aboutsummaryrefslogtreecommitdiff
path: root/src/Experiments/NewPipeline/UnderLetsWf.v
blob: 7d0e1aa6b22e6e2aad567d5786eec2353f3cd4b9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
Require Import Coq.Lists.List.
Require Import Coq.Classes.Morphisms.
Require Import Crypto.Experiments.NewPipeline.Language.
Require Import Crypto.Experiments.NewPipeline.LanguageInversion.
Require Import Crypto.Experiments.NewPipeline.LanguageWf.
Require Import Crypto.Experiments.NewPipeline.UnderLets.
Require Import Crypto.Util.Tactics.BreakMatch.
Require Import Crypto.Util.Tactics.DestructHead.
Require Import Crypto.Util.Tactics.SpecializeAllWays.
Require Import Crypto.Util.Tactics.SpecializeBy.
Require Import Crypto.Util.Option.
Import ListNotations. Local Open Scope list_scope.

Import EqNotations.
Module Compilers.
  Import Language.Compilers.
  Import LanguageInversion.Compilers.
  Import LanguageWf.Compilers.
  Import UnderLets.Compilers.
  Import ident.Notations.
  Import expr.Notations.
  Import invert_expr.

  Module SubstVarLike.
    Section with_ident.
      Context {base_type : Type}.
      Local Notation type := (type.type base_type).
      Context {ident : type -> Type}.
      Local Notation expr := (@expr.expr base_type ident).
      Section with_var.
        Context {var1 var2 : type -> Type}.
        Local Notation expr1 := (@expr.expr base_type ident var1).
        Local Notation expr2 := (@expr.expr base_type ident var2).
        Section with_var_like.
          Context (is_var_like1 : forall t, @expr var1 t -> bool)
                  (is_var_like2 : forall t, @expr var2 t -> bool).
          Local Notation subst_var_like1 := (@SubstVarLike.subst_var_like base_type ident var1 is_var_like1).
          Local Notation subst_var_like2 := (@SubstVarLike.subst_var_like base_type ident var2 is_var_like2).
          Definition is_var_like_wfT := forall G t e1 e2, expr.wf G (t:=t) e1 e2 -> is_var_like1 t e1 = is_var_like2 t e2.
          Context (is_var_like_good : is_var_like_wfT).

          Lemma wf_subst_var_like G1 G2 t e1 e2
                (HG1G2 : forall t v1 v2, List.In (existT _ t (v1, v2)) G1 -> expr.wf G2 v1 v2)
            : expr.wf G1 (t:=t) e1 e2 -> expr.wf G2 (subst_var_like1 e1) (subst_var_like2 e2).
          Proof.
            cbv [is_var_like_wfT] in *.
            intro Hwf; revert dependent G2; induction Hwf;
              cbn [SubstVarLike.subst_var_like];
              repeat first [ match goal with
                             | [ H : is_var_like1 _ ?x = _, H' : is_var_like2 _ ?y = _ |- _ ]
                               => assert (is_var_like1 _ x = is_var_like2 _ y) by eauto; congruence
                             end
                           | progress wf_safe_t
                           | progress break_innermost_match
                           | solve [ wf_t ] ].
          Qed.
        End with_var_like.

        Section with_ident_like.
          Context (ident_is_good : forall t, ident t -> bool).

          Lemma wfT_is_recursively_var_or_ident
            : is_var_like_wfT (fun t => SubstVarLike.is_recursively_var_or_ident ident_is_good)
                              (fun t => SubstVarLike.is_recursively_var_or_ident ident_is_good).
          Proof.
            intros G t e1 e2 Hwf; induction Hwf; cbn [SubstVarLike.is_recursively_var_or_ident];
              congruence.
          Qed.
        End with_ident_like.

        Lemma wfT_is_var
          : is_var_like_wfT (fun _ e => match invert_Var e with Some _ => true | None => false end)
                            (fun _ e => match invert_Var e with Some _ => true | None => false end).
        Proof. intros G t e1 e2 Hwf; destruct Hwf; cbn [invert_Var]; reflexivity. Qed.
      End with_var.

      Local Notation SubstVarLike := (@SubstVarLike.SubstVarLike base_type ident).
      Local Notation SubstVar := (@SubstVarLike.SubstVar base_type ident).
      Local Notation SubstVarOrIdent := (@SubstVarLike.SubstVarOrIdent base_type ident).

      Lemma Wf_SubstVarLike (is_var_like : forall var t, @expr var t -> bool)
            (is_var_like_good : forall var1 var2, is_var_like_wfT (is_var_like var1) (is_var_like var2))
            {t} (e : expr.Expr t)
        : expr.Wf e -> expr.Wf (SubstVarLike is_var_like e).
      Proof.
        intros Hwf var1 var2; eapply wf_subst_var_like; eauto with nocore; cbn [In]; tauto.
      Qed.

      Lemma Wf_SubstVar {t} (e : expr.Expr t)
        : expr.Wf e -> expr.Wf (SubstVar e).
      Proof.
        intros Hwf var1 var2; eapply wf_subst_var_like; eauto using wfT_is_var with nocore; cbn [In]; tauto.
      Qed.

      Lemma Wf_SubstVarOrIdent (should_subst_ident : forall t, ident t -> bool)
            {t} (e : expr.Expr t)
        : expr.Wf e -> expr.Wf (SubstVarOrIdent should_subst_ident e).
      Proof.
        intros Hwf var1 var2; eapply wf_subst_var_like; eauto using wfT_is_recursively_var_or_ident with nocore; cbn [In]; tauto.
      Qed.

      Section interp.
        Context {base_interp : base_type -> Type}
                {interp_ident : forall t, ident t -> type.interp base_interp t}
                {interp_ident_Proper : forall t, Proper (eq ==> type.eqv) (interp_ident t)}.
        Section with_is_var_like.
          Context (is_var_like : forall t, @expr (type.interp base_interp) t -> bool).

          Lemma interp_subst_var_like_gen G t (e1 e2 : expr t)
                (HG : forall t v1 v2, List.In (existT _ t (v1, v2)) G -> expr.interp interp_ident v1 == v2)
                (Hwf : expr.wf G e1 e2)
            : expr.interp interp_ident (SubstVarLike.subst_var_like is_var_like e1) == expr.interp interp_ident e2.
          Proof.
            induction Hwf; cbn [SubstVarLike.subst_var_like]; cbv [Proper respectful] in *;
              interp_safe_t; break_innermost_match; interp_safe_t.
          Qed.

          Lemma interp_subst_var_like_gen_nil t (e1 e2 : expr t)
                (Hwf : expr.wf nil e1 e2)
            : expr.interp interp_ident (SubstVarLike.subst_var_like is_var_like e1) == expr.interp interp_ident e2.
          Proof. apply interp_subst_var_like_gen with (G:=nil); cbn [In]; eauto with nocore; tauto. Qed.
        End with_is_var_like.

        Lemma Interp_SubstVarLike (is_var_like : forall var t, @expr var t -> bool)
              {t} (e : expr.Expr t) (Hwf : expr.Wf e)
          : expr.Interp interp_ident (SubstVarLike is_var_like e) == expr.Interp interp_ident e.
        Proof. apply interp_subst_var_like_gen_nil, Hwf. Qed.

        Lemma Interp_SubstVar {t} (e : expr.Expr t) (Hwf : expr.Wf e)
          : expr.Interp interp_ident (SubstVar e) == expr.Interp interp_ident e.
        Proof. apply interp_subst_var_like_gen_nil, Hwf. Qed.

        Lemma Interp_SubstVarOrIdent (should_subst_ident : forall t, ident t -> bool)
              {t} (e : expr.Expr t) (Hwf : expr.Wf e)
          : expr.Interp interp_ident (SubstVarOrIdent should_subst_ident e) == expr.Interp interp_ident e.
        Proof. apply interp_subst_var_like_gen_nil, Hwf. Qed.
      End interp.
    End with_ident.

    Lemma Wf_SubstVarFstSndPairOpp {t} (e : expr.Expr t)
      : expr.Wf e -> expr.Wf (SubstVarLike.SubstVarFstSndPairOpp e).
    Proof. apply Wf_SubstVarOrIdent. Qed.

    Lemma Interp_SubstVarFstSndPairOpp {t} (e : expr.Expr t) (Hwf : expr.Wf e)
      : defaults.Interp (SubstVarLike.SubstVarFstSndPairOpp e) == defaults.Interp e.
    Proof. apply Interp_SubstVarOrIdent, Hwf. Qed.
  End SubstVarLike.

  Module UnderLets.
    Import UnderLets.Compilers.UnderLets.
    Section with_ident.
      Context {base_type : Type}.
      Local Notation type := (type.type base_type).
      Context {ident : type -> Type}.
      Local Notation expr := (@expr.expr base_type ident).
      Local Notation UnderLets := (@UnderLets base_type ident).

      Section with_var.
        Context {var1 var2 : type -> Type}.

        Inductive wf {T1 T2} {P : list { t : type & var1 t * var2 t }%type -> T1 -> T2 -> Prop}
          : list { t : type & var1 t * var2 t }%type -> @UnderLets var1 T1 -> @UnderLets var2 T2 -> Prop :=
        | Wf_Base G e1 e2 : P G e1 e2 -> wf G (Base e1) (Base e2)
        | Wf_UnderLet G A x1 x2 f1 f2
          : expr.wf G x1 x2
            -> (forall v1 v2, wf (existT _ A (v1, v2) :: G) (f1 v1) (f2 v2))
            -> wf G (UnderLet x1 f1) (UnderLet x2 f2).
        Global Arguments wf {T1 T2} P _ _ _.

        Lemma wf_to_expr {t} (x : @UnderLets var1 (@expr var1 t)) (y : @UnderLets var2 (@expr var2 t))
              G
          : wf (fun G => expr.wf G) G x y -> expr.wf G (to_expr x) (to_expr y).
        Proof.
          intro Hwf; induction Hwf; cbn [to_expr]; [ assumption | constructor; auto ].
        Qed.
      End with_var.
    End with_ident.

    Section reify.
      Local Notation type := (type.type base.type).
      Local Notation expr := (@expr.expr base.type ident).
      Local Notation UnderLets := (@UnderLets.UnderLets base.type ident).

      Section with_var.
        Context {var1 var2 : type -> Type}.
        Local Notation expr1 := (@expr.expr base.type ident var1).
        Local Notation expr2 := (@expr.expr base.type ident var2).
        Local Notation UnderLets1 := (@UnderLets.UnderLets base.type ident var1).
        Local Notation UnderLets2 := (@UnderLets.UnderLets base.type ident var2).

        Local Ltac wf_reify_and_let_binds_base_cps_t Hk :=
          repeat first [ lazymatch goal with
                         | [ H : expr.wf _ ?e1 ?e2, H' : reflect_list ?e1 = Some _, H'' : reflect_list ?e2 = None |- _ ]
                           => apply expr.wf_reflect_list in H; rewrite H', H'' in H; exfalso; clear -H; intuition congruence
                         | [ H : expr.wf _ ?e1 ?e2, H' : reflect_list ?e2 = Some _, H'' : reflect_list ?e1 = None |- _ ]
                           => apply expr.wf_reflect_list in H; rewrite H', H'' in H; exfalso; clear -H; intuition congruence
                         | [ H : expr.wf _ (reify_list _) (reify_list _) |- _ ] => apply expr.wf_reify_list in H
                         end
                       | progress subst
                       | progress destruct_head' False
                       | progress expr.inversion_wf_constr
                       | progress expr.inversion_expr
                       | progress expr.invert_subst
                       | progress destruct_head'_sig
                       | progress destruct_head'_ex
                       | progress destruct_head'_and
                       | progress type.inversion_type
                       | progress base.type.inversion_type
                       | progress cbn [invert_Var invert_Literal ident.invert_Literal eq_rect f_equal f_equal2 type.decode fst snd projT1 projT2 invert_pair Option.bind combine list_rect length] in *
                       | progress cbv [type.try_transport type.try_transport_cps CPSNotations.cps_option_bind CPSNotations.cpsreturn CPSNotations.cpsbind CPSNotations.cpscall type.try_make_transport_cps id] in *
                       | rewrite base.try_make_transport_cps_correct in *
                       | progress type_beq_to_eq
                       | discriminate
                       | congruence
                       | apply Hk
                       | exists nil; reflexivity
                       | eexists (cons _ nil); reflexivity
                       | rewrite app_assoc; eexists; reflexivity
                       | progress wf_safe_t
                       | match goal with
                         | [ H : _ = _ :> ident _ |- _ ] => inversion H; clear H
                         end
                       | progress inversion_option
                       | progress break_innermost_match_hyps
                       | progress expr.inversion_wf_one_constr
                       | progress expr.invert_match_step
                       | match goal with |- wf _ _ _ _ => constructor end
                       | match goal with
                         | [ H : context[wf _ _ _ _] |- wf _ _ _ _ ] => apply H; eauto with nocore
                         end
                       | progress wf_unsafe_t_step
                       | match goal with
                         | [ H : context[match Compilers.reify_list ?ls with _ => _ end] |- _ ]
                           => is_var ls; destruct ls; rewrite ?expr.reify_list_cons, ?expr.reify_list_nil in H
                         | [ H : SubstVarLike.is_recursively_var_or_ident _ _ = _ |- _ ] => clear H
                         | [ H : forall x y, @?A x y \/ @?B x y -> @?C x y |- _ ]
                           => pose proof (fun x y pf => H x y (or_introl pf));
                              pose proof (fun x y pf => H x y (or_intror pf));
                              clear H
                         end ].

        Lemma wf_reify_and_let_binds_base_cps {t : base.type} {T1 T2} (e1 : expr1 (type.base t)) (e2 : expr2 (type.base t))
              (k1 : expr1 (type.base t) -> UnderLets1 T1) (k2 : expr2 (type.base t) -> UnderLets2 T2)
              (P : _ -> _ -> _ -> Prop) G
              (Hwf : expr.wf G e1 e2)
              (Hk : forall G' e1 e2, (exists seg, G' = seg ++ G) -> expr.wf G' e1 e2 -> wf P G' (k1 e1) (k2 e2))
          : wf P G (reify_and_let_binds_base_cps e1 T1 k1) (reify_and_let_binds_base_cps e2 T2 k2).
        Proof.
          revert dependent G; induction t; cbn [reify_and_let_binds_base_cps]; intros;
            try (cbv [SubstVarLike.is_var_fst_snd_pair_opp] in *; erewrite !SubstVarLike.wfT_is_recursively_var_or_ident by eassumption);
            break_innermost_match; wf_reify_and_let_binds_base_cps_t Hk.
          all: repeat match goal with H : list (sigT _) |- _ => revert dependent H end.
          all: revert dependent k1; revert dependent k2.
          all: lazymatch goal with
               | [ H : length ?l1 = length ?l2 |- _ ]
                 => is_var l1; is_var l2; revert dependent l2; induction l1; intro l2; destruct l2; intros
               end;
            wf_reify_and_let_binds_base_cps_t Hk.
        Qed.

        Lemma wf_let_bind_return {t} (e1 : expr1 t) (e2 : expr2 t)
              G
              (Hwf : expr.wf G e1 e2)
          : expr.wf G (let_bind_return e1) (let_bind_return e2).
        Proof.
          revert dependent G; induction t; intros; cbn [let_bind_return]; cbv [invert_Abs];
            wf_safe_t;
            expr.invert_match; expr.inversion_wf; try solve [ wf_t ].
          { apply wf_to_expr.
            pose (P := fun t => { e1e2 : expr1 t * expr2 t | expr.wf G (fst e1e2) (snd e1e2) }).
            pose ((exist _ (e1, e2) Hwf) : P _) as pkg.
            change e1 with (fst (proj1_sig pkg)).
            change e2 with (snd (proj1_sig pkg)).
            clearbody pkg; clear Hwf e1 e2.
            type.generalize_one_eq_var pkg; subst P; destruct pkg as [ [e1 e2] Hwf ].
            cbn [fst snd proj1_sig proj2_sig] in *.
            repeat match goal with
                   | [ |- context[proj1_sig (rew [fun t => @sig (@?A t) (@?P t)] ?pf in exist ?P0 ?x ?p)] ]
                     => progress replace (proj1_sig (rew pf in exist P0 x p)) with (rew [A] pf in x) by (case pf; reflexivity)
                   | [ |- context[fst (rew [fun t => @prod (@?A t) (@?B t)] ?pf in pair ?x ?y)] ]
                     => progress replace (fst (rew pf in pair x y)) with (rew [A] pf in x) by (case pf; reflexivity)
                   | [ |- context[snd (rew [fun t => @prod (@?A t) (@?B t)] ?pf in pair ?x ?y)] ]
                     => progress replace (fst (rew pf in pair x y)) with (rew [B] pf in y) by (case pf; reflexivity)
                   end.
            assert (H' : t = match t' with type.base t' => t' | _ => t end) by (subst; reflexivity).
            revert pf.
            rewrite H'; clear H'.
            induction Hwf; break_innermost_match; break_innermost_match_hyps;
              repeat first [ progress intros
                           | progress type.inversion_type
                           | progress base.type.inversion_type
                           | progress wf_safe_t
                           | progress cbn [of_expr fst snd splice eq_rect type.decode f_equal] in *
                           | match goal with
                             | [ H : forall pf : ?x = ?x, _ |- _ ] => specialize (H eq_refl)
                             | [ H : forall x y (pf : ?a = ?a), _ |- _ ] => specialize (fun x y => H x y eq_refl)
                             | [ |- wf _ _ _ _ ] => constructor
                             end
                           | solve [ eauto ]
                           | apply wf_reify_and_let_binds_base_cps ]. }
        Qed.
      End with_var.

      Lemma Wf_LetBindReturn {t} (e : expr.Expr t) (Hwf : expr.Wf e) : expr.Wf (LetBindReturn e).
      Proof. intros ??; apply wf_let_bind_return, Hwf. Qed.

      Local Ltac interp_to_expr_reify_and_let_binds_base_cps_t Hk :=
        repeat first [ progress subst
                     | progress destruct_head' False
                     | progress destruct_head'_and
                     | progress destruct_head' iff
                     | progress specialize_by_assumption
                     | progress expr.inversion_wf_constr
                     | progress expr.inversion_expr
                     | progress expr.invert_subst
                     | progress destruct_head'_sig
                     | progress destruct_head'_ex
                     | progress destruct_head'_and
                     | progress type.inversion_type
                     | progress base.type.inversion_type
                     | progress cbn [invert_Var invert_Literal ident.invert_Literal eq_rect f_equal f_equal2 type.decode fst snd projT1 projT2 invert_pair Option.bind to_expr expr.interp ident.interp ident.gen_interp type.eqv length list_rect combine In] in *
                     | progress cbv [type.try_transport type.try_transport_cps CPSNotations.cps_option_bind CPSNotations.cpsreturn CPSNotations.cpsbind CPSNotations.cpscall type.try_make_transport_cps id] in *
                     | rewrite base.try_make_transport_cps_correct in *
                     | progress type_beq_to_eq
                     | discriminate
                     | congruence
                     | apply Hk
                     | exists nil; reflexivity
                     | eexists (cons _ nil); reflexivity
                     | rewrite app_assoc; eexists; reflexivity
                     | rewrite expr.reify_list_cons
                     | rewrite expr.reify_list_nil
                     | progress interp_safe_t
                     | match goal with
                       | [ H : _ = _ :> ident _ |- _ ] => inversion H; clear H
                       | [ H : forall t v1 v2, In _ _ -> _ == _, H' : In _ _ |- _ ] => apply H in H'
                       end
                     | progress inversion_option
                     | progress break_innermost_match_hyps
                     | progress expr.inversion_wf_one_constr
                     | progress expr.invert_match_step
                     | match goal with
                       | [ |- ?R (expr.interp _ ?e1) (expr.interp _ ?e2) ]
                         => solve [ eapply (@expr.wf_interp_Proper _ _ e1 e2); eauto ]
                       | [ H : context[reflect_list (reify_list _)] |- _ ] => rewrite expr.reflect_reify_list in H
                       | [ H : forall x y, @?A x y \/ @?B x y -> @?C x y |- _ ]
                         => pose proof (fun x y pf => H x y (or_introl pf));
                            pose proof (fun x y pf => H x y (or_intror pf));
                            clear H
                       end
                     | progress interp_unsafe_t_step
                     | match goal with
                       | [ H : expr.wf _ (reify_list _) ?e |- _ ]
                         => is_var e; destruct (reflect_list e) eqn:?; expr.invert_subst;
                            [ rewrite expr.wf_reify_list in H | apply expr.wf_reflect_list in H ]
                       | [ H : SubstVarLike.is_recursively_var_or_ident _ _ = _ |- _ ] => clear H
                       | [ H : context[expr.interp _ _ = _] |- expr.interp _ (to_expr _) = ?k2 _ ]
                         => erewrite H; clear H;
                            [ match goal with
                              | [ |- ?k (expr.interp ?ii ?e) = ?k' ?v ]
                                => has_evar e;
                                   let p := fresh in
                                   set (p := expr.interp ii e);
                                   match v with
                                   | context G[expr.interp ii ?e']
                                     => unify e e'; let v' := context G[p] in change (k p = k' v')
                                   end;
                                   clearbody p; reflexivity
                              end
                            | .. ]
                       end ].

      Lemma interp_to_expr_reify_and_let_binds_base_cps {t : base.type} {t' : base.type} (e1 : expr (type.base t)) (e2 : expr (type.base t))
            G
            (HG : forall t v1 v2, List.In (existT _ t (v1, v2)) G -> v1 == v2)
            (Hwf : expr.wf G e1 e2)
            (k1 : expr (type.base t) -> UnderLets _ (expr (type.base t')))
            (k2 : base.interp t -> base.interp t')
            (Hk : forall e1 v, defaults.interp e1 == v -> defaults.interp (to_expr (k1 e1)) == k2 v)
        : defaults.interp (to_expr (reify_and_let_binds_base_cps e1 _ k1)) == k2 (defaults.interp e2).
      Proof.
        revert dependent G; revert dependent t'; induction t; cbn [reify_and_let_binds_base_cps]; intros;
            try (cbv [SubstVarLike.is_var_fst_snd_pair_opp] in *; erewrite !SubstVarLike.wfT_is_recursively_var_or_ident by eassumption);
            break_innermost_match; interp_to_expr_reify_and_let_binds_base_cps_t Hk.
        all: repeat match goal with H : list (sigT _) |- _ => revert dependent H end.
        all: revert dependent k1; revert dependent k2.
        all: lazymatch goal with
             | [ H : length ?l1 = length ?l2 |- _ ]
               => is_var l1; is_var l2; revert dependent l2; induction l1; intro l2; destruct l2; intros
             end;
          interp_to_expr_reify_and_let_binds_base_cps_t Hk.
      Qed.

      Lemma interp_let_bind_return {t} (e1 e2 : expr t)
            G
            (HG : forall t v1 v2, List.In (existT _ t (v1, v2)) G -> v1 == v2)
            (Hwf : expr.wf G e1 e2)
        : defaults.interp (let_bind_return e1) == defaults.interp e2.
      Proof.
        revert dependent G; induction t; intros; cbn [let_bind_return type.eqv expr.interp] in *; cbv [invert_Abs respectful] in *;
          repeat first [ progress wf_safe_t
                       | progress expr.invert_subst
                       | progress expr.invert_match
                       | progress expr.inversion_wf
                       | progress break_innermost_match_hyps
                       | progress destruct_head' False
                       | solve [ wf_t ]
                       | match goal with
                         | [ H : _ |- expr.interp _ (let_bind_return ?e0) == expr.interp _ ?e ?v ]
                           => eapply (H e0 (e @ $v)%expr (cons _ _)); [ .. | solve [ wf_t ] ]; solve [ wf_t ]
                         | [ H : _ |- expr.interp _ (let_bind_return ?e0) == expr.interp _ ?e ?v ]
                           => cbn [expr.interp]; eapply H; [ | solve [ wf_t ] ]; solve [ wf_t ]
                         end ];
          [].
        { pose (P := fun t => { e1e2 : expr t * expr t | expr.wf G (fst e1e2) (snd e1e2) }).
          pose ((exist _ (e1, e2) Hwf) : P _) as pkg.
          change e1 with (fst (proj1_sig pkg)).
          change e2 with (snd (proj1_sig pkg)).
          clearbody pkg; clear Hwf e1 e2.
          type.generalize_one_eq_var pkg; subst P; destruct pkg as [ [e1 e2] Hwf ].
          cbn [fst snd proj1_sig proj2_sig] in *.
          repeat match goal with
                 | [ |- context[proj1_sig (rew [fun t => @sig (@?A t) (@?P t)] ?pf in exist ?P0 ?x ?p)] ]
                   => progress replace (proj1_sig (rew pf in exist P0 x p)) with (rew [A] pf in x) by (case pf; reflexivity)
                 | [ |- context[fst (rew [fun t => @prod (@?A t) (@?B t)] ?pf in pair ?x ?y)] ]
                   => progress replace (fst (rew pf in pair x y)) with (rew [A] pf in x) by (case pf; reflexivity)
                 | [ |- context[snd (rew [fun t => @prod (@?A t) (@?B t)] ?pf in pair ?x ?y)] ]
                   => progress replace (fst (rew pf in pair x y)) with (rew [B] pf in y) by (case pf; reflexivity)
                 end.
          assert (H' : t = match t' with type.base t' => t' | _ => t end) by (subst; reflexivity).
          revert pf.
          rewrite H'; clear H'.
          induction Hwf; break_innermost_match; break_innermost_match_hyps;
            repeat first [ progress intros
                         | progress type.inversion_type
                         | progress base.type.inversion_type
                         | progress wf_safe_t
                         | progress cbn [of_expr fst snd splice eq_rect type.decode f_equal to_expr] in *
                         | match goal with
                           | [ H : forall pf : ?x = ?x, _ |- _ ] => specialize (H eq_refl)
                           | [ H : forall x (pf : ?a = ?a), _ |- _ ] => specialize (fun x => H x eq_refl)
                           | [ H : forall x y (pf : ?a = ?a), _ |- _ ] => specialize (fun x y => H x y eq_refl)
                           | [ H : forall x y z (pf : ?a = ?a), _ |- _ ] => specialize (fun x y z => H x y z eq_refl)
                           | [ |- context[(expr_let x := _ in _)%expr] ] => progress cbn [expr.interp]; cbv [LetIn.Let_In]
                           | [ H : context[expr.interp _ _ = expr.interp _ _] |- expr.interp _ _ = expr.interp _ _ ]
                             => eapply H; eauto with nocore
                           end
                         | solve [ eauto ]
                         | solve [ eapply expr.wf_interp_Proper; eauto ] ].
          all: eapply interp_to_expr_reify_and_let_binds_base_cps with (k1:=Base) (k2:=(fun x => x)); eauto; wf_safe_t. }
      Qed.

      Lemma Interp_LetBindReturn {t} (e : expr.Expr t) (Hwf : expr.Wf e) : defaults.Interp (LetBindReturn e) == defaults.Interp e.
      Proof.
        apply interp_let_bind_return with (G:=nil); cbn [List.In]; eauto; tauto.
      Qed.
    End reify.
  End UnderLets.
End Compilers.