aboutsummaryrefslogtreecommitdiff
path: root/src/Fancy/Barrett256.v
blob: 2ee19e6e6740fd0c11981c2202334523f457dcaf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
Require Import Coq.Bool.Bool.
Require Import Coq.derive.Derive.
Require Import Coq.ZArith.ZArith Coq.micromega.Lia.
Require Import Coq.Lists.List. Import ListNotations.
Require Import Crypto.Arithmetic.
Require Import Crypto.Fancy.Compiler.
Require Import Crypto.Fancy.Prod.
Require Import Crypto.Fancy.Spec.
Require Import Crypto.Language. Import Language.Compilers.
Require Import Crypto.LanguageWf.
Require Import Crypto.PushButtonSynthesis.
Require Import Crypto.Util.Tactics.BreakMatch.
Require Import Crypto.Util.ZUtil.EquivModulo.
Require Import Crypto.Util.ZUtil.Tactics.LtbToLt.
Require Import Crypto.Util.Notations.
Local Open Scope Z_scope.

Module Barrett256.

  Definition M := Eval lazy in (2^256-2^224+2^192+2^96-1).
  Definition machine_wordsize := 256.

  Derive barrett_red256
         SuchThat (BarrettReduction.rbarrett_red_correctT M machine_wordsize barrett_red256)
         As barrett_red256_correct.
  Proof. Time solve_rbarrett_red_nocache machine_wordsize. Time Qed.

  Definition muLow := Eval lazy in (2 ^ (2 * machine_wordsize) / M) mod (2^machine_wordsize).

  Lemma barrett_reduce_correct_specialized :
    forall (xLow xHigh : Z),
      0 <= xLow < 2 ^ machine_wordsize ->
      0 <= xHigh < M ->
      BarrettReduction.barrett_reduce machine_wordsize M muLow 2 2 xLow xHigh = (xLow + 2 ^ machine_wordsize * xHigh) mod M.
  Proof.
    intros.
    apply BarrettReduction.barrett_reduce_correct; cbv [machine_wordsize M muLow] in *;
      try omega;
      try match goal with
          | |- context [weight] => intros; cbv [weight]; autorewrite with zsimplify; auto using Z.pow_mul_r with omega
          end; lazy; try split; congruence.
  Qed.

  Strategy -100 [type.app_curried].
  Local Arguments ZRange.is_bounded_by_bool / .
  Lemma barrett_red256_correct_full  :
    forall (xLow xHigh : Z),
      0 <= xLow < 2 ^ machine_wordsize ->
      0 <= xHigh < M ->
      expr.Interp (@ident.interp) barrett_red256 xLow xHigh = (xLow + 2 ^ machine_wordsize * xHigh) mod M.
  Proof.
    intros.
    rewrite <-barrett_reduce_correct_specialized by assumption.
    destruct (proj1 barrett_red256_correct (xLow, (xHigh, tt)) (xLow, (xHigh, tt))) as [H1 H2].
    { repeat split. }
    { cbn -[Z.pow].
      rewrite !andb_true_iff.
      assert (M < 2^machine_wordsize) by (vm_compute; reflexivity).
      repeat apply conj; Z.ltb_to_lt; trivial; omega. }
    { etransitivity; [ eapply H2 | ]. (* need Strategy -100 [type.app_curried]. for this to be fast *)
      generalize BarrettReduction.barrett_reduce; vm_compute; reflexivity. }
  Qed.

  Definition barrett_red256_fancy' (xLow xHigh RegMuLow RegMod RegZero error : positive) :=
    of_Expr 6%positive
            (make_consts [(RegMuLow, muLow); (RegMod, M); (RegZero, 0)])
            barrett_red256
            (xLow, (xHigh, tt))
            error.
  Derive barrett_red256_fancy
         SuchThat (forall xLow xHigh RegMuLow RegMod RegZero,
                      barrett_red256_fancy xLow xHigh RegMuLow RegMod RegZero = barrett_red256_fancy' xLow xHigh RegMuLow RegMod RegZero)
         As barrett_red256_fancy_eq.
  Proof.
    intros.
    lazy - [ADD ADDC SUB SUBC MUL128LL MUL128LU MUL128UL MUL128UU RSHI SELC SELM SELL ADDM].
    reflexivity.
  Qed.

  Local Ltac wf_subgoal :=
    repeat match goal with
           | _ => progress cbn [fst snd]
           | |- LanguageWf.Compilers.expr.wf _ _ _ =>
             econstructor; try solve [econstructor]; [ ]
           | |- LanguageWf.Compilers.expr.wf _ _ _ =>
             solve [econstructor]
           | |- In _ _ => auto 50 using in_eq, in_cons
           end.
  Local Ltac valid_expr_subgoal :=
    repeat match goal with
           | _ => progress intros
           | |- context [valid_ident] => econstructor
           | |- context[valid_scalar] => econstructor
           | |- context [valid_carry] => econstructor
           | _ => reflexivity
           | |- _ <> None => cbn; congruence
           | |- of_prefancy_scalar _ _ _ _ = _ => cbn; solve [eauto]
           end.

  (* TODO: don't rely on the C, M, and L flags *)
  Lemma barrett_red256_fancy_correct :
    forall xLow xHigh error,
      0 <= xLow < 2 ^ machine_wordsize ->
      0 <= xHigh < M ->
      let RegZero := 1%positive in
      let RegMod := 2%positive in
      let RegMuLow := 3%positive in
      let RegxHigh := 4%positive in
      let RegxLow := 5%positive in
      let consts_list := [(RegMuLow, muLow); (RegMod, M); (RegZero, 0)] in
      let arg_list := [(RegxHigh, xHigh); (RegxLow, xLow)] in
      let ctx := make_ctx (consts_list ++ arg_list) in
      let carry_flag := false in (* TODO: don't rely on this value, given it's unused *)
      let last_wrote := (fun x : CC.code =>
                           match x with
                           | CC.C => RegZero
                           | _ => RegxHigh (* xHigh needs to have written M; others unused *)
                           end) in
      let cc := make_cc last_wrote ctx carry_flag in
      interp Pos.eqb wordmax cc_spec (barrett_red256_fancy RegxLow RegxHigh RegMuLow RegMod RegZero error) cc ctx = (xLow + 2 ^ machine_wordsize * xHigh) mod M.
  Proof.
    intros.
    rewrite barrett_red256_fancy_eq.
    cbv [barrett_red256_fancy'].
    rewrite <-barrett_red256_correct_full by auto.
    eapply of_Expr_correct with (x2 := (xLow, (xHigh, tt))).
    { cbn; intros; subst RegZero RegMod RegMuLow RegxHigh RegxLow.
      intuition; Prod.inversion_prod; subst; cbv. break_innermost_match; congruence. }
    { cbn; intros; subst RegZero RegMod RegMuLow RegxHigh RegxLow.
      intuition; Prod.inversion_prod; subst; cbv; congruence. }
    { cbn; intros; subst RegZero RegMod RegMuLow RegxHigh RegxLow. tauto. }
    { cbn; intros; subst RegZero RegMod RegMuLow RegxHigh RegxLow.
      intuition; Prod.inversion_prod; subst; cbv; congruence. }
    { cbn; intros; subst RegZero RegMod RegMuLow RegxHigh RegxLow.
      match goal with |- context [_ mod ?m] => change m with (2 ^ machine_wordsize) end.
      assert (M < 2 ^ machine_wordsize) by (cbv; congruence).
      assert (0 <= muLow < 2 ^ machine_wordsize) by (split; cbv; congruence).
      intuition; Prod.inversion_prod; subst; apply Z.mod_small; omega. }
    { cbn; intros; subst RegZero RegMod RegMuLow RegxHigh RegxLow.
      match goal with |- context [_ mod ?m] => change m with (2 ^ machine_wordsize) end.
      assert (M < 2 ^ machine_wordsize) by (cbv; congruence).
      assert (0 <= muLow < 2 ^ machine_wordsize) by (split; cbv; congruence).
      intuition; Prod.inversion_prod; subst; apply Z.mod_small; omega. }
    { cbn.
      repeat match goal with
             | _ => apply Compilers.expr.WfLetIn
             | _ => progress wf_subgoal 
             | _ => econstructor
             end. }
    { cbn. cbv [muLow M].
      repeat (econstructor; [ solve [valid_expr_subgoal] | intros ]).
      econstructor. valid_expr_subgoal. }
    { cbn - [barrett_red256]. cbv [id].
      f_equal.
      (* TODO(jgross): switch out casts *)
      (* might need to use CheckCasts.interp_eqv_without_casts? *)
      replace (@ident.gen_interp cast_oor) with (@ident.interp) by admit.
      reflexivity. }
  Admitted.

  Import Spec.Registers.

  Definition barrett_red256_alloc' xLow xHigh RegMuLow :=
    fun errorP errorR =>
      allocate register
               positive Pos.eqb
               errorR
               (barrett_red256_fancy 1000%positive 1001%positive 1002%positive 1003%positive 1004%positive errorP)
               [r2;r3;r4;r5;r6;r7;r8;r9;r10;r5;r11;r6;r12;r13;r14;r15;r16;r17;r18;r19;r20;r21;r22;r23;r24;r25;r26;r27;r28;r29]
               (fun n => if n =? 1000 then xLow
                         else if n =? 1001 then xHigh
                              else if n =? 1002 then RegMuLow
                                   else if n =? 1003 then RegMod
                                        else if n =? 1004 then RegZero
                                             else errorR)%positive.
  Derive barrett_red256_alloc
         SuchThat (barrett_red256_alloc = barrett_red256_alloc')
         As barrett_red256_alloc_eq.
  Proof.
    intros.
    cbv [barrett_red256_alloc' barrett_red256_fancy].
    cbn. subst barrett_red256_alloc.
    reflexivity.
  Qed.

  Local Ltac solve_bounds :=
    match goal with
    | H : ?a = ?b mod ?c |- 0 <= ?a < ?c => rewrite H; apply Z.mod_pos_bound; omega
    | _ => assumption
    end.
  Local Ltac results_equiv :=
    match goal with
      |- ?lhs = ?rhs =>
      match lhs with
        context [spec ?li ?largs ?lcc] =>
        match rhs with
          context [spec ?ri ?rargs ?rcc] =>
          replace (spec li largs lcc) with (spec ri rargs rcc)
        end
      end
    end.
  Local Ltac simplify_cc :=
    match goal with
      |- context [CC.update ?to_write ?result ?cc_spec ?old_state] =>
      let e := eval cbv -[spec cc_spec CC.cc_l CC.cc_m CC.cc_z CC.cc_c] in
      (CC.update to_write result cc_spec old_state) in
          change (CC.update to_write result cc_spec old_state) with e
    end.
  Ltac remember_single_result :=
    match goal with |- context [(spec ?i ?args ?cc) mod ?w] =>
                    let x := fresh "x" in
                    let y := fresh "y" in
                    let Heqx := fresh "Heqx" in
                    remember (spec i args cc) as x eqn:Heqx;
                    remember (x mod w) as y
    end.
  Local Ltac step :=
    match goal with
      |- interp _ _ _ (Instr ?i ?rd1 ?args1 ?cont1) ?cc1 ?ctx1 =
         interp _ _ _ (Instr ?i ?rd2 ?args2 ?cont2) ?cc2 ?ctx2 =>
      rewrite (interp_step _ _ i rd1 args1 cont1);
      rewrite (interp_step _ _ i rd2 args2 cont2)
    end;
    cbn - [interp spec cc_spec];
    repeat progress rewrite ?reg_eqb_neq, ?reg_eqb_refl by congruence;
    results_equiv; [ remember_single_result; repeat simplify_cc | try reflexivity ].

  Local Notation interp := (interp reg_eqb wordmax cc_spec).
  Lemma barrett_red256_alloc_equivalent errorP errorR cc_start_state start_context :
    forall x xHigh RegMuLow scratchp1 scratchp2 scratchp3 scratchp4 scratchp5 extra_reg,
      NoDup [x; xHigh; RegMuLow; scratchp1; scratchp2; scratchp3; scratchp4; scratchp5; extra_reg; RegMod; RegZero] ->
      0 <= start_context x < 2^machine_wordsize ->
      0 <= start_context xHigh < 2^machine_wordsize ->
      0 <= start_context RegMuLow < 2^machine_wordsize ->
      interp
        (barrett_red256_alloc r0 r1 r30 errorP errorR) cc_start_state
                          (fun r => if reg_eqb r r0
                                    then start_context x
                                    else if reg_eqb r r1
                                         then start_context xHigh
                                         else if reg_eqb r r30
                                              then start_context RegMuLow
                                              else start_context r)
    = interp (Prod.MulMod x xHigh RegMuLow scratchp1 scratchp2 scratchp3 scratchp4 scratchp5) cc_start_state start_context.
  Proof.
    intros.
    let r := eval compute in (2^machine_wordsize) in
        replace (2^machine_wordsize) with r in * by reflexivity.
    cbv [Prod.MulMod barrett_red256_alloc].

    (* Extract proofs that no registers are equal to each other *)
    repeat match goal with
           | H : NoDup _ |- _ => inversion H; subst; clear H
           | H : ~ In _ _ |- _ => cbv [In] in H
           | H : ~ (_ \/ _) |- _ => apply Decidable.not_or in H; destruct H
           | H : ~ False |- _ => clear H
           end.

    step.
    step.

    (* TODO: To prove equivalence between these two, we need to either relocate the RSHI instructions so they're in the same places or use instruction commutativity to push them down. *)

  Admitted.

  Lemma prod_barrett_red256_correct :
    forall (cc_start_state : CC.state) (* starting carry flags *)
           (start_context : register -> Z)   (* starting register values *)
           (x xHigh RegMuLow scratchp1 scratchp2 scratchp3 scratchp4 scratchp5 extra_reg : register), (* registers to use in computation *)
      NoDup [x; xHigh; RegMuLow; scratchp1; scratchp2; scratchp3; scratchp4; scratchp5; extra_reg; RegMod; RegZero] -> (* registers are unique *)
             0 <= start_context x < 2^machine_wordsize ->
             0 <= start_context xHigh < M ->
             start_context RegMuLow = muLow ->
             start_context RegMod = M ->
             start_context RegZero = 0 ->
             cc_start_state.(CC.cc_m) = cc_spec CC.M (start_context xHigh) ->
             let X := start_context x + 2^machine_wordsize * start_context xHigh in
             interp (Prod.MulMod x xHigh RegMuLow scratchp1 scratchp2 scratchp3 scratchp4 scratchp5) cc_start_state start_context = X mod M.
  Proof.
    intros. subst X.
    assert (0 <= start_context xHigh < 2^machine_wordsize) by (cbv [M] in *; cbn; omega).
    let r := (eval compute in (2 ^ machine_wordsize)) in
    replace (2^machine_wordsize) with r in * by reflexivity.

    erewrite <-barrett_red256_fancy_correct with (error:=100000%positive) by eauto.
    rewrite <-barrett_red256_alloc_equivalent with (errorR := RegZero) (errorP := 1%positive) (extra_reg:=extra_reg)
      by (auto; cbv [M muLow] in *; cbn; auto with omega).

    match goal with
      |- context [make_cc ?last_wrote ?ctx ?carry] =>
      let e := fresh in
      let He := fresh in
      remember (make_cc last_wrote ctx carry) as e eqn:He;
        cbv [make_ctx app make_cc] in He;
        cbn [Pos.eqb] in He; autorewrite with zsimplify in He;
          subst e
    end.

    repeat match goal with
             H : context [start_context] |- _ =>
             rewrite <-H end.
    
    cbv [barrett_red256_alloc barrett_red256_fancy].
    repeat step.
    reflexivity.
  Qed.
End Barrett256.

Import Registers.

(* Notations to make code more readable *)
Local Notation "i rd x y ; cont" := (Instr i rd (x, y) cont) (at level 40, cont at level 200, format "i  rd  x  y ; '//' cont").
Local Notation "i rd x y z ; cont" := (Instr i rd (x, y, z) cont) (at level 40, cont at level 200, format "i  rd  x  y  z ; '//' cont").

(* Barrett reference code: *)
Eval cbv beta iota delta [Prod.MulMod Prod.Mul256x256] in Prod.MulMod.
(*
     = fun x xHigh RegMuLow scratchp1 scratchp2 scratchp3 scratchp4 scratchp5 : register =>
       let q1Bottom256 := scratchp1 in
       let muSelect := scratchp2 in
       let q2 := scratchp3 in
       let q2High := scratchp4 in
       let q2High2 := scratchp5 in
       let q3 := scratchp1 in
       let r2 := scratchp2 in
       let r2High := scratchp3 in
       let maybeM := scratchp1 in
       SELM muSelect RegMuLow RegZero;
       RSHI 255 q1Bottom256 xHigh x;
       MUL128LL q2 q1Bottom256 RegMuLow;
       MUL128UU q2High q1Bottom256 RegMuLow;
       MUL128UL scratchp5 q1Bottom256 RegMuLow;
       ADD 128 q2 q2 scratchp5;
       ADDC (-128) q2High q2High scratchp5;
       MUL128LU scratchp5 q1Bottom256 RegMuLow;
       ADD 128 q2 q2 scratchp5;
       ADDC (-128) q2High q2High scratchp5;
       RSHI 255 q2High2 RegZero xHigh;
       ADD 0 q2High q2High q1Bottom256;
       ADDC 0 q2High2 q2High2 RegZero;
       ADD 0 q2High q2High muSelect;
       ADDC 0 q2High2 q2High2 RegZero;
       RSHI 1 q3 q2High2 q2High;
       MUL128LL r2 RegMod q3;
       MUL128UU r2High RegMod q3;
       MUL128UL scratchp4 RegMod q3;
       ADD 128 r2 r2 scratchp4;
       ADDC (-128) r2High r2High scratchp4;
       MUL128LU scratchp4 RegMod q3;
       ADD 128 r2 r2 scratchp4;
       ADDC (-128) r2High r2High scratchp4;
       SUB 0 muSelect x r2;
       SUBC 0 xHigh xHigh r2High;
       SELL maybeM RegMod RegZero;
       SUB 0 q3 muSelect maybeM;
       ADDM x q3 RegZero RegMod;
       Ret x
 *)

(* Barrett generated code (equivalence with reference admitted) *)
Eval cbv beta iota delta [Barrett256.barrett_red256_alloc] in Barrett256.barrett_red256_alloc.
(*
     = fun (xLow xHigh RegMuLow : register) (_ : positive) (_ : register) =>
       SELM r2 RegMuLow RegZero;
       RSHI 255 r3 RegZero xHigh;
       RSHI 255 r4 xHigh xLow;
       MUL128UU r5 RegMuLow r4;
       MUL128UL r6 r4 RegMuLow;
       MUL128LU r7 r4 RegMuLow;
       MUL128LL r8 RegMuLow r4;
       ADD 128 r9 r8 r7;
       ADDC (-128) r10 r5 r7;
       ADD 128 r5 r9 r6;
       ADDC (-128) r11 r10 r6;
       ADD 0 r6 r4 r11;
       ADDC 0 r12 RegZero r3;
       ADD 0 r13 r2 r6;
       ADDC 0 r14 RegZero r12;
       RSHI 1 r15 r14 r13;
       MUL128UU r16 RegMod r15;
       MUL128LU r17 r15 RegMod;
       MUL128UL r18 r15 RegMod;
       MUL128LL r19 RegMod r15;
       ADD 128 r20 r19 r18;
       ADDC (-128) r21 r16 r18;
       ADD 128 r22 r20 r17;
       ADDC (-128) r23 r21 r17;
       SUB 0 r24 xLow r22;
       SUBC 0 r25 xHigh r23;
       SELL r26 RegMod RegZero;
       SUB 0 r27 r24 r26;
       ADDM r28 r27 RegZero RegMod;
       Ret r28
 *)
(* Note that the reference code and production code are the same except for a misplaced RSHI instruction; the current proof assumes that this RSHI commutes. *)

(* Uncomment to see proof statement and remaining admitted statements. *)
(*
Check Barrett256.prod_barrett_red256_correct.
Print Assumptions Barrett256.prod_barrett_red256_correct.
(* The equivalence with generated code is admitted as barrett_red256_alloc_equivalent. *)
*)