqb_refl, ?reg_eqb_neq by congruence; try assumption; auto using Z.mod_pos_bound with omega)).
    rewrite ?reg_eqb_refl, ?reg_eqb_neq by congruence.
    match goal with
    | H : flags_unused ?e _
      |- interp256 ?e ?ccl _ = interp256 ?e ?ccr _ =>
      rewrite H with (cc:=ccl) (x:=0);
        rewrite H with (cc:=ccr) (x:=0)
    end.
    rewrite !cc_overwrite_full.
    apply interp_state_equiv; [ reflexivity | ].
    intros; cbv [reg_eqb].
    break_innermost_match; try congruence; try reflexivity.
    { autorewrite with zsimplify. pull_Zmod.
      f_equal; ring. }
    { autorewrite with zsimplify. pull_Zmod.
      rewrite !Z.div_add_mod_cond_l' by (subst; cbn; omega).
      ring_simplify.
      (* This is really annoying, can't a tactic do this? *)
      match goal with |- context [?a + ?b + ?c] =>
                      match goal with |- context [?a + ?c + ?b] =>
                                      replace (a + b + c) with (a + c + b) by ring
                      end end.
      f_equal. ring. }
  Qed.

End ProdEquiv.

Ltac push_value_unused :=
  repeat match goal with
         | _ => apply value_unused_skip; [ | assumption | ]
         | _ => apply value_unused_overwrite
         | _ => apply value_unused_ret; congruence
         | _ => apply not_in_cons; split;
                [ try assumption; symmetry; assumption | ]
         | _ => apply in_nil
         end.