aboutsummaryrefslogtreecommitdiff
path: root/src/Experiments/NewPipeline/RewriterWf1.v
blob: a1244dd74132f8a88e6001ea7432d8008e86cc49 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
Require Import Coq.ZArith.ZArith.
Require Import Coq.micromega.Lia.
Require Import Coq.Lists.SetoidList.
Require Import Coq.Lists.List.
Require Import Coq.Classes.Morphisms.
Require Import Coq.MSets.MSetPositive.
Require Import Coq.FSets.FMapPositive.
Require Import Crypto.Experiments.NewPipeline.Language.
Require Import Crypto.Experiments.NewPipeline.LanguageInversion.
Require Import Crypto.Experiments.NewPipeline.LanguageWf.
Require Import Crypto.Experiments.NewPipeline.UnderLetsProofs.
Require Import Crypto.Experiments.NewPipeline.GENERATEDIdentifiersWithoutTypesProofs.
Require Import Crypto.Experiments.NewPipeline.Rewriter.
Require Import Crypto.Util.Tactics.BreakMatch.
Require Import Crypto.Util.Tactics.SplitInContext.
Require Import Crypto.Util.Tactics.SpecializeAllWays.
Require Import Crypto.Util.Tactics.SpecializeBy.
Require Import Crypto.Util.Tactics.RewriteHyp.
Require Import Crypto.Util.Tactics.UniquePose.
Require Import Crypto.Util.Tactics.Head.
Require Import Crypto.Util.Tactics.RewriteHyp.
Require Import Crypto.Util.Tactics.CPSId.
Require Import Crypto.Util.FMapPositive.Equality.
Require Import Crypto.Util.MSetPositive.Equality.
Require Import Crypto.Util.MSetPositive.Facts.
Require Import Crypto.Util.Prod.
Require Import Crypto.Util.Sigma.
Require Import Crypto.Util.Sigma.Related.
Require Import Crypto.Util.ListUtil.SetoidList.
Require Import Crypto.Util.ListUtil.
Require Import Crypto.Util.Option.
Require Import Crypto.Util.Logic.ExistsEqAnd.
Require Import Crypto.Util.CPSNotations.
Require Import Crypto.Util.Notations.
Require Import Crypto.Util.HProp.
Require Import Crypto.Util.Decidable.
Import ListNotations. Local Open Scope list_scope.
Local Open Scope Z_scope.

Import EqNotations.
Module Compilers.
  Import Language.Compilers.
  Import LanguageInversion.Compilers.
  Import LanguageWf.Compilers.
  Import UnderLetsProofs.Compilers.
  Import GENERATEDIdentifiersWithoutTypesProofs.Compilers.
  Import Rewriter.Compilers.
  Import expr.Notations.
  Import defaults.

  Module Import RewriteRules.
    Import Rewriter.Compilers.RewriteRules.

    Module pattern.
      Module base.
        Lemma subst_relax {t evm}
        : pattern.base.subst (pattern.base.relax t) evm = Some t.
        Proof using Type.
          induction t; cbn; cbv [Option.bind option_map];
            rewrite_hyp ?*; reflexivity.
        Qed.

        Lemma subst_Some_subst_default {pt evm t}
          : pattern.base.subst pt evm = Some t -> pattern.base.subst_default pt evm = t.
        Proof using Type.
          revert t; induction pt;
            repeat first [ progress cbn [pattern.base.subst pattern.base.subst_default]
                         | progress cbv [Option.bind option_map]
                         | progress inversion_option
                         | progress subst
                         | progress intros
                         | reflexivity
                         | apply (f_equal base.type.list)
                         | apply (f_equal2 base.type.prod)
                         | break_innermost_match_step
                         | break_innermost_match_hyps_step
                         | solve [ eauto ] ].
        Qed.

        Lemma subst_relax_evm {pt evm evm' t}
              (Hevm : forall i v, PositiveMap.find i evm = Some v -> PositiveMap.find i evm' = Some v)
          : pattern.base.subst pt evm = Some t -> pattern.base.subst pt evm' = Some t.
        Proof using Type.
          revert t; induction pt;
            repeat first [ progress cbn [pattern.base.subst]
                         | progress cbv [Option.bind option_map]
                         | progress inversion_option
                         | progress subst
                         | progress intros
                         | reflexivity
                         | solve [ eauto ]
                         | break_innermost_match_step
                         | break_innermost_match_hyps_step
                         | match goal with
                           | [ H : forall t, Some _ = Some t -> _ |- _ ] => specialize (H _ eq_refl)
                           end ].
        Qed.

        Local Ltac t_subst_eq_iff :=
          repeat first [ progress cbn [pattern.base.collect_vars pattern.base.subst]
                       | reflexivity
                       | assumption
                       | congruence
                       | match goal with
                         | [ |- context[PositiveSet.mem _ (PositiveSet.add _ _)] ]
                           => setoid_rewrite PositiveSetFacts.add_b
                         | [ |- context[PositiveSet.mem _ PositiveSet.empty] ]
                           => setoid_rewrite PositiveSetFacts.empty_b
                         | [ |- context[PositiveSet.mem _ (PositiveSet.union _ _)] ]
                           => setoid_rewrite PositiveSetFacts.union_b
                         | [ |- context[orb _ false] ]
                           => setoid_rewrite Bool.orb_false_r
                         | [ |- context[orb _ _ = true] ]
                           => setoid_rewrite Bool.orb_true_iff
                         | _ => progress cbv [PositiveSetFacts.eqb Option.bind option_map]
                         end
                       | progress intros
                       | progress subst
                       | progress specialize_by (exact eq_refl)
                       | progress specialize_by_assumption
                       | progress inversion_option
                       | progress destruct_head'_and
                       | progress destruct_head'_ex
                       | progress specialize_by discriminate
                       | match goal with
                         | [ |- iff _ _ ] => split
                         | [ H : base.type.prod _ _ = base.type.prod _ _ |- _ ] => inversion H; clear H
                         | [ H : base.type.list _ = base.type.list _ |- _ ] => inversion H; clear H
                         | [ H : Some _ = _ |- _ ] => symmetry in H
                         | [ H : None = _ |- _ ] => symmetry in H
                         | [ H : ?x = Some _ |- context[?x] ] => rewrite H
                         | [ H : ?x = None |- context[?x] ] => rewrite H
                         | [ |- (?x = None /\ _) \/ _ ]
                           => destruct x eqn:?; [ right | left ]
                         | [ |- Some _ <> _ /\ _ ] => split; [ congruence | ]
                         | [ |- ?x = ?x /\ _ ] => split; [ reflexivity | ]
                         | [ |- exists t', (if PositiveSetFacts.eq_dec ?t t' then true else false) = true /\ _ ]
                           => exists t
                         | [ H : forall t', (if PositiveSetFacts.eq_dec ?t t' then true else false) = true -> _ |- _ ]
                           => specialize (H t)
                         | [ H : (Some _ = None /\ _) \/ _ -> _ |- _ ]
                           => specialize (fun pf => H (or_intror pf))
                         | [ H : _ /\ _ -> _ |- _ ]
                           => specialize (fun pf1 pf2 => H (conj pf1 pf2))
                         end
                       | progress cbv [Option.bind option_map] in *
                       | progress split_contravariant_or
                       | apply conj
                       | progress destruct_head'_or
                       | break_innermost_match_step
                       | break_innermost_match_hyps_step
                       | solve [ eauto ] ].

        Lemma subst_eq_iff {t evm1 evm2}
          : pattern.base.subst t evm1 = pattern.base.subst t evm2
            <-> ((pattern.base.subst t evm1 = None
                  /\ pattern.base.subst t evm2 = None)
                 \/ (forall t', PositiveSet.mem t' (pattern.base.collect_vars t) = true -> PositiveMap.find t' evm1 = PositiveMap.find t' evm2)).
        Proof using Type. split; induction t; t_subst_eq_iff. Qed.

        Lemma subst_eq_if_mem {t evm1 evm2}
          : (forall t', PositiveSet.mem t' (pattern.base.collect_vars t) = true -> PositiveMap.find t' evm1 = PositiveMap.find t' evm2)
            -> pattern.base.subst t evm1 = pattern.base.subst t evm2.
        Proof using Type. rewrite subst_eq_iff; eauto. Qed.

        Lemma subst_eq_Some_if_mem {t evm1 evm2}
          : pattern.base.subst t evm1 <> None
            -> (forall t', PositiveSet.mem t' (pattern.base.collect_vars t) = true -> PositiveMap.find t' evm1 <> None -> PositiveMap.find t' evm1 = PositiveMap.find t' evm2)
            -> pattern.base.subst t evm1 = pattern.base.subst t evm2.
        Proof using Type. induction t; t_subst_eq_iff. Qed.

        Local Instance subst_Proper
          : Proper (eq ==> @PositiveMap.Equal _ ==> eq) pattern.base.subst.
        Proof using Type.
          intros t t' ? ? ? ?; subst t'; cbv [Proper respectful PositiveMap.Equal] in *.
          apply subst_eq_if_mem; auto.
        Qed.

        Local Notation mk_new_evm0 evm ls
          := (fold_right
                (fun i k evm'
                 => k match PositiveMap.find i evm with
                      | Some v => PositiveMap.add i v evm'
                      | None => evm'
                      end) (fun evm => evm)
                (List.rev ls)) (only parsing).

        Local Notation mk_new_evm evm ps
          := (mk_new_evm0
                evm
                (PositiveSet.elements ps)) (only parsing).

        Lemma fold_right_evar_map_find_In'' {A} evm ps evm0 k
          : PositiveMap.find k (mk_new_evm evm ps evm0)
            = if in_dec PositiveSet.E.eq_dec k (List.rev (PositiveSet.elements ps))
              then match PositiveMap.find k evm with
                   | Some v => Some v
                   | None => PositiveMap.find k evm0
                   end
              else @PositiveMap.find A k evm0.
        Proof using Type.
          revert evm evm0.
          induction (List.rev (PositiveSet.elements ps)) as [|x xs IHxs]; cbn [fold_right List.In]; intros;
            [ | rewrite IHxs; clear IHxs ].
          all: repeat first [ progress split_iff
                            | progress subst
                            | break_innermost_match_step
                            | solve [ exfalso; eauto
                                    | eauto ]
                            | progress cbn [List.In] in *
                            | progress destruct_head'_or
                            | congruence
                            | rewrite PositiveMapAdditionalFacts.gsspec ].
        Qed.

        Lemma fold_right_evar_map_find_In' {A} evm ps evm0 k
          : PositiveMap.find k (mk_new_evm evm ps evm0)
            = if in_dec PositiveSet.E.eq_dec k (PositiveSet.elements ps)
              then match PositiveMap.find k evm with
                   | Some v => Some v
                   | None => PositiveMap.find k evm0
                   end
              else @PositiveMap.find A k evm0.
        Proof using Type.
          rewrite fold_right_evar_map_find_In''; break_innermost_match; try reflexivity.
          all: rewrite <- in_rev in *; tauto.
        Qed.

        Lemma fold_right_evar_map_find_In {A} evm ps evm0 k
          : PositiveMap.find k (mk_new_evm evm ps evm0)
            = if PositiveSet.mem k ps
              then match PositiveMap.find k evm with
                   | Some v => Some v
                   | None => PositiveMap.find k evm0
                   end
              else @PositiveMap.find A k evm0.
        Proof using Type.
          pose proof (PositiveSet.elements_spec1 ps k) as He.
          rewrite <- PositiveSet.mem_spec in He.
          rewrite InA_alt in He.
          cbv [PositiveSet.E.eq] in *.
          ex_eq_and.
          split_iff.
          rewrite fold_right_evar_map_find_In'; break_match; try reflexivity;
            intuition congruence.
        Qed.

        Lemma fold_right_evar_map_find_elements_Proper {A}
          : Proper (PositiveSet.Equal ==> @PositiveMap.Equal A ==> @PositiveMap.Equal _ ==> @PositiveMap.Equal _) (fun ps evm => mk_new_evm evm ps).
        Proof using Type.
          intros ps ps' Hps evm evm' Hevm evm0 evm0' Hevm0.
          cbv [PositiveMap.Equal] in *.
          apply PositiveSetFacts.elements_Proper_Equal in Hps.
          intro y.
          apply (f_equal (@List.rev _)) in Hps.
          revert dependent evm; revert dependent evm'.
          generalize dependent (List.rev (PositiveSet.elements ps)); intro ls.
          generalize dependent (List.rev (PositiveSet.elements ps')); intro ls'.
          clear ps ps'; intro; subst ls'.
          revert evm0 evm0' Hevm0; induction ls as [|l ls IHls]; cbn [fold_right] in *; intros;
            [ now eauto | apply IHls; clear IHls ].
          all: repeat first [ progress intros
                            | solve [ eauto ]
                            | progress subst
                            | rewrite_hyp !*
                            | congruence
                            | break_innermost_match_step
                            | rewrite PositiveMapAdditionalFacts.gsspec ].
        Qed.

        Lemma eq_subst_types_pattern_collect_vars pt t evm evm0
              (evm' := mk_new_evm evm (pattern.base.collect_vars pt) evm0)
              (Hty : pattern.base.subst pt evm = Some t)
          : pattern.base.subst pt evm' = Some t.
        Proof using Type.
          rewrite <- Hty; symmetry; apply subst_eq_Some_if_mem; subst evm'; intros; try congruence; [].
          rewrite fold_right_evar_map_find_In; rewrite_hyp !*.
          destruct (PositiveMap.find t' evm) eqn:H'; [ reflexivity | ].
          congruence.
        Qed.

        Lemma add_var_types_cps_id {t v evm T k}
        : @pattern.base.add_var_types_cps t v evm T k = k (@pattern.base.add_var_types_cps t v evm _ id).
        Proof using Type.
          revert v evm T k.
          induction t; cbn in *; intros; break_innermost_match; try reflexivity;
            auto.
          repeat match goal with H : _ |- _ => etransitivity; rewrite H; clear H; [ | reflexivity ] end.
          reflexivity.
        Qed.

        Ltac add_var_types_cps_id :=
          cps_id_with_option (@add_var_types_cps_id _ _ _ _ _).

        Lemma unify_extracted_cps_id {pt et T k}
          : @pattern.base.unify_extracted_cps pt et T k = k (@pattern.base.unify_extracted_cps pt et _ id).
        Proof using Type.
          revert et T k; induction pt, et; cbn [pattern.base.unify_extracted_cps]; cbv [id] in *; intros;
            repeat first [ reflexivity
                         | progress inversion_option
                         | progress subst
                         | break_innermost_match_step
                         | rewrite_hyp !* ].
        Qed.

        Ltac unify_extracted_cps_id :=
          cps_id_with_option (@unify_extracted_cps_id _ _ _ _).
      End base.

      Module type.
        Lemma subst_relax {t evm}
        : pattern.type.subst (pattern.type.relax t) evm = Some t.
        Proof using Type.
          induction t; cbn; cbv [Option.bind option_map];
            rewrite_hyp ?*; rewrite ?base.subst_relax; reflexivity.
        Qed.

        Lemma subst_Some_subst_default {pt evm t}
          : pattern.type.subst pt evm = Some t -> pattern.type.subst_default pt evm = t.
        Proof using Type.
          revert t; induction pt;
            repeat first [ progress cbn [pattern.type.subst pattern.type.subst_default]
                         | progress cbv [Option.bind option_map]
                         | progress inversion_option
                         | progress subst
                         | progress intros
                         | reflexivity
                         | apply (f_equal type.base)
                         | apply (f_equal2 type.arrow)
                         | break_innermost_match_step
                         | break_innermost_match_hyps_step
                         | solve [ eauto ]
                         | apply base.subst_Some_subst_default ].
        Qed.

        Lemma subst_relax_evm {pt evm evm' t}
              (Hevm : forall i v, PositiveMap.find i evm = Some v -> PositiveMap.find i evm' = Some v)
          : pattern.type.subst pt evm = Some t -> pattern.type.subst pt evm' = Some t.
        Proof using Type.
          revert t; induction pt;
            repeat first [ progress cbn [pattern.type.subst]
                         | progress cbv [Option.bind option_map]
                         | progress inversion_option
                         | progress subst
                         | progress intros
                         | reflexivity
                         | solve [ eauto ]
                         | break_innermost_match_step
                         | break_innermost_match_hyps_step
                         | congruence
                         | match goal with
                           | [ H : forall t, Some _ = Some t -> _ |- _ ] => specialize (H _ eq_refl)
                           | [ H : pattern.base.subst _ _ = Some _ |- _ ]
                             => unique pose proof (base.subst_relax_evm Hevm H)
                           | [ H : ?x = Some ?a, H' : ?x = Some ?b |- _ ]
                             => assert (a = b) by congruence; (subst a || subst b)
                           end ].
        Qed.

        Lemma add_var_types_cps_id {t v evm T k}
        : @pattern.type.add_var_types_cps t v evm T k = k (@pattern.type.add_var_types_cps t v evm _ id).
        Proof using Type.
          revert v evm T k.
          induction t; cbn in *; intros; break_innermost_match; try reflexivity;
            auto using base.add_var_types_cps_id.
          repeat match goal with H : _ |- _ => etransitivity; rewrite H; clear H; [ | reflexivity ] end.
          reflexivity.
        Qed.

        Ltac add_var_types_cps_id :=
          cps_id_with_option (@add_var_types_cps_id _ _ _ _ _).

        Lemma unify_extracted_cps_id {pt et T k}
          : @pattern.type.unify_extracted_cps pt et T k = k (@pattern.type.unify_extracted_cps pt et _ id).
        Proof using Type.
          revert et T k; induction pt, et; cbn [pattern.type.unify_extracted_cps]; cbv [id] in *; intros;
            repeat first [ reflexivity
                         | progress inversion_option
                         | progress subst
                         | apply base.unify_extracted_cps_id
                         | break_innermost_match_step
                         | rewrite_hyp !* ].
        Qed.

        Ltac unify_extracted_cps_id :=
          cps_id_with_option (@unify_extracted_cps_id _ _ _ _).

        Lemma app_forall_vars_under_forall_vars_relation
              {p k1 k2 F v1 v2 evm}
          : @pattern.type.under_forall_vars_relation p k1 k2 F v1 v2
            -> option_eq
                 (F _)
                 (@pattern.type.app_forall_vars p k1 v1 evm)
                 (@pattern.type.app_forall_vars p k2 v2 evm).
        Proof using Type.
          revert k1 k2 F v1 v2 evm.
          cbv [pattern.type.under_forall_vars_relation pattern.type.app_forall_vars pattern.type.forall_vars].
          generalize (PositiveMap.empty base.type).
          induction (List.rev (PositiveSet.elements p)) as [|x xs IHxs]; cbn; eauto.
          intros; break_innermost_match; cbn in *; eauto.
        Qed.

        Local Lemma app_forall_vars_under_forall_vars_relation1_helper0
              xs x v evm evm'
              (H_NoDup : NoDupA PositiveSet.E.eq (x::xs))
              (H_find : PositiveMap.find x evm' = Some v)
              (body := fun evm (i : PositiveMap.key) (k : EvarMap -> EvarMap) (evm' : EvarMap)
                       => k
                            match PositiveMap.find i evm with
                            | Some v => PositiveMap.add i v evm'
                            | None => evm'
                            end)
          : (fold_right (body evm) (fun evm' => evm') xs evm')
            = (fold_right (body (PositiveMap.add x v evm)) (fun evm' => evm') xs evm').
        Proof using Type.
          cbv [PositiveSet.E.eq] in *.
          subst body; cbv beta.
          inversion H_NoDup; clear H_NoDup; subst.
          revert evm evm' H_find.
          induction xs as [|x' xs IHxs]; cbn [fold_right] in *; [ reflexivity | ]; intros.
          repeat first [ progress subst
                       | rewrite PositiveMapAdditionalFacts.gsspec in *
                       | progress specialize_by_assumption
                       | progress destruct_head'_and
                       | match goal with
                         | [ H : NoDupA _ (cons _ _) |- _ ] => inversion H; clear H
                         | [ H : context[InA _ _ (cons _ _)] |- _ ] => rewrite InA_cons in H
                         | [ H : ~(or _ _) |- _ ] => apply Decidable.not_or in H
                         | [ H : ?x <> ?x |- _ ] => exfalso; apply H; reflexivity
                         end
                       | break_innermost_match_step
                       | match goal with
                         | [ H : _ |- _ ] => apply H; clear H
                         end ].
        Qed.

        Local Lemma app_forall_vars_under_forall_vars_relation1_helper1
              xs x
              (H_NoDup : NoDupA PositiveSet.E.eq (x::xs))
              v evm evm'
              (body := fun evm (i : PositiveMap.key) (k : EvarMap -> EvarMap) (evm' : EvarMap)
                       => k
                            match PositiveMap.find i evm with
                            | Some v => PositiveMap.add i v evm'
                            | None => evm'
                            end)
          : (fold_right (body evm) (fun evm' => evm') xs (PositiveMap.add x v evm'))
            = (fold_right (body (PositiveMap.add x v evm)) (fun evm' => evm') xs (PositiveMap.add x v evm')).
        Proof using Type.
          apply app_forall_vars_under_forall_vars_relation1_helper0; [ assumption | ].
          apply PositiveMap.gss.
        Qed.

        Local Lemma app_forall_vars_under_forall_vars_relation1_helper2
              xs x
              (H_NoDup : NoDupA PositiveSet.E.eq (x::xs))
              v evm evm'
              (body := fun evm (i : PositiveMap.key) (k : EvarMap -> EvarMap) (evm' : EvarMap)
                       => k
                            match PositiveMap.find i evm with
                            | Some v => PositiveMap.add i v evm'
                            | None => evm'
                            end)
          : (fold_right (body evm) (fun evm' => evm') xs (PositiveMap.add x v evm'))
            = (fold_right (body (PositiveMap.add x v evm)) (fun evm' => evm') xs
                          (match PositiveMap.find x (PositiveMap.add x v evm) with
                           | Some v => PositiveMap.add x v evm'
                           | None => evm'
                           end)).
        Proof using Type.
          rewrite PositiveMap.gss; apply app_forall_vars_under_forall_vars_relation1_helper1; assumption.
        Qed.

        Lemma app_forall_vars_under_forall_vars_relation1
              {p k1 F f}
          : @pattern.type.under_forall_vars_relation1 p k1 F f
            <-> (forall evm fv, pattern.type.app_forall_vars f evm = Some fv -> F _ fv).
        Proof using Type.
          revert k1 F f.
          cbv [pattern.type.under_forall_vars_relation1 pattern.type.app_forall_vars pattern.type.forall_vars].
          generalize (PositiveMap.empty base.type).
          pose proof (PositiveSet.elements_spec2w p) as H_NoDup.
          apply (@NoDupA_rev _ eq _) in H_NoDup.
          induction (List.rev (PositiveSet.elements p)) as [|x xs IHxs]; cbn in *.
          { split; intros; inversion_option; subst; eauto. }
          { intros; setoid_rewrite IHxs; clear IHxs; [ | inversion_clear H_NoDup; assumption ].
            split; intro H'.
            { intros; break_innermost_match; break_innermost_match_hyps; eauto; congruence. }
            { intros t' evm fv H''.
              (** Now we do a lot of manual equality munging :-( *)
              let evm := match type of fv with ?k1 (fold_right _ _ _ (PositiveMap.add ?x ?v _)) => constr:(PositiveMap.add x v evm) end in
              specialize (H' evm).
              rewrite PositiveMap.gss in H'.
              lazymatch goal with
              | [ |- context[fold_right (fun i k evm'' => k match PositiveMap.find i ?evm with _ => _ end) _ ?xs (PositiveMap.add ?x ?v ?evm')] ]
                => pose proof (@app_forall_vars_under_forall_vars_relation1_helper1 xs x ltac:(assumption) v evm evm') as H''';
                     cbv beta iota zeta in H'''
              end.
              pose (existT k1 _ fv) as fv'.
              assert (Hf : existT k1 _ fv = fv') by reflexivity.
              change fv with (projT2 fv').
              let T := match (eval cbv delta [fv'] in fv') with existT _ ?T _ => T end in
              change T with (projT1 fv') in H''' |- *.
              clearbody fv'.
              destruct fv' as [evm' fv']; cbn [projT1 projT2] in *.
              subst evm'.
              apply H'; clear H'.
              inversion_sigma; subst fv'.
              rewrite (@Equality.commute_eq_rect _ k1 (fun t => option (k1 t)) (fun _ v => Some v)).
              rewrite <- H''.
              clear -H_NoDup.
              match goal with
              | [ |- context[list_rect _ _ _ _ _ (?f ?t)] ]
                => generalize (f t); clear f
              end.
              intro f.
              lazymatch type of f with
              | fold_right _ _ _ (PositiveMap.add ?x ?v ?evm)
                => assert (PositiveMap.find x (PositiveMap.add x v evm) = Some v)
                  by apply PositiveMap.gss;
                     generalize dependent (PositiveMap.add x v evm); clear evm
              end.
              revert dependent evm.
              induction xs as [|x' xs IHxs]; cbn [list_rect fold_right] in *.
              { intros; eliminate_hprop_eq; reflexivity. }
              { repeat first [ progress subst
                             | progress destruct_head'_and
                             | match goal with
                               | [ H : NoDupA _ (cons _ _) |- _ ] => inversion H; clear H
                               | [ H : context[InA _ _ (cons _ _)] |- _ ] => rewrite InA_cons in H
                               | [ H : ~(or _ _) |- _ ] => apply Decidable.not_or in H
                               end ].
                specialize (IHxs ltac:(constructor; assumption)).
                intros; break_innermost_match.
                all: repeat first [ match goal with
                                    | [ H : context[PositiveMap.find _ (PositiveMap.add _ _ _)] |- _  ]
                                      => rewrite PositiveMap.gso in H by congruence
                                    | [ H : ?x = Some ?a, H' : ?x = Some ?b |- _ ]
                                      => assert (a = b) by congruence; (subst a || subst b); (clear H || clear H')
                                    | [ H : ?x = Some _, H' : ?x = None |- _ ]
                                      => exfalso; clear -H H'; congruence
                                    | [ |- None = rew ?pf in None ]
                                      => progress clear;
                                         lazymatch type of pf with
                                         | ?a = ?b => generalize dependent a || generalize dependent b
                                         end;
                                         intros; progress subst; reflexivity
                                    | [ H : _ |- _ ] => apply H; rewrite PositiveMap.gso by congruence; assumption
                                    end ]. } } }
        Qed.

        Lemma under_forall_vars_relation1_lam_forall_vars
              {p k1 F f}
          : @pattern.type.under_forall_vars_relation1 p k1 F (@pattern.type.lam_forall_vars p k1 f)
            <-> forall ls',
              List.length ls' = List.length (List.rev (PositiveSet.elements p))
              -> let evm := fold_left (fun m '(k, v) => PositiveMap.add k v m) (List.combine (List.rev (PositiveSet.elements p)) ls') (PositiveMap.empty _) in
                 F evm (f evm).
        Proof using Type.
          cbv [pattern.type.under_forall_vars_relation1 pattern.type.lam_forall_vars].
          generalize (PositiveMap.empty base.type).
          generalize (rev (PositiveSet.elements p)).
          clear p.
          intros ls m.
          revert k1 F f m.
          induction ls as [|l ls IHls]; cbn [list_rect fold_right fold_left List.length] in *; intros.
          { split; intro H; [ intros [|] | specialize (H nil eq_refl) ]; cbn [List.length List.combine fold_right] in *; intros; try discriminate; assumption. }
          { setoid_rewrite IHls; clear IHls.
            split; intro H; [ intros [|l' ls'] Hls'; [ | specialize (H l' ls') ]
                            | intros t ls' Hls'; specialize (H (cons t ls')) ];
            cbn [List.length List.combine fold_left] in *;
            try discriminate; inversion Hls'; eauto. }
        Qed.

        Lemma app_forall_vars_lam_forall_vars {p k f evm v}
          : @pattern.type.app_forall_vars p k (pattern.type.lam_forall_vars f) evm = Some v
            -> v = f _.
        Proof using Type.
          revert v; cbv [pattern.type.app_forall_vars pattern.type.lam_forall_vars].
          generalize (rev (PositiveSet.elements p)); clear p; intro ls.
          generalize (PositiveMap.empty base.type).
          induction ls as [|x xs IHxs]; cbn [list_rect fold_right]; [ congruence | ].
          intros t v H; eapply IHxs; clear IHxs.
          rewrite <- H.
          break_innermost_match; [ | now discriminate ].
          reflexivity.
        Qed.
      End type.
    End pattern.

    Module Compile.
      Import Rewriter.Compilers.RewriteRules.Compile.

      Section with_type0.
        Context {base_type} {ident : type.type base_type -> Type}.
        Local Notation type := (type.type base_type).
        Local Notation expr := (@expr.expr base_type ident).
        Local Notation UnderLets := (@UnderLets.UnderLets base_type ident).
        Let type_base (t : base_type) : type := type.base t.
        Coercion type_base : base_type >-> type.

        Section with_var2.
          Context {var1 var2 : type -> Type}.

          Local Notation value'1 := (@value' base_type ident var1).
          Local Notation value'2 := (@value' base_type ident var2).
          Local Notation value1 := (@value base_type ident var1).
          Local Notation value2 := (@value base_type ident var2).
          Local Notation value_with_lets1 := (@value_with_lets base_type ident var1).
          Local Notation value_with_lets2 := (@value_with_lets base_type ident var2).
          Local Notation Base_value := (@Base_value base_type ident).
          Local Notation splice_under_lets_with_value := (@splice_under_lets_with_value base_type ident).
          Local Notation splice_value_with_lets := (@splice_value_with_lets base_type ident).

          Fixpoint wf_value' {with_lets : bool} G {t : type} : value'1 with_lets t -> value'2 with_lets t -> Prop
            := match t, with_lets with
               | type.base t, true => UnderLets.wf (fun G' => expr.wf G') G
               | type.base t, false => expr.wf G
               | type.arrow s d, _
                 => fun f1 f2
                    => (forall seg G' v1 v2,
                           G' = (seg ++ G)%list
                           -> @wf_value' false seg s v1 v2
                           -> @wf_value' true G' d (f1 v1) (f2 v2))
               end.

          Definition wf_value G {t} : value1 t -> value2 t -> Prop := @wf_value' false G t.
          Definition wf_value_with_lets G {t} : value_with_lets1 t -> value_with_lets2 t -> Prop := @wf_value' true G t.

          Lemma wf_value'_Proper_list {with_lets} G1 G2
                (HG1G2 : forall t v1 v2, List.In (existT _ t (v1, v2)) G1 -> List.In (existT _ t (v1, v2)) G2)
                t e1 e2
                (Hwf : @wf_value' with_lets G1 t e1 e2)
            : @wf_value' with_lets G2 t e1 e2.
          Proof.
            revert Hwf; revert dependent with_lets; revert dependent G2; revert dependent G1; induction t;
              repeat first [ progress cbn in *
                           | progress intros
                           | solve [ eauto ]
                           | progress subst
                           | progress destruct_head'_or
                           | progress inversion_sigma
                           | progress inversion_prod
                           | progress break_innermost_match_hyps
                           | eapply UnderLets.wf_Proper_list; [ .. | solve [ eauto ] ]
                           | wf_unsafe_t_step
                           | match goal with H : _ |- _ => solve [ eapply H; [ .. | solve [ eauto ] ]; wf_t ] end ].
          Qed.

          Lemma wf_Base_value G {t} v1 v2 (Hwf : @wf_value G t v1 v2)
            : @wf_value_with_lets G t (Base_value v1) (Base_value v2).
          Proof.
            destruct t; cbn; intros; subst; hnf; try constructor; try assumption.
            eapply wf_value'_Proper_list; [ | solve [ eauto ] ]; trivial.
          Qed.

          Lemma wf_splice_under_lets_with_value {T1 T2 t}
                G
                (x1 : @UnderLets var1 T1) (x2 : @UnderLets var2 T2)
                (e1 : T1 -> value_with_lets1 t) (e2 : T2 -> value_with_lets2 t)
                (Hx : UnderLets.wf (fun G' a1 a2 => wf_value_with_lets G' (e1 a1) (e2 a2)) G x1 x2)
            : wf_value_with_lets G (splice_under_lets_with_value x1 e1) (splice_under_lets_with_value x2 e2).
          Proof.
            cbv [wf_value_with_lets] in *.
            revert dependent G; induction t as [t|s IHs d IHd]; cbn [splice_under_lets_with_value wf_value']; intros.
            { eapply UnderLets.wf_splice; eauto. }
            { intros; subst; apply IHd.
              eapply UnderLets.wf_Proper_list_impl; [ | | solve [ eauto ] ]; wf_t.
              eapply wf_value'_Proper_list; [ | solve [ eauto ] ]; wf_t. }
          Qed.

          Lemma wf_splice_value_with_lets {t t'}
                G
                (x1 : value_with_lets1 t) (x2 : value_with_lets2 t)
                (e1 : value1 t -> value_with_lets1 t') (e2 : value2 t -> value_with_lets2 t')
                (Hx : wf_value_with_lets G x1 x2)
                (He : forall seg G' v1 v2, (G' = (seg ++ G)%list) -> wf_value G' v1 v2 -> wf_value_with_lets G' (e1 v1) (e2 v2))
            : wf_value_with_lets G (splice_value_with_lets x1 e1) (splice_value_with_lets x2 e2).
          Proof.
            destruct t; cbn [splice_value_with_lets].
            { eapply wf_splice_under_lets_with_value.
              eapply UnderLets.wf_Proper_list_impl; [ | | eassumption ]; trivial; wf_t. }
            { eapply wf_value'_Proper_list; [ | eapply He with (seg:=nil); hnf in Hx |- * ].
              { eauto; subst G'; wf_t. }
              { reflexivity. }
              { intros; subst; eapply wf_value'_Proper_list; [ | solve [ eauto ] ]; wf_t. } }
          Qed.
        End with_var2.
      End with_type0.
      Local Notation EvarMap := pattern.EvarMap.
      Section with_var.
        Local Notation type_of_list
          := (fold_right (fun a b => prod a b) unit).
        Local Notation type_of_list_cps
          := (fold_right (fun a K => a -> K)).
        Context {ident : type.type base.type -> Type}
                (eta_ident_cps : forall {T : type.type base.type -> Type} {t} (idc : ident t)
                                        (f : forall t', ident t' -> T t'),
                    T t)
                {pident : type.type pattern.base.type -> Type}
                (pident_arg_types : forall t, pident t -> list Type)
                (pident_unify pident_unify_unknown : forall t t' (idc : pident t) (idc' : ident t'), option (type_of_list (pident_arg_types t idc)))
                {raw_pident : Type}
                (strip_types : forall t, pident t -> raw_pident)
                (raw_pident_beq : raw_pident -> raw_pident -> bool)
                (type_vars_of_pident : forall t, pident t -> list (type.type pattern.base.type))

                (full_types : raw_pident -> Type)
                (invert_bind_args invert_bind_args_unknown : forall t (idc : ident t) (pidc : raw_pident), option (full_types pidc))
                (pident_to_typed
                 : forall t (idc : pident t) (evm : EvarMap),
                    type_of_list (pident_arg_types t idc) -> ident (pattern.type.subst_default t evm))
                (type_of_raw_pident : forall (pidc : raw_pident), full_types pidc -> type.type base.type)
                (raw_pident_to_typed : forall (pidc : raw_pident) (args : full_types pidc), ident (type_of_raw_pident pidc args))
                (raw_pident_is_simple : raw_pident -> bool)
                (pident_unify_unknown_correct
                 : forall t t' idc idc', pident_unify_unknown t t' idc idc' = pident_unify t t' idc idc')
                (invert_bind_args_unknown_correct
                 : forall t idc pidc, invert_bind_args_unknown t idc pidc = invert_bind_args t idc pidc)
                (eta_ident_cps_correct : forall T t idc f, @eta_ident_cps T t idc f = f _ idc)
                (raw_pident_to_typed_invert_bind_args_type
                 : forall t idc p f, invert_bind_args t idc p = Some f -> t = type_of_raw_pident p f)
                (raw_pident_to_typed_invert_bind_args
                 : forall t idc p f (pf : invert_bind_args t idc p = Some f),
                    raw_pident_to_typed p f = rew [ident] raw_pident_to_typed_invert_bind_args_type t idc p f pf in idc)
                (*(raw_pident_bl : forall p q, raw_pident_beq p q = true -> p = q)
                (raw_pident_lb : forall p q, p = q -> raw_pident_beq p q = true)*).

        Local Notation type := (type.type base.type).
        Local Notation expr := (@expr.expr base.type ident).
        Local Notation pattern := (@pattern.pattern pident).
        Local Notation rawpattern := (@pattern.Raw.pattern raw_pident).
        Local Notation anypattern := (@pattern.anypattern pident).
        Local Notation UnderLets := (@UnderLets.UnderLets base.type ident).
        Local Notation ptype := (type.type pattern.base.type).
        Local Notation value' := (@value' base.type ident).
        Local Notation value := (@value base.type ident).
        Local Notation value_with_lets := (@value_with_lets base.type ident).
        Local Notation Base_value := (@Base_value base.type ident).
        Local Notation splice_under_lets_with_value := (@splice_under_lets_with_value base.type ident).
        Local Notation splice_value_with_lets := (@splice_value_with_lets base.type ident).
        Local Notation to_raw_pattern := (@pattern.to_raw pident raw_pident (@strip_types)).
        Local Notation reify := (@reify ident).
        Local Notation reflect := (@reflect ident).
        Local Notation reify_expr := (@reify_expr ident).
        Local Notation rawexpr := (@rawexpr ident).
        Local Notation eval_decision_tree var := (@eval_decision_tree ident var raw_pident full_types invert_bind_args invert_bind_args_unknown type_of_raw_pident raw_pident_to_typed raw_pident_is_simple).
        Local Notation reveal_rawexpr_gen assume_known e := (@reveal_rawexpr_cps_gen ident _ assume_known e _ id).
        Local Notation reveal_rawexpr e := (@reveal_rawexpr_cps ident _ e _ id).
        Local Notation unify_pattern' var := (@unify_pattern' ident var pident pident_arg_types pident_unify pident_unify_unknown).
        Local Notation unify_pattern var := (@unify_pattern ident var pident pident_arg_types pident_unify pident_unify_unknown).
        Local Notation app_transport_with_unification_resultT'_cps := (@app_transport_with_unification_resultT'_cps pident pident_arg_types).
        Local Notation app_with_unification_resultT_cps := (@app_with_unification_resultT_cps pident pident_arg_types type_vars_of_pident).
        Local Notation with_unification_resultT' := (@with_unification_resultT' pident pident_arg_types).
        Local Notation with_unification_resultT := (@with_unification_resultT pident pident_arg_types type_vars_of_pident).
        Local Notation unification_resultT' := (@unification_resultT' pident pident_arg_types).
        Local Notation unification_resultT := (@unification_resultT pident pident_arg_types).

        Definition lam_type_of_list {ls K} : (type_of_list ls -> K) -> type_of_list_cps K ls
          := list_rect
               (fun ls => (type_of_list ls -> K) -> type_of_list_cps K ls)
               (fun f => f tt)
               (fun T Ts rec k t => rec (fun ts => k (t, ts)))
               ls.

        Lemma app_lam_type_of_list
              {K ls f args}
          : @app_type_of_list K ls (@lam_type_of_list ls K f) args = f args.
        Proof using Type.
          cbv [app_type_of_list lam_type_of_list].
          induction ls as [|l ls IHls]; cbn [list_rect type_of_list type_of_list_cps] in *;
            destruct_head'_unit; destruct_head'_prod; cbn [fst snd] in *; try reflexivity; apply IHls.
        Qed.

        Section with_var1.
          Context {var : type -> Type}.
          Local Notation expr := (@expr.expr base.type ident var).
          Local Notation deep_rewrite_ruleTP_gen := (@deep_rewrite_ruleTP_gen ident var).

          Local Notation "e1 === e2" := (existT expr _ e1 = existT expr _ e2) : type_scope.

          Fixpoint rawexpr_equiv_expr {t0} (e1 : expr t0) (r2 : rawexpr) {struct r2} : Prop
            := match r2 with
               | rIdent _ t idc t' alt
                 => alt === e1 /\ expr.Ident idc === e1
               | rApp f x t alt
                 => alt === e1
                    /\ match e1 with
                       | expr.App _ _ f' x'
                         => rawexpr_equiv_expr f' f /\ rawexpr_equiv_expr x' x
                       | _ => False
                       end
               | rExpr t e
               | rValue (type.base t) e
                 => e === e1
               | rValue t e => False
               end.

          Fixpoint rawexpr_equiv (r1 r2 : rawexpr) : Prop
            := match r1, r2 with
               | rExpr t e, r
               | r, rExpr t e
               | rValue (type.base t) e, r
               | r, rValue (type.base t) e
                 => rawexpr_equiv_expr e r
               | rValue t1 e1, rValue t2 e2
                 => existT _ t1 e1 = existT _ t2 e2
               | rIdent _ t1 idc1 t'1 alt1, rIdent _ t2 idc2 t'2 alt2
                 => alt1 === alt2
                    /\ (existT ident _ idc1 = existT ident _ idc2)
               | rApp f1 x1 t1 alt1, rApp f2 x2 t2 alt2
                 => alt1 === alt2
                    /\ rawexpr_equiv f1 f2
                    /\ rawexpr_equiv x1 x2
               | rValue _ _, _
               | rIdent _ _ _ _ _, _
               | rApp _ _ _ _, _
                 => False
               end.

          Global Instance rawexpr_equiv_Reflexive : Reflexive rawexpr_equiv.
          Proof using Type.
            intro x; induction x; cbn; repeat apply conj; break_innermost_match; try reflexivity; auto.
          Qed.

          Global Instance rawexpr_equiv_Symmetric : Symmetric rawexpr_equiv.
          Proof using Type.
            intro x; induction x; intro y; destruct y; intros;
              repeat first [ progress destruct_head'_and
                           | progress subst
                           | progress cbn in *
                           | progress inversion_sigma
                           | break_innermost_match_step
                           | break_innermost_match_hyps_step
                           | type.inversion_type_step
                           | solve [ auto ]
                           | apply conj
                           | (exists eq_refl)
                           | apply path_sigT_uncurried ].
          Qed.

          Lemma rawexpr_equiv_expr_to_rawexpr_equiv {t} e r
            : @rawexpr_equiv_expr t e r <-> rawexpr_equiv (rExpr e) r /\ rawexpr_equiv r (rExpr e).
          Proof using Type.
            split; [ intro H | intros [H0 H1] ]; cbn; try apply conj; (idtac + symmetry); assumption.
          Qed.

          Local Ltac invert_t_step :=
            first [ progress cbn -[rawexpr_equiv] in *
                  | exfalso; assumption
                  | progress intros
                  | progress destruct_head'_and
                  | progress subst
                  | match goal with
                    | [ H : (existT ?P ?t (reify ?e)) = _ |- _ ] => generalize dependent (existT P t (reify e)); clear e t
                    | [ H : _ = (existT ?P ?t (reify ?e)) |- _ ] => generalize dependent (existT P t (reify e)); clear e t
                    | [ H : existT value ?t1 ?e1 = existT value ?t2 ?e2 |- _ ]
                      => first [ is_var t1; is_var e1 | is_var t2; is_var e2 ];
                         induction_sigma_in_using H (@path_sigT_rect)
                    | [ H : match reify ?e with _ => _ end |- _ ] => generalize dependent (reify e); clear e
                    end
                  | progress inversion_sigma
                  | progress inversion_option
                  | reflexivity
                  | (exists eq_refl)
                  | match goal with
                    | [ |- ?x = ?x /\ _ ] => apply conj
                    | [ |- ?x = ?y :> sigT _ ] => apply path_sigT_uncurried
                    end
                  | (idtac + symmetry); assumption ].
          Local Ltac equiv_t_step :=
            first [ invert_t_step
                  | apply conj
                  | solve [ eauto ]
                  | break_innermost_match_step
                  | expr.inversion_expr_step
                  | type.inversion_type_step
                  | break_innermost_match_hyps_step
                  | match goal with
                    | [ H : forall y z : rawexpr, rawexpr_equiv ?x _ -> _ -> _, H' : rawexpr_equiv ?x _ |- _ ]
                      => unique pose proof (fun z => H _ z H')
                    | [ H : forall z : rawexpr, rawexpr_equiv ?x _ -> _, H' : rawexpr_equiv ?x _ |- _ ]
                      => unique pose proof (H _ H')
                    | [ H : rawexpr_equiv_expr _ _ |- _ ] => rewrite rawexpr_equiv_expr_to_rawexpr_equiv in H
                    | [ |- rawexpr_equiv_expr ?e ?r ] => change (rawexpr_equiv (rExpr e) r)
                    end
                  | expr.invert_match_step ].

          Local Instance rawexpr_equiv_expr_Proper {t}
            : Proper (eq ==> rawexpr_equiv ==> Basics.impl) (@rawexpr_equiv_expr t).
          Proof using Type.
            cbv [Proper respectful Basics.impl]; intros e e' ? r1 r2 H0 H1; subst e'.
            revert r2 t e H1 H0.
            induction r1, r2; cbn in *; repeat equiv_t_step.
          Qed.

          Local Instance rawexpr_equiv_expr_Proper' {t}
            : Proper (eq ==> rawexpr_equiv ==> Basics.flip Basics.impl) (@rawexpr_equiv_expr t).
          Proof using Type.
            intros e e' ? r1 r2 H0 H1; subst e'.
            rewrite H0; assumption.
          Qed.

          Local Instance rawexpr_equiv_expr_Proper'' {t}
            : Proper (eq ==> rawexpr_equiv ==> iff) (@rawexpr_equiv_expr t).
          Proof using Type.
            intros e e' ? r1 r2 H; subst e'.
            split; intro; (rewrite H + rewrite <- H); assumption.
          Qed.

          Global Instance rawexpr_equiv_Transitive : Transitive rawexpr_equiv.
          Proof using Type.
            intro x; induction x; intros y z; destruct y, z.
            all: intros; cbn in *; repeat invert_t_step.
            all: cbn in *; expr.invert_match; break_innermost_match.
            all: try solve [ intros; destruct_head'_and; inversion_sigma; subst; cbn [eq_rect] in *; subst; repeat apply conj; eauto;
                             match goal with
                             | [ H : rawexpr_equiv ?a ?b, H' : rawexpr_equiv_expr ?e ?a |- rawexpr_equiv_expr ?e ?b ]
                               => rewrite <- H; assumption
                             | [ H : rawexpr_equiv ?a ?b, H' : rawexpr_equiv_expr ?e ?b |- rawexpr_equiv_expr ?e ?a ]
                               => rewrite H; assumption
                             end
                           | exfalso; assumption
                           | repeat equiv_t_step ].
          Qed.

          Global Instance rawexpr_equiv_Equivalence : Equivalence rawexpr_equiv.
          Proof using Type. split; exact _. Qed.

          Lemma eq_type_of_rawexpr_equiv_expr
                {t e re}
            : @rawexpr_equiv_expr t e re -> t = type_of_rawexpr re.
          Proof using Type.
            destruct re; cbn [rawexpr_equiv_expr];
              intros; break_innermost_match_hyps; destruct_head'_and; inversion_sigma;
                repeat (subst || cbn [eq_rect type_of_rawexpr] in * );
                solve [ reflexivity | exfalso; assumption ].
          Qed.

          Lemma eq_type_of_rawexpr_equiv
                {r1 r2}
            : rawexpr_equiv r1 r2 -> type_of_rawexpr r1 = type_of_rawexpr r2.
          Proof using Type.
            revert r2; induction r1, r2.
            all: repeat first [ progress cbn [rawexpr_equiv type_of_rawexpr] in *
                              | progress subst
                              | progress destruct_head'_and
                              | progress inversion_sigma
                              | reflexivity
                              | exfalso; assumption
                              | progress intros
                              | break_innermost_match_hyps_step
                              | match goal with
                                | [ H : rawexpr_equiv_expr _ _ |- _ ] => apply eq_type_of_rawexpr_equiv_expr in H
                                end
                              | progress type.inversion_type ].
          Qed.

          Lemma eq_expr_of_rawexpr_equiv_expr' {t e re}
                (H : @rawexpr_equiv_expr t e re)
            : forall pf, expr_of_rawexpr re = rew [expr] pf in e.
          Proof using Type.
            revert t e H; induction re.
            all: repeat first [ progress cbn [expr_of_rawexpr rawexpr_equiv_expr type_of_rawexpr eq_rect] in *
                              | progress subst
                              | progress destruct_head'_and
                              | progress destruct_head'_False
                              | progress inversion_sigma
                              | progress eliminate_hprop_eq
                              | reflexivity
                              | progress intros
                              | break_innermost_match_hyps_step ].
          Qed.

          Lemma eq_expr_of_rawexpr_equiv_expr {t e re}
                (H : @rawexpr_equiv_expr t e re)
            : expr_of_rawexpr re = rew [expr] eq_type_of_rawexpr_equiv_expr H in e.
          Proof using Type. apply eq_expr_of_rawexpr_equiv_expr'; assumption. Qed.

          Lemma eq_expr_of_rawexpr_equiv' {t r1 r2}
                (H : rawexpr_equiv r1 r2)
            : forall pf1 pf2 : _ = t,
              rew [expr] pf1 in expr_of_rawexpr r1 = rew [expr] pf2 in expr_of_rawexpr r2.
          Proof using Type.
            revert r2 t H; induction r1, r2.
            all: repeat first [ progress cbn [expr_of_rawexpr rawexpr_equiv type_of_rawexpr eq_rect] in *
                              | progress subst
                              | progress destruct_head'_and
                              | progress destruct_head'_False
                              | progress inversion_sigma
                              | progress eliminate_hprop_eq
                              | reflexivity
                              | progress intros
                              | break_innermost_match_hyps_step
                              | match goal with
                                | [ H : rawexpr_equiv_expr _ _ |- _ ]
                                  => generalize (eq_type_of_rawexpr_equiv_expr H) (eq_expr_of_rawexpr_equiv_expr H); clear H
                                end ].
          Qed.

          Lemma eq_expr_of_rawexpr_equiv {r1 r2}
                (H : rawexpr_equiv r1 r2)
            : rew [expr] eq_type_of_rawexpr_equiv H in expr_of_rawexpr r1 = expr_of_rawexpr r2.
          Proof using Type. apply eq_expr_of_rawexpr_equiv' with (pf2:=eq_refl); assumption. Qed.

          Lemma swap_swap_list {A n m ls ls'}
            : @swap_list A n m ls = Some ls' -> @swap_list A n m ls' = Some ls.
          Proof using Type.
            cbv [swap_list].
            break_innermost_match; intros; inversion_option; subst;
              f_equal; try apply list_elementwise_eq; intros;
                repeat first [ progress subst
                             | progress inversion_option
                             | rewrite !nth_set_nth
                             | rewrite !length_set_nth
                             | congruence
                             | match goal with
                               | [ H : context[nth_error (set_nth _ _ _) _] |- _ ] => rewrite !nth_set_nth in H
                               | [ H : context[List.length (set_nth _ _ _)] |- _ ] => rewrite !length_set_nth in H
                               | [ H : nth_error ?ls ?n = Some ?x |- _ ] => unique pose proof (@nth_error_value_length _ _ _ _ H)
                               | [ H : context[Nat.eq_dec ?x ?y] |- _ ] => destruct (Nat.eq_dec x y)
                               | [ |- context[Nat.eq_dec ?x ?y] ] => destruct (Nat.eq_dec x y)
                               | [ H : context[lt_dec ?x ?y] |- _ ] => destruct (lt_dec x y)
                               end ].
          Qed.
          Lemma swap_swap_list_iff {A n m ls ls'}
            : @swap_list A n m ls = Some ls' <-> @swap_list A n m ls' = Some ls.
          Proof using Type. split; apply swap_swap_list. Qed.

          Lemma swap_list_eqlistA {A R}
            : Proper (eq ==> eq ==> SetoidList.eqlistA R ==> option_eq (SetoidList.eqlistA R))
                     (@swap_list A).
          Proof using Type.
            intros n n' ? m m' ? ls1 ls2 Hls; subst m' n'.
            cbv [swap_list].
            break_innermost_match; intros; inversion_option; subst; cbn [option_eq];
              try apply list_elementwise_eqlistA; intros;
                repeat first [ progress subst
                             | progress inversion_option
                             | rewrite !nth_set_nth
                             | rewrite !length_set_nth
                             | progress cbv [option_eq] in *
                             | congruence
                             | break_innermost_match_step
                             | match goal with
                               | [ H : eqlistA _ _ _ |- _ ] => unique pose proof (@eqlistA_length _ _ _ _ H)
                               | [ H : context[nth_error (set_nth _ _ _) _] |- _ ] => rewrite !nth_set_nth in H
                               | [ H : context[List.length (set_nth _ _ _)] |- _ ] => rewrite !length_set_nth in H
                               | [ H : nth_error ?ls ?n = Some ?x |- _ ] => unique pose proof (@nth_error_value_length _ _ _ _ H)
                               | [ H : context[Nat.eq_dec ?x ?y] |- _ ] => destruct (Nat.eq_dec x y)
                               | [ |- context[Nat.eq_dec ?x ?y] ] => destruct (Nat.eq_dec x y)
                               | [ H : context[lt_dec ?x ?y] |- _ ] => destruct (lt_dec x y)
                               | [ |- context[lt_dec ?x ?y] ] => destruct (lt_dec x y)
                               | [ H : eqlistA ?R ?ls1 ?ls2, H1 : nth_error ?ls1 ?n = Some ?v1, H2 : nth_error ?ls2 ?n = Some ?v2 |- _ ]
                                 => unique assert (R v1 v2)
                                   by (generalize (nth_error_Proper_eqlistA ls1 ls2 H n n eq_refl); rewrite H1, H2; cbn; congruence)
                               | [ H : eqlistA ?R ?ls1 ?ls2, H1 : nth_error ?ls1 ?n = _, H2 : nth_error ?ls2 ?n = _ |- _ ]
                                 => exfalso; generalize (nth_error_Proper_eqlistA ls1 ls2 H n n eq_refl); rewrite H1, H2; cbn; congruence
                               | [ |- nth_error ?a ?b = _ ] => destruct (nth_error a b) eqn:?
                               end ].
          Qed.

          Local Ltac rew_swap_list_step0 :=
            match goal with
            | [ H : swap_list ?a ?b ?ls1 = Some ?ls2, H' : context[swap_list ?a ?b ?ls2] |- _ ]
              => rewrite (swap_swap_list H) in H'
            | [ H : swap_list ?a ?b ?ls1 = Some ?ls2 |- context[swap_list ?a ?b ?ls2] ]
              => rewrite (swap_swap_list H)
            | [ H : swap_list ?a ?b ?ls1 = Some ?ls2 |- context[swap_list ?a ?b ?ls1] ]
              => rewrite H
            end.

          Lemma swap_swap_list_eqlistA {A R a b ls1 ls2 ls3 ls4}
                (H : swap_list a b ls1 = Some ls2)
                (H' : swap_list a b ls3 = Some ls4)
                (Hl : eqlistA R ls2 ls3)
            : @eqlistA A R ls1 ls4.
          Proof using Type.
            generalize (swap_list_eqlistA a a eq_refl b b eq_refl _ _ Hl).
            clear Hl.
            (destruct (swap_list a b ls2) eqn:?, (swap_list a b ls4) eqn:?).
            all: repeat (rew_swap_list_step0 || inversion_option || subst); cbn [option_eq]; tauto.
          Qed.

          Lemma swap_list_None_iff {A} (i j : nat) (ls : list A)
            : swap_list i j ls = None <-> (length ls <= i \/ length ls <= j)%nat.
          Proof using Type.
            rewrite <- !nth_error_None.
            cbv [swap_list]; break_innermost_match; intuition congruence.
          Qed.

          Lemma swap_list_Some_length {A} (i j : nat) (ls ls' : list A)
            : swap_list i j ls = Some ls'
              -> (i < length ls /\ j < length ls /\ length ls' = length ls)%nat.
          Proof using Type.
            cbv [swap_list]; break_innermost_match; intros; inversion_option; subst.
            repeat match goal with H : _ |- _ => apply nth_error_value_length in H end.
            autorewrite with distr_length; tauto.
          Qed.

          Local Ltac fin_handle_list :=
            destruct_head' iff;
            destruct_head'_and;
            cbn [length] in *;
            try solve [ destruct_head'_or;
                        exfalso;
                        repeat match goal with
                               | [ H : ?T, H' : ?T |- _ ] => clear H'
                               | [ H : ?T |- _ ]
                                 => lazymatch type of H with
                                    | _ = _ :> nat => fail
                                    | (_ <= _)%nat => fail
                                    | (_ < _)%nat => fail
                                    | ~_ = _ :> nat => fail
                                    | ~(_ <= _)%nat => fail
                                    | ~(_ < _)%nat => fail
                                    | _ => clear H
                                    end
                               | [ H : context[length ?ls] |- _ ]
                                 => generalize dependent (length ls); intros
                               | _ => progress subst
                               | _ => lia
                               end ].

          Local Ltac handle_nth_error :=
            repeat match goal with
                   | [ H : nth_error _ _ = None |- _ ] => rewrite nth_error_None in H
                   | [ H : nth_error _ _ = Some _ |- _ ] => unique pose proof (@nth_error_value_length _ _ _ _ H)
                   end;
            fin_handle_list.

          Lemma nth_error_swap_list {A} {i j : nat} {ls ls' : list A}
            : swap_list i j ls = Some ls'
              -> forall k,
                nth_error ls' k = if Nat.eq_dec k i then nth_error ls j else if Nat.eq_dec k j then nth_error ls i else nth_error ls k.
          Proof.
            cbv [swap_list]; break_innermost_match; intros; inversion_option; subst;
              rewrite ?nth_set_nth; distr_length; break_innermost_match; try congruence; try lia;
                handle_nth_error.
          Qed.

          Lemma unify_types_cps_id {t e p T k}
            : @unify_types ident var pident t e p T k = k (@unify_types ident var pident t e p _ id).
          Proof using Type.
            cbv [unify_types]; break_innermost_match; try reflexivity.
            etransitivity; rewrite pattern.type.add_var_types_cps_id; [ reflexivity | ]; break_innermost_match; reflexivity.
          Qed.

          Lemma unify_pattern'_cps_id {t e p evm T cont}
            : @unify_pattern' var t e p evm T cont
              = (v' <- @unify_pattern' var t e p evm _ (@Some _); cont v')%option.
          Proof using Type.
            clear.
            revert e evm T cont; induction p; intros; cbn in *;
              repeat first [ progress rewrite_type_transport_correct
                           | reflexivity
                           | progress cbv [Option.bind cpscall option_bind'] in *
                           | match goal with H : _ |- _ => etransitivity; rewrite H; clear H; [ | reflexivity ] end
                           | break_innermost_match_step ].
          Qed.

          Lemma unify_pattern_cps_id {t e p T cont}
            : @unify_pattern var t e p T cont
              = (v' <- @unify_pattern var t e p _ (@Some _); cont v')%option.
          Proof using Type.
            clear.
            cbv [unify_pattern].
            etransitivity; rewrite unify_types_cps_id; [ | reflexivity ].
            repeat first [ reflexivity
                         | progress rewrite_type_transport_correct
                         | progress cbv [Option.bind cpscall option_bind'] in *
                         | match goal with
                           | [ |- @unify_pattern' _ _ _ _ _ _ _ = _ ]
                             => etransitivity; rewrite unify_pattern'_cps_id; [ | reflexivity ]
                           end
                         | break_innermost_match_step
                         | break_match_step ltac:(fun _ => idtac) ].
          Qed.

          Lemma app_transport_with_unification_resultT'_cps_id {t p evm1 evm2 K f v T cont}
            : @app_transport_with_unification_resultT'_cps var t p evm1 evm2 K f v T cont
              = (res <- @app_transport_with_unification_resultT'_cps var t p evm1 evm2 K f v _ (@Some _); cont res)%option.
          Proof using Type.
            revert K f v T cont; induction p; cbn [app_transport_with_unification_resultT'_cps]; intros.
            all: repeat first [ progress rewrite_type_transport_correct
                              | progress type_beq_to_eq
                              | progress cbn [Option.bind with_unification_resultT' unification_resultT'] in *
                              | progress subst
                              | reflexivity
                              | progress fold (@with_unification_resultT' var)
                              | progress inversion_option
                              | break_innermost_match_step
                              | match goal with
                                | [ H : context G[fun x => ?f x] |- _ ] => let G' := context G[f] in change G' in H
                                | [ |- context G[fun x => ?f x] ] => let G' := context G[f] in change G'
                                | [ H : forall K f v T cont, _ cont = _ |- _ ] => progress cps_id'_with_option H
                                end
                              | progress cbv [Option.bind] ].
          Qed.

          Lemma app_with_unification_resultT_cps_id {t p K f v T cont}
            : @app_with_unification_resultT_cps var t p K f v T cont
              = (res <- @app_with_unification_resultT_cps var t p K f v _ (@Some _); cont res)%option.
          Proof using Type.
            cbv [app_with_unification_resultT_cps].
            repeat first [ progress cbv [Option.bind] in *
                         | reflexivity
                         | progress subst
                         | progress inversion_option
                         | progress break_match
                         | progress cps_id'_with_option app_transport_with_unification_resultT'_cps_id ].
          Qed.

          Lemma reveal_rawexpr_cps_gen_id assume_known e T k
            : @reveal_rawexpr_cps_gen ident var assume_known e T k = k (reveal_rawexpr_gen assume_known e).
          Proof.
            cbv [reveal_rawexpr_cps_gen]; break_innermost_match; try reflexivity.
            all: cbv [value value'] in *; expr.invert_match; try reflexivity.
          Qed.

          Lemma reveal_rawexpr_cps_id e T k
            : @reveal_rawexpr_cps ident var e T k = k (reveal_rawexpr e).
          Proof. apply reveal_rawexpr_cps_gen_id. Qed.

          Lemma reveal_rawexpr_equiv e
            : rawexpr_equiv (reveal_rawexpr e) e.
          Proof using Type.
            cbv [reveal_rawexpr_cps]; induction e.
            all: repeat first [ progress cbn [rawexpr_equiv reveal_rawexpr_cps_gen value'] in *
                              | progress cbv [id value] in *
                              | break_innermost_match_step
                              | progress expr.invert_match
                              | reflexivity
                              | apply conj ].
          Qed.

          Fixpoint eval_decision_tree_cont_None_ext
                   {T ctx d cont}
                   (Hcont : forall x y, cont x y = None)
                   {struct d}
            : @eval_decision_tree var T ctx d cont = None.
          Proof using Type.
            clear -Hcont eval_decision_tree_cont_None_ext.
            specialize (fun d ctx => @eval_decision_tree_cont_None_ext T ctx d).
            destruct d; cbn [eval_decision_tree]; intros; try (clear eval_decision_tree_cont_None_ext; tauto).
            { let d := match goal with d : decision_tree |- _ => d end in
              specialize (eval_decision_tree_cont_None_ext d).
              rewrite !Hcont, !eval_decision_tree_cont_None_ext by assumption.
              break_innermost_match; reflexivity. }
            { let d := match goal with d : decision_tree |- _ => d end in
              pose proof (eval_decision_tree_cont_None_ext d) as IHd.
              let d := match goal with d : option decision_tree |- _ => d end in
              pose proof (match d as d' return match d' with Some _ => _ | None => True end with
                          | Some d => eval_decision_tree_cont_None_ext d
                          | None => I
                          end) as IHapp_case.
              all: destruct ctx; try (clear eval_decision_tree_cont_None_ext; (tauto || congruence)); [].
              all: lazymatch goal with
                   | [ |- match ?d with
                          | TryLeaf _ _ => (?res ;; ?ev)%option
                          | _ => _
                          end = None ]
                     => cut (res = None /\ ev = None);
                          [ clear eval_decision_tree_cont_None_ext;
                            let H1 := fresh in
                            let H2 := fresh in
                            intros [H1 H2]; rewrite H1, H2; destruct d; reflexivity
                          | ]
                   end.
              all: split; [ | clear eval_decision_tree_cont_None_ext; eapply IHd; eassumption ].
              (** We use the trick that [induction] inside [Fixpoint]
                  gives us nested [fix]es that pass the guarded
                  checker, as long as we're careful about how we do
                  things *)
              let icases := match goal with d : list (_ * decision_tree) |- _ => d end in
              induction icases as [|icase icases IHicases];
                [ | pose proof (eval_decision_tree_cont_None_ext (snd icase)) as IHicase ];
                clear eval_decision_tree_cont_None_ext.
              (** now we can stop being super-careful about [destruct]
                  ordering because, if we're [Guarded] here (which we
                  are), then we cannot break guardedness from this
                  point on, because we've cleared the bare fixpoint
                  after specializing it to valid arguments *)
              2: revert IHicases.
              rewrite reveal_rawexpr_cps_id.
              all: repeat (rewrite reveal_rawexpr_cps_id; set (reveal_rawexpr_cps _ _ id)).
              all: repeat match goal with H := reveal_rawexpr _ |- _ => subst H end.
              all: repeat first [ progress cbn [fold_right Option.sequence Option.sequence_return fst snd] in *
                                | progress subst
                                | reflexivity
                                | rewrite IHd
                                | rewrite IHapp_case
                                | rewrite IHicase
                                | break_innermost_match_step
                                | progress intros
                                | solve [ auto ]
                                | progress break_match
                                | progress cbv [Option.bind option_bind'] in * ]. }
            { let d := match goal with d : decision_tree |- _ => d end in
              specialize (eval_decision_tree_cont_None_ext d); rename eval_decision_tree_cont_None_ext into IHd.
              repeat first [ break_innermost_match_step
                           | rewrite IHd
                           | solve [ auto ]
                           | progress intros ]. }
          Qed.

          Lemma eval_decision_tree_cont_None {T ctx d}
            : @eval_decision_tree var T ctx d (fun _ _ => None) = None.
          Proof using Type. apply eval_decision_tree_cont_None_ext; reflexivity. Qed.

          Lemma related1_app_type_of_list_under_type_of_list_relation1_cps
                {A1 ls F f}
            : @under_type_of_list_relation1_cps A1 ls F f
              <-> (forall args, F (app_type_of_list f args)).
          Proof.
            cbv [under_type_of_list_relation1_cps app_type_of_list].
            induction ls as [|l ls IHls]; cbn in *; [ tauto | ].
            setoid_rewrite IHls; split; intro H; intros; first [ apply H | apply (H (_, _)) ].
          Qed.

          Lemma under_type_of_list_relation1_cps_always {A1 ls F v}
                (F_always : forall v, F v : Prop)
            : @under_type_of_list_relation1_cps A1 ls F v.
          Proof using Type.
            cbv [under_type_of_list_relation1_cps] in *.
            induction ls; cbn in *; eauto.
          Qed.
          (*
          Lemma under_with_unification_resultT'_relation1_gen_always
                {t p evm K1 FH F v}
                (F_always : forall v, F v : Prop)
            : @under_with_unification_resultT'_relation1_gen
                ident var pident pident_arg_types t p evm K1 FH F v.
          Proof using Type.
            revert evm K1 F v F_always.
            induction p; intros; cbn in *; eauto using @under_type_of_list_relation1_cps_always.
          Qed.
           *)
        End with_var1.

        Section with_var2.
          Context {var1 var2 : type -> Type}.

          Context (reify_and_let_binds_base_cps1 : forall (t : base.type), @expr var1 t -> forall T, (@expr var1 t -> @UnderLets var1 T) -> @UnderLets var1 T)
                  (reify_and_let_binds_base_cps2 : forall (t : base.type), @expr var2 t -> forall T, (@expr var2 t -> @UnderLets var2 T) -> @UnderLets var2 T)
                  (wf_reify_and_let_binds_base_cps
                   : forall G (t : base.type) x1 x2 T1 T2 P
                            (Hx : expr.wf G x1 x2)
                            (e1 : expr t -> @UnderLets var1 T1) (e2 : expr t -> @UnderLets var2 T2)
                            (He : forall x1 x2 G' seg, (G' = (seg ++ G)%list) -> expr.wf G' x1 x2 -> UnderLets.wf P G' (e1 x1) (e2 x2)),
                      UnderLets.wf P G (reify_and_let_binds_base_cps1 t x1 T1 e1) (reify_and_let_binds_base_cps2 t x2 T2 e2)).

          Local Notation wf_value' := (@wf_value' base.type ident var1 var2).
          Local Notation wf_value := (@wf_value base.type ident var1 var2).
          Local Notation wf_value_with_lets := (@wf_value_with_lets base.type ident var1 var2).
          Local Notation reify_and_let_binds_cps1 := (@reify_and_let_binds_cps ident var1 reify_and_let_binds_base_cps1).
          Local Notation reify_and_let_binds_cps2 := (@reify_and_let_binds_cps ident var2 reify_and_let_binds_base_cps2).
          Local Notation rewrite_rulesT1 := (@rewrite_rulesT ident var1 pident pident_arg_types type_vars_of_pident).
          Local Notation rewrite_rulesT2 := (@rewrite_rulesT ident var2 pident pident_arg_types type_vars_of_pident).
          Local Notation eval_rewrite_rules1 := (@eval_rewrite_rules ident var1 pident pident_arg_types pident_unify pident_unify_unknown raw_pident type_vars_of_pident full_types invert_bind_args invert_bind_args_unknown type_of_raw_pident raw_pident_to_typed raw_pident_is_simple).
          Local Notation eval_rewrite_rules2 := (@eval_rewrite_rules ident var2 pident pident_arg_types pident_unify pident_unify_unknown raw_pident type_vars_of_pident full_types invert_bind_args invert_bind_args_unknown type_of_raw_pident raw_pident_to_typed raw_pident_is_simple).
          Local Notation rewrite_rule_data1 := (@rewrite_rule_data ident var1 pident pident_arg_types type_vars_of_pident).
          Local Notation rewrite_rule_data2 := (@rewrite_rule_data ident var2 pident pident_arg_types type_vars_of_pident).
          Local Notation with_unif_rewrite_ruleTP_gen1 := (@with_unif_rewrite_ruleTP_gen ident var1 pident pident_arg_types type_vars_of_pident).
          Local Notation with_unif_rewrite_ruleTP_gen2 := (@with_unif_rewrite_ruleTP_gen ident var2 pident pident_arg_types type_vars_of_pident).
          Local Notation deep_rewrite_ruleTP_gen1 := (@deep_rewrite_ruleTP_gen ident var1).
          Local Notation deep_rewrite_ruleTP_gen2 := (@deep_rewrite_ruleTP_gen ident var2).
          Local Notation preunify_types1 := (@preunify_types ident var1 pident).
          Local Notation preunify_types2 := (@preunify_types ident var2 pident).
          Local Notation unify_types1 := (@unify_types ident var1 pident).
          Local Notation unify_types2 := (@unify_types ident var2 pident).

          Fixpoint wf_reify {with_lets} G {t}
            : forall e1 e2, @wf_value' with_lets G t e1 e2 -> expr.wf G (@reify _ with_lets t e1) (@reify _ with_lets t e2)
          with wf_reflect {with_lets} G {t}
               : forall e1 e2, expr.wf G e1 e2 -> @wf_value' with_lets G t (@reflect _ with_lets t e1) (@reflect _ with_lets t e2).
          Proof using Type.
            { destruct t as [t|s d];
                [ clear wf_reflect wf_reify
                | specialize (fun with_lets G => @wf_reify with_lets G d); specialize (fun with_lets G => wf_reflect with_lets G s) ].
              { destruct with_lets; cbn; intros; auto using UnderLets.wf_to_expr. }
              { intros e1 e2 Hwf.
                change (reify e1) with (λ x, @reify _ _ d (e1 (@reflect _ _ s ($x))))%expr.
                change (reify e2) with (λ x, @reify _ _ d (e2 (@reflect _ _ s ($x))))%expr.
                constructor; intros; eapply wf_reify, Hwf with (seg:=cons _ nil); [ | eapply wf_reflect; constructor ]; wf_t. } }
            { destruct t as [t|s d];
                [ clear wf_reflect wf_reify
                | specialize (fun with_lets G => @wf_reify with_lets G s); specialize (fun with_lets G => wf_reflect with_lets G d) ].
              { destruct with_lets; repeat constructor; auto. }
              { intros e1 e2 Hwf.
                change (reflect e1) with (fun x => @reflect _ true d (e1 @ (@reify _ false s x)))%expr.
                change (reflect e2) with (fun x => @reflect _ true d (e2 @ (@reify _ false s x)))%expr.
                hnf; intros; subst.
                eapply wf_reflect; constructor; [ wf_t | ].
                eapply wf_reify, wf_value'_Proper_list; [ | eassumption ]; wf_t. } }
          Qed.

          Lemma wf_reify_and_let_binds_cps {with_lets} G {t} x1 x2
                (Hx : @wf_value' with_lets G t x1 x2)
                T1 T2 P
                (e1 : expr t -> @UnderLets var1 T1) (e2 : expr t -> @UnderLets var2 T2)
                (He : forall x1 x2 G' seg, (G' = (seg ++ G)%list) -> expr.wf G' x1 x2 -> UnderLets.wf P G' (e1 x1) (e2 x2))
            : UnderLets.wf P G (@reify_and_let_binds_cps1 with_lets t x1 T1 e1) (@reify_and_let_binds_cps2 with_lets t x2 T2 e2).
          Proof.
            destruct t; [ destruct with_lets | ]; cbn [reify_and_let_binds_cps]; auto.
            { eapply UnderLets.wf_splice; [ eapply Hx | ]; wf_t; destruct_head'_ex; wf_t.
              eapply wf_reify_and_let_binds_base_cps; wf_t.
              eapply He; rewrite app_assoc; wf_t. }
            { eapply He with (seg:=nil); [ reflexivity | ].
              eapply wf_reify; auto. }
          Qed.

          Lemma wf_reify_expr G G' {t}
                (HG : forall t v1 v2, List.In (existT _ t (v1, v2)) G -> @wf_value G' t v1 v2)
                e1 e2
                (Hwf : expr.wf G e1 e2)
            : expr.wf G' (@reify_expr var1 t e1) (@reify_expr var2 t e2).
          Proof using Type.
            cbv [wf_value] in *; revert dependent G'; induction Hwf; intros; cbn [reify_expr];
              first [ constructor | apply wf_reify ]; eauto; intros.
            all: match goal with H : _ |- _ => apply H end.
            all: repeat first [ progress cbn [In eq_rect] in *
                              | progress intros
                              | progress destruct_head'_or
                              | progress subst
                              | progress inversion_sigma
                              | progress inversion_prod
                              | apply wf_reflect
                              | solve [ eapply wf_value'_Proper_list; [ | solve [ eauto ] ]; wf_safe_t ]
                              | constructor ].
          Qed.

          Inductive wf_rawexpr : list { t : type & var1 t * var2 t }%type -> forall {t}, @rawexpr var1 -> @expr var1 t -> @rawexpr var2 -> @expr var2 t -> Prop :=
          | Wf_rIdent {t} G known (idc : ident t) : wf_rawexpr G (rIdent known idc (expr.Ident idc)) (expr.Ident idc) (rIdent known idc (expr.Ident idc)) (expr.Ident idc)
          | Wf_rApp {s d} G
                    f1 (f1e : @expr var1 (s -> d)) x1 (x1e : @expr var1 s)
                    f2 (f2e : @expr var2 (s -> d)) x2 (x2e : @expr var2 s)
            : wf_rawexpr G f1 f1e f2 f2e
              -> wf_rawexpr G x1 x1e x2 x2e
              -> wf_rawexpr G
                            (rApp f1 x1 (expr.App f1e x1e)) (expr.App f1e x1e)
                            (rApp f2 x2 (expr.App f2e x2e)) (expr.App f2e x2e)
          | Wf_rExpr {t} G (e1 e2 : expr t)
            : expr.wf G e1 e2 -> wf_rawexpr G (rExpr e1) e1 (rExpr e2) e2
          | Wf_rValue {t} G (v1 v2 : value t)
            : wf_value G v1 v2
              -> wf_rawexpr G (rValue v1) (reify v1) (rValue v2) (reify v2).

          Lemma wf_rawexpr_Proper_list G1 G2
                (HG1G2 : forall t v1 v2, List.In (existT _ t (v1, v2)) G1 -> List.In (existT _ t (v1, v2)) G2)
                t re1 e1 re2 e2
                (Hwf : @wf_rawexpr G1 t re1 e1 re2 e2)
            : @wf_rawexpr G2 t re1 e1 re2 e2.
          Proof.
            revert dependent G2; induction Hwf; intros; constructor; eauto.
            { eapply expr.wf_Proper_list; eauto. }
            { eapply wf_value'_Proper_list; eauto. }
          Qed.

          (* Because [proj1] and [proj2] in the stdlib are opaque *)
          Local Notation proj1 x := (let (a, b) := x in a).
          Local Notation proj2 x := (let (a, b) := x in b).

          Definition eq_type_of_rawexpr_of_wf {t G re1 e1 re2 e2} (Hwf : @wf_rawexpr G t re1 e1 re2 e2)
            : type_of_rawexpr re1 = t /\ type_of_rawexpr re2 = t.
          Proof. split; destruct Hwf; reflexivity. Defined.

          Definition eq_expr_of_rawexpr_of_wf {t G re1 e1 re2 e2} (Hwf : @wf_rawexpr G t re1 e1 re2 e2)
            : (rew [expr] (proj1 (eq_type_of_rawexpr_of_wf Hwf)) in expr_of_rawexpr re1) = e1
              /\ (rew [expr] (proj2 (eq_type_of_rawexpr_of_wf Hwf)) in expr_of_rawexpr re2) = e2.
          Proof. split; destruct Hwf; reflexivity. Defined.

          Definition eq_expr_of_rawexpr_of_wf' {t G re1 e1 re2 e2} (Hwf : @wf_rawexpr G t re1 e1 re2 e2)
            : expr_of_rawexpr re1 = (rew [expr] (eq_sym (proj1 (eq_type_of_rawexpr_of_wf Hwf))) in e1)
              /\ expr_of_rawexpr re2 = (rew [expr] (eq_sym (proj2 (eq_type_of_rawexpr_of_wf Hwf))) in e2).
          Proof. split; destruct Hwf; reflexivity. Defined.

          Lemma wf_expr_of_wf_rawexpr {t G re1 e1 re2 e2} (Hwf : @wf_rawexpr G t re1 e1 re2 e2)
            : expr.wf G e1 e2.
          Proof. induction Hwf; repeat (assumption || constructor || apply wf_reify). Qed.

          Lemma wf_expr_of_wf_rawexpr' {t G re1 e1 re2 e2} (Hwf : @wf_rawexpr G t re1 e1 re2 e2)
            : expr.wf G
                      (rew [expr] (proj1 (eq_type_of_rawexpr_of_wf Hwf)) in expr_of_rawexpr re1)
                      (rew [expr] (proj2 (eq_type_of_rawexpr_of_wf Hwf)) in expr_of_rawexpr re2).
          Proof.
            pose proof Hwf as Hwf'.
            rewrite <- (proj1 (eq_expr_of_rawexpr_of_wf Hwf)) in Hwf'.
            rewrite <- (proj2 (eq_expr_of_rawexpr_of_wf Hwf)) in Hwf'.
            eapply wf_expr_of_wf_rawexpr; eassumption.
          Qed.

          Lemma wf_value_of_wf_rawexpr {t G re1 e1 re2 e2} (Hwf : @wf_rawexpr G t re1 e1 re2 e2)
            : wf_value G
                       (rew [value] (proj1 (eq_type_of_rawexpr_of_wf Hwf)) in value_of_rawexpr re1)
                       (rew [value] (proj2 (eq_type_of_rawexpr_of_wf Hwf)) in value_of_rawexpr re2).
          Proof.
            pose proof (wf_expr_of_wf_rawexpr Hwf).
            destruct Hwf; cbn; try eapply wf_reflect; try assumption.
          Qed.

          Lemma wf_value_of_wf_rawexpr_gen {t t' G re1 e1 re2 e2}
                {pf1 pf2 : _ = t'}
                (Hwf : @wf_rawexpr G t re1 e1 re2 e2)
            : wf_value G
                       (rew [value] pf1 in value_of_rawexpr re1)
                       (rew [value] pf2 in value_of_rawexpr re2).
          Proof using Type.
            assert (H : t = t');
              [
              | destruct H;
                replace pf1 with (proj1 (eq_type_of_rawexpr_of_wf Hwf));
                [ replace pf2 with (proj2 (eq_type_of_rawexpr_of_wf Hwf)) | ] ];
              [ | apply wf_value_of_wf_rawexpr | | ];
              destruct (eq_type_of_rawexpr_of_wf Hwf); generalize dependent (type_of_rawexpr re1); generalize dependent (type_of_rawexpr re2); intros; subst; clear; eliminate_hprop_eq; reflexivity.
          Qed.

          Lemma wf_reveal_rawexpr t G re1 e1 re2 e2 (Hwf : @wf_rawexpr G t re1 e1 re2 e2)
            : @wf_rawexpr G t (reveal_rawexpr re1) e1 (reveal_rawexpr re2) e2.
          Proof.
            pose proof (wf_expr_of_wf_rawexpr Hwf).
            destruct Hwf; cbv [reveal_rawexpr_cps reveal_rawexpr_cps_gen id];
              repeat first [ assumption
                           | constructor
                           | progress subst
                           | progress cbn [reify eq_rect value value'] in *
                           | progress destruct_head'_sig
                           | progress destruct_head'_and
                           | break_innermost_match_step
                           | progress expr.invert_match
                           | progress expr.inversion_wf_constr ].
          Qed.

          Lemma related_app_type_of_list_of_under_type_of_list_relation_cps {K1 K2 ls args}
                {v1 v2}
                (P : _ -> _ -> Prop)
            : @under_type_of_list_relation_cps K1 K2 ls P v1 v2
              -> P (app_type_of_list v1 args) (app_type_of_list v2 args).
          Proof using Type.
            induction ls as [|x ls IHls]; [ now (cbn; eauto) | ].
            (* N.B. [simpl] does more refolding than [cbn], and it's important that we use [simpl] and not [cbn] here *)
            intro H; cbn in args, v1, v2; simpl in *; eauto.
          Qed.

          Lemma wf_preunify_types {G t t' re1 e1 re2 e2 p}
                (H : @wf_rawexpr G t' re1 e1 re2 e2)
            : @preunify_types1 t re1 p = @preunify_types2 t re2 p.
          Proof using Type.
            revert G t' re1 e1 re2 e2 H.
            induction p; cbn; intros; destruct H; cbn in *; try reflexivity.
            repeat match goal with H : _ |- _ => erewrite H by eassumption; clear H end;
              reflexivity.
          Qed.

          Lemma wf_unify_types {G t t' re1 e1 re2 e2 p}
                (H : @wf_rawexpr G t' re1 e1 re2 e2)
            : @unify_types1 t re1 p _ id = @unify_types2 t re2 p _ id.
          Proof using Type.
            cbv [unify_types]; erewrite wf_preunify_types by eassumption.
            reflexivity.
          Qed.

          Lemma wf_unify_types_cps {G t t' re1 e1 re2 e2 p T K}
                (H : @wf_rawexpr G t' re1 e1 re2 e2)
            : @unify_types1 t re1 p T K = @unify_types2 t re2 p T K.
          Proof using Type.
            etransitivity; rewrite unify_types_cps_id; [ | reflexivity ].
            erewrite wf_unify_types by eassumption; reflexivity.
          Qed.

          Fixpoint related_unification_resultT' {var1 var2} (R : forall t, var1 t -> var2 t -> Prop) {t p evm}
            : @unification_resultT' var1 t p evm -> @unification_resultT' var2 t p evm -> Prop
            := match p in pattern.pattern t return @unification_resultT' var1 t p evm -> @unification_resultT' var2 t p evm -> Prop with
               | pattern.Wildcard t => R _
               | pattern.Ident t idc => eq
               | pattern.App s d f x
                 => fun (v1 : unification_resultT' f evm * unification_resultT' x evm)
                        (v2 : unification_resultT' f evm * unification_resultT' x evm)
                    => @related_unification_resultT' _ _ R _ _ _ (fst v1) (fst v2)
                       /\ @related_unification_resultT' _ _ R _ _ _ (snd v1) (snd v2)
               end.

          Definition wf_unification_resultT' (G : list {t1 : type & (var1 t1 * var2 t1)%type}) {t p evm}
            : @unification_resultT' value t p evm -> @unification_resultT' value t p evm -> Prop
            := @related_unification_resultT' _ _ (fun _ => wf_value G) t p evm.

          Definition related_unification_resultT {var1 var2} (R : forall t, var1 t -> var2 t -> Prop) {t p}
            : @unification_resultT _ t p -> @unification_resultT _ t p -> Prop
            := related_sigT_by_eq (@related_unification_resultT' _ _ R t p).

          Definition wf_unification_resultT (G : list {t1 : type & (var1 t1 * var2 t1)%type}) {t p}
            : @unification_resultT (@value var1) t p -> @unification_resultT (@value var2) t p -> Prop
            := @related_unification_resultT _ _ (fun _ => wf_value G) t p.

          Fixpoint under_with_unification_resultT'_relation_hetero {var1 var2 t p evm K1 K2}
                   (FH : forall t, var1 t -> var2 t -> Prop)
                   (F : K1 -> K2 -> Prop)
                   {struct p}
            : @with_unification_resultT' var1 t p evm K1 -> @with_unification_resultT' var2 t p evm K2 -> Prop
            := match p in pattern.pattern t return @with_unification_resultT' var1 t p evm K1 -> @with_unification_resultT' var2 t p evm K2 -> Prop with
               | pattern.Wildcard t => fun f1 f2 => forall v1 v2, FH _ v1 v2 -> F (f1 v1) (f2 v2)
               | pattern.Ident t idc => under_type_of_list_relation_cps F
               | pattern.App s d f x
                 => @under_with_unification_resultT'_relation_hetero
                      _ _ _ f evm _ _
                      FH
                      (@under_with_unification_resultT'_relation_hetero _ _ _ x evm _ _ FH F)
               end.

          Definition under_with_unification_resultT_relation_hetero {var1 var2 t p K1 K2}
                     (FH : forall t, var1 t -> var2 t -> Prop)
                     (F : forall evm, K1 (pattern.type.subst_default t evm) -> K2 (pattern.type.subst_default t evm) -> Prop)
            : @with_unification_resultT var1 t p K1 -> @with_unification_resultT var2 t p K2 -> Prop
            := pattern.type.under_forall_vars_relation
                 (fun evm => under_with_unification_resultT'_relation_hetero FH (F evm)).

          Definition wf_with_unification_resultT
                     (G : list {t : _ & (var1 t * var2 t)%type})
                     {t} {p : pattern t} {K1 K2 : type -> Type}
                     (P : forall evm, K1 (pattern.type.subst_default t evm) -> K2 (pattern.type.subst_default t evm) -> Prop)
            : @with_unification_resultT value t p K1 -> @with_unification_resultT value t p K2 -> Prop
            := under_with_unification_resultT_relation_hetero
                 (fun t => wf_value G)
                 P.

          Lemma related_app_with_unification_resultT' {var1' var2' t p evm K1 K2}
                R1 R2
                f1 f2 v1 v2
            : @under_with_unification_resultT'_relation_hetero
                var1' var2' t p evm K1 K2 R1 R2 f1 f2
              -> @related_unification_resultT' var1' var2' R1 t p evm v1 v2
              -> R2 (@app_with_unification_resultT' _ _ _ t p evm K1 f1 v1)
                    (@app_with_unification_resultT' _ _ _ t p evm K2 f2 v2).
          Proof using Type.
            revert K1 K2 R1 R2 f1 f2 v1 v2; induction p; cbn in *; intros; subst; destruct_head'_and;
              try apply related_app_type_of_list_of_under_type_of_list_relation_cps;
              auto.
            repeat match goal with H : _ |- _ => eapply H; eauto; clear H end.
          Qed.

          Lemma related_app_transport_with_unification_resultT' {var1' var2' t p evm1 evm2 K1 K2}
                R1 R2
                f1 f2 v1 v2
            : @under_with_unification_resultT'_relation_hetero
                var1' var2' t p evm1 K1 K2 R1 R2 f1 f2
              -> @related_unification_resultT' var1' var2' R1 t p evm2 v1 v2
              -> option_eq
                   R2
                   (@app_transport_with_unification_resultT'_cps _ t p evm1 evm2 K1 f1 v1 _ (@Some _))
                   (@app_transport_with_unification_resultT'_cps _ t p evm1 evm2 K2 f2 v2 _ (@Some _)).
          Proof using Type.
            revert K1 K2 R1 R2 f1 f2 v1 v2; induction p; cbn in *; intros; subst; destruct_head'_and;
              try apply related_app_type_of_list_of_under_type_of_list_relation_cps;
              auto.
            all: repeat first [ progress rewrite_type_transport_correct
                              | progress type_beq_to_eq
                              | break_innermost_match_step
                              | reflexivity
                              | progress cbn [Option.bind option_eq] in *
                              | progress fold (@with_unification_resultT')
                              | progress cps_id'_with_option app_transport_with_unification_resultT'_cps_id
                              | progress cbv [eq_rect]
                              | solve [ auto ]
                              | exfalso; assumption
                              | progress inversion_option
                              | match goal with
                                | [ H : (forall K1 K2 R1 R2 (f1 : with_unification_resultT' ?p1 ?evm1 K1), _)
                                    |- context[@app_transport_with_unification_resultT'_cps _ ?t ?p1 ?evm1 ?evm2 ?K1' ?f1' ?v1' _ _] ]
                                  => specialize (H K1' _ _ _ f1' _ v1' _ ltac:(eassumption) ltac:(eassumption))
                                | [ H : option_eq ?R ?x ?y |- _ ]
                                  => destruct x eqn:?, y eqn:?; cbv [option_eq] in H
                                end ].
          Qed.

          Lemma related_app_with_unification_resultT {var1' var2' t p K1 K2}
                R1 R2
                f1 f2 v1 v2
            : @under_with_unification_resultT_relation_hetero
                var1' var2' t p K1 K2 R1 R2 f1 f2
              -> @related_unification_resultT var1' var2' R1 t p v1 v2
              -> option_eq
                   (related_sigT_by_eq R2)
                   (@app_with_unification_resultT_cps _ t p K1 f1 v1 _ (@Some _))
                   (@app_with_unification_resultT_cps _ t p K2 f2 v2 _ (@Some _)).
          Proof using Type.
            cbv [related_unification_resultT under_with_unification_resultT_relation_hetero app_with_unification_resultT_cps related_sigT_by_eq unification_resultT] in *.
            repeat first [ progress destruct_head'_sigT
                         | progress destruct_head'_sig
                         | progress subst
                         | progress intros
                         | progress cbn [eq_rect Option.bind projT1 projT2 option_eq] in *
                         | exfalso; assumption
                         | progress inversion_option
                         | reflexivity
                         | (exists eq_refl)
                         | assumption
                         | match goal with
                           | [ H : pattern.type.under_forall_vars_relation ?R ?f1 ?f2
                               |- context[pattern.type.app_forall_vars ?f1 ?x] ]
                             => apply (pattern.type.app_forall_vars_under_forall_vars_relation (evm:=x)) in H
                           | [ H : option_eq ?R ?x ?y |- _ ]
                             => destruct x eqn:?, y eqn:?; cbv [option_eq] in H
                           end
                         | progress cps_id'_with_option app_transport_with_unification_resultT'_cps_id
                         | match goal with
                           | [ H : under_with_unification_resultT'_relation_hetero _ _ _ _, H' : related_unification_resultT' _ _ _ |- _ ]
                             => pose proof (related_app_transport_with_unification_resultT' _ _ _ _ _ _ H H'); clear H'
                           end ].
          Qed.

          Lemma wf_app_with_unification_resultT G {t p K1 K2}
                R
                f1 f2 v1 v2
            : @wf_with_unification_resultT G t p K1 K2 R f1 f2
              -> @wf_unification_resultT G t p v1 v2
              -> option_eq
                   (related_sigT_by_eq R)
                   (@app_with_unification_resultT_cps _ t p K1 f1 v1 _ (@Some _))
                   (@app_with_unification_resultT_cps _ t p K2 f2 v2 _ (@Some _)).
          Proof using Type. apply related_app_with_unification_resultT. Qed.

          Definition map_related_unification_resultT' {var1' var2'} {R1 R2 : forall t : type, var1' t -> var2' t -> Prop}
                     (HR : forall t v1 v2, R1 t v1 v2 -> R2 t v1 v2)
                     {t p evm v1 v2}
            : @related_unification_resultT' var1' var2' R1 t p evm v1 v2
              -> @related_unification_resultT' var1' var2' R2 t p evm v1 v2.
          Proof using Type.
            induction p; cbn [related_unification_resultT']; intuition auto.
          Qed.

          Definition map_related_unification_resultT {var1' var2'} {R1 R2 : forall t : type, var1' t -> var2' t -> Prop}
                     (HR : forall t v1 v2, R1 t v1 v2 -> R2 t v1 v2)
                     {t p v1 v2}
            : @related_unification_resultT var1' var2' R1 t p v1 v2
              -> @related_unification_resultT var1' var2' R2 t p v1 v2.
          Proof using Type.
            cbv [related_unification_resultT]; apply map_related_sigT_by_eq; intros *.
            apply map_related_unification_resultT'; auto.
          Qed.

          Definition wf_maybe_do_again_expr
                     {t}
                     {rew_should_do_again1 rew_should_do_again2 : bool}
                     (G : list {t : _ & (var1 t * var2 t)%type})
            : expr (var:=if rew_should_do_again1 then @value var1 else var1) t
              -> expr (var:=if rew_should_do_again2 then @value var2 else var2) t
              -> Prop
            := match rew_should_do_again1, rew_should_do_again2
                     return expr (var:=if rew_should_do_again1 then @value var1 else var1) t
                            -> expr (var:=if rew_should_do_again2 then @value var2 else var2) t
                            -> Prop
               with
               | true, true
                 => fun e1 e2
                    => exists G',
                        (forall t' v1' v2', List.In (existT _ t' (v1', v2')) G' -> wf_value G v1' v2')
                        /\ expr.wf G' e1 e2
               | false, false => expr.wf G
               | _, _ => fun _ _ => False
               end.

          Definition wf_maybe_under_lets_expr
                     {T1 T2}
                     (P : list {t : _ & (var1 t * var2 t)%type} -> T1 -> T2 -> Prop)
                     (G : list {t : _ & (var1 t * var2 t)%type})
                     {rew_under_lets1 rew_under_lets2 : bool}
            : (if rew_under_lets1 then UnderLets var1 T1 else T1)
              -> (if rew_under_lets2 then UnderLets var2 T2 else T2)
              -> Prop
            := match rew_under_lets1, rew_under_lets2
                     return (if rew_under_lets1 then UnderLets var1 T1 else T1)
                            -> (if rew_under_lets2 then UnderLets var2 T2 else T2)
                            -> Prop
               with
               | true, true
                 => UnderLets.wf P G
               | false, false
                 => P G
               | _, _ => fun _ _ => False
               end.

          Definition maybe_option_eq {A B} {opt1 opt2 : bool} (R : A -> B -> Prop)
            : (if opt1 then option A else A) -> (if opt2 then option B else B) -> Prop
            := match opt1, opt2 with
               | true, true => option_eq R
               | false, false => R
               | _, _ => fun _ _ => False
               end.

          Definition wf_deep_rewrite_ruleTP_gen
                     (G : list {t : _ & (var1 t * var2 t)%type})
                     {t}
                     {rew_should_do_again1 rew_with_opt1 rew_under_lets1 : bool}
                     {rew_should_do_again2 rew_with_opt2 rew_under_lets2 : bool}
            : deep_rewrite_ruleTP_gen1 rew_should_do_again1 rew_with_opt1 rew_under_lets1 t
              -> deep_rewrite_ruleTP_gen2 rew_should_do_again2 rew_with_opt2 rew_under_lets2 t
              -> Prop
            := maybe_option_eq
                 (wf_maybe_under_lets_expr
                    wf_maybe_do_again_expr
                    G).

          Definition wf_with_unif_rewrite_ruleTP_gen
                     (G : list {t : _ & (var1 t * var2 t)%type})
                     {t} {p : pattern t}
                     {rew_should_do_again1 rew_with_opt1 rew_under_lets1}
                     {rew_should_do_again2 rew_with_opt2 rew_under_lets2}
            : with_unif_rewrite_ruleTP_gen1 p rew_should_do_again1 rew_with_opt1 rew_under_lets1
              -> with_unif_rewrite_ruleTP_gen2 p rew_should_do_again2 rew_with_opt2 rew_under_lets2
              -> Prop
            := fun f g
               => forall x y,
                   wf_unification_resultT G x y
                   -> option_eq
                        (fun (fx : { evm : _ & deep_rewrite_ruleTP_gen1 rew_should_do_again1 rew_with_opt1 rew_under_lets1 _ })
                             (gy : { evm : _ & deep_rewrite_ruleTP_gen2 rew_should_do_again2 rew_with_opt2 rew_under_lets2 _ })
                         => related_sigT_by_eq
                              (fun _ => wf_deep_rewrite_ruleTP_gen G) fx gy)
                        (app_with_unification_resultT_cps f x _ (@Some _))
                        (app_with_unification_resultT_cps g y _ (@Some _)).

          Definition wf_rewrite_rule_data
                     (G : list {t : _ & (var1 t * var2 t)%type})
                     {t} {p : pattern t}
                     (r1 : @rewrite_rule_data1 t p)
                     (r2 : @rewrite_rule_data2 t p)
            : Prop
            := wf_with_unif_rewrite_ruleTP_gen G (rew_replacement _ _ r1) (rew_replacement _ _ r2).

          Definition rewrite_rules_goodT
                     (rew1 : rewrite_rulesT1) (rew2 : rewrite_rulesT2)
            : Prop
            := length rew1 = length rew2
               /\ (forall p1 r1 p2 r2,
                      List.In (existT _ p1 r1, existT _ p2 r2) (combine rew1 rew2)
                      -> { pf : p1 = p2
                         | forall G,
                             wf_rewrite_rule_data
                               G
                               (rew [fun tp => @rewrite_rule_data1 _ (pattern.pattern_of_anypattern tp)] pf in r1)
                               r2 }).

          Definition wf_with_unif_rewrite_ruleTP_gen_curried
                     (G : list {t : _ & (var1 t * var2 t)%type})
                     {t} {p : pattern t}
                     {rew_should_do_again1 rew_with_opt1 rew_under_lets1}
                     {rew_should_do_again2 rew_with_opt2 rew_under_lets2}
            : with_unif_rewrite_ruleTP_gen1 p rew_should_do_again1 rew_with_opt1 rew_under_lets1
              -> with_unif_rewrite_ruleTP_gen2 p rew_should_do_again2 rew_with_opt2 rew_under_lets2
              -> Prop
            := wf_with_unification_resultT
                 G
                 (fun evm => wf_deep_rewrite_ruleTP_gen G).

          Definition wf_rewrite_rule_data_curried
                     (G : list {t : _ & (var1 t * var2 t)%type})
                     {t} {p : pattern t}
                     (r1 : @rewrite_rule_data1 t p)
                     (r2 : @rewrite_rule_data2 t p)
            : Prop
            := wf_with_unif_rewrite_ruleTP_gen_curried G (rew_replacement _ _ r1) (rew_replacement _ _ r2).

          Definition rewrite_rules_goodT_curried
                     (rew1 : rewrite_rulesT1) (rew2 : rewrite_rulesT2)
            : Prop
            := length rew1 = length rew2
               /\ (forall p1 r1 p2 r2,
                      List.In (existT _ p1 r1, existT _ p2 r2) (combine rew1 rew2)
                      -> { pf : p1 = p2
                         | forall G,
                             wf_rewrite_rule_data_curried
                               G
                               (rew [fun tp => @rewrite_rule_data1 _ (pattern.pattern_of_anypattern tp)] pf in r1)
                               r2 }).

          Lemma rewrite_rules_goodT_by_curried rew1 rew2
            : rewrite_rules_goodT_curried rew1 rew2 -> rewrite_rules_goodT rew1 rew2.
          Proof using Type.
            cbv [rewrite_rules_goodT rewrite_rules_goodT_curried wf_rewrite_rule_data_curried wf_rewrite_rule_data wf_with_unif_rewrite_ruleTP_gen wf_with_unif_rewrite_ruleTP_gen_curried].
            intros [Hlen H]; split; [ exact Hlen | clear Hlen ].
            repeat (let x := fresh "x" in intro x; specialize (H x)).
            destruct H as [H0 H]; exists H0.
            repeat (let x := fresh "x" in intro x; specialize (H x)).
            intros X Y HXY.
            pose proof (wf_app_with_unification_resultT _ _ _ _ _ _ ltac:(eassumption) ltac:(eassumption)) as H'.
            cps_id'_with_option app_with_unification_resultT_cps_id.
            cbv [deep_rewrite_ruleTP_gen] in *.
            let H1 := fresh in
            let H2 := fresh in
            lazymatch type of H' with
            | option_eq ?R ?x ?y
              => destruct x eqn:H1, y eqn:H2; cbv [option_eq] in H'
            end.
            all: repeat first [ progress cbn [option_eq]
                              | reflexivity
                              | progress inversion_option
                              | exfalso; assumption
                              | assumption ].
          Qed.
        End with_var2.

        Section with_interp.
          Context (ident_interp : forall t, ident t -> type.interp base.interp t)
                  {ident_interp_Proper : forall t, Proper (eq ==> type.eqv) (ident_interp t)}.
          Local Notation var := (type.interp base.interp) (only parsing).
          Local Notation expr := (@expr.expr base.type ident var).
          Local Notation rewrite_rulesT := (@rewrite_rulesT ident var pident pident_arg_types type_vars_of_pident).
          Local Notation rewrite_rule_data := (@rewrite_rule_data ident var pident pident_arg_types type_vars_of_pident).
          Local Notation with_unif_rewrite_ruleTP_gen := (@with_unif_rewrite_ruleTP_gen ident var pident pident_arg_types type_vars_of_pident).
          Local Notation normalize_deep_rewrite_rule := (@normalize_deep_rewrite_rule ident var).

          Local Notation deep_rewrite_ruleTP_gen := (@deep_rewrite_ruleTP_gen ident var).

          Local Notation UnderLets_maybe_interp with_lets
            := (if with_lets as with_lets' return (if with_lets' then UnderLets var _ else _) -> _
                then UnderLets.interp ident_interp
                else (fun x => x)).

          Local Notation UnderLets_maybe_wf with_lets G
            := (if with_lets as with_lets' return (if with_lets' then UnderLets var _ else _) -> (if with_lets' then UnderLets var _ else _) -> _
                then UnderLets.wf (fun G' => expr.wf G') G
                else expr.wf G).

          Definition value'_interp {with_lets t} (v : @value' var with_lets t)
            : var t
            := expr.interp ident_interp (reify v).

          Local Notation expr_interp_related := (@expr.interp_related _ ident _ ident_interp).
          Local Notation UnderLets_interp_related := (@UnderLets.interp_related _ ident _ ident_interp _ _ expr_interp_related).

          Fixpoint value_interp_related {t with_lets} : @value' var with_lets t -> type.interp base.interp t -> Prop
            := match t, with_lets with
               | type.base _, true => UnderLets_interp_related
               | type.base _, false => expr_interp_related
               | type.arrow s d, _
                 => fun (f1 : @value' _ _ s -> @value' _ _ d) (f2 : type.interp _ s -> type.interp _ d)
                    => forall x1 x2,
                        @value_interp_related s _ x1 x2
                        -> @value_interp_related d _ (f1 x1) (f2 x2)
               end.

          Fixpoint rawexpr_interp_related (r1 : rawexpr) : type.interp base.interp (type_of_rawexpr r1) -> Prop
            := match r1 return type.interp base.interp (type_of_rawexpr r1) -> Prop with
               | rExpr _ e1
               | rValue (type.base _) e1
                 => expr_interp_related e1
               | rValue t1 v1
                 => value_interp_related v1
               | rIdent _ t1 idc1 t'1 alt1
                 => fun v2
                    => expr.interp ident_interp alt1 == v2
                       /\ existT expr t1 (expr.Ident idc1) = existT expr t'1 alt1
               | rApp f1 x1 t1 alt1
                 => match alt1 in expr.expr t return type.interp base.interp t -> Prop with
                    | expr.App s d af ax
                      => fun v2
                         => exists fv xv (pff : type.arrow s d = type_of_rawexpr f1) (pfx : s = type_of_rawexpr x1),
                             @expr_interp_related _ af fv
                             /\ @expr_interp_related _ ax xv
                             /\ @rawexpr_interp_related f1 (rew pff in fv)
                             /\ @rawexpr_interp_related x1 (rew pfx in xv)
                             /\ fv xv = v2
                    | _ => fun _ => False
                    end
               end.

          Definition unification_resultT'_interp_related {t p evm}
            : @unification_resultT' (@value var) t p evm -> @unification_resultT' var t p evm -> Prop
            := related_unification_resultT' (fun t => value_interp_related).

          Definition unification_resultT_interp_related {t p}
            : @unification_resultT (@value var) t p -> @unification_resultT var t p -> Prop
            := related_unification_resultT (fun t => value_interp_related).

          Lemma interp_reify_reflect {with_lets t} e v
            : expr.interp ident_interp e == v -> expr.interp ident_interp (@reify _ with_lets t (reflect e)) == v.
          Proof using Type.
            revert with_lets; induction t as [|s IHs d IHd]; intro;
              cbn [type.related reflect reify];
              fold (@reify var) (@reflect var); cbv [respectful]; break_innermost_match;
                cbn [expr.interp UnderLets.to_expr]; auto; [].
            intros Hf ? ? Hx.
            apply IHd; cbn [expr.interp]; auto.
          Qed.

          Lemma interp_of_wf_reify_expr G {t}
                (HG : forall t v1 v2, List.In (existT _ t (v1, v2)) G -> expr.interp ident_interp (reify v1) == v2)
                e1 e2
                (Hwf : expr.wf G e1 e2)
            : expr.interp ident_interp (@reify_expr _ t e1) == expr.interp ident_interp e2.
          Proof using ident_interp_Proper.
            induction Hwf; cbn [expr.interp reify_expr]; cbv [LetIn.Let_In];
              try solve [ auto
                        | apply ident_interp_Proper; reflexivity ].
            all: cbn [type.related] in *; cbv [respectful]; intros.
            all: match goal with H : _ |- _ => apply H; clear H end.
            all: repeat first [ progress cbn [In eq_rect fst snd] in *
                              | progress intros
                              | progress destruct_head'_or
                              | progress subst
                              | progress inversion_sigma
                              | progress inversion_prod
                              | apply interp_reify_reflect
                              | solve [ auto ] ].
          Qed.

          Fixpoint reify_interp_related {t with_lets} v1 v2 {struct t}
            : @value_interp_related t with_lets v1 v2
              -> expr_interp_related (reify v1) v2
          with reflect_interp_related {t with_lets} e1 v2 {struct t}
               : expr_interp_related e1 v2
                 -> @value_interp_related t with_lets (reflect e1) v2.
          Proof using Type.
            all: destruct t as [|s d];
              [ clear reify_interp_related reflect_interp_related
              | pose proof (reify_interp_related s false) as reify_interp_related_s;
                pose proof (reflect_interp_related s false) as reflect_interp_related_s;
                pose proof (reify_interp_related d true) as reify_interp_related_d;
                pose proof (reflect_interp_related d true) as reflect_interp_related_d;
                clear reify_interp_related reflect_interp_related ].
            all: repeat first [ progress cbn [reify reflect] in *
                              | progress fold (@reify) (@reflect) in *
                              | progress cbn [expr_interp_related value_interp_related] in *
                              | break_innermost_match_step
                              | rewrite <- UnderLets.to_expr_interp_related_iff
                              | exact id
                              | assumption
                              | solve [ eauto ]
                              | progress intros
                              | match goal with H : _ |- _ => apply H; clear H end
                              | progress repeat esplit ].
          Qed.

          Lemma expr_of_rawexpr_interp_related r v
            : rawexpr_interp_related r v
              -> expr_interp_related (expr_of_rawexpr r) v.
          Proof using Type.
            revert v; induction r; cbn [expr_of_rawexpr expr_interp_related rawexpr_interp_related]; intros.
            all: repeat first [ progress destruct_head'_and
                              | progress destruct_head'_ex
                              | progress subst
                              | progress inversion_sigma
                              | progress cbn [eq_rect type_of_rawexpr expr.interp expr_interp_related type_of_rawexpr] in *
                              | assumption
                              | exfalso; assumption
                              | apply conj
                              | break_innermost_match_hyps_step
                              | solve [ eauto ]
                              | apply reify_interp_related ].
          Qed.

          Lemma value_of_rawexpr_interp_related {e v}
            : rawexpr_interp_related e v -> value_interp_related (value_of_rawexpr e) v.
          Proof using Type.
            destruct e; cbn [rawexpr_interp_related value_of_rawexpr]; break_innermost_match.
            all: repeat first [ progress intros
                              | exfalso; assumption
                              | progress inversion_sigma
                              | progress subst
                              | progress cbn [eq_rect expr.interp type_of_rawexpr] in *
                              | progress destruct_head'_ex
                              | progress destruct_head'_and
                              | assumption
                              | apply reflect_interp_related
                              | progress cbn [expr_interp_related]
                              | solve [ eauto ] ].
          Qed.

          Fixpoint pattern_default_interp' {K t} (p : pattern t) evm {struct p} : (var (pattern.type.subst_default t evm) -> K) -> @with_unification_resultT' var t p evm K
            := match p in pattern.pattern t return (var (pattern.type.subst_default t evm) -> K) -> @with_unification_resultT' var t p evm K with
               | pattern.Wildcard t => fun k v => k v
               | pattern.Ident t idc
                 => fun k
                    => lam_type_of_list (fun args => k (ident_interp _(pident_to_typed _ idc _ args)))
               | pattern.App s d f x
                 => fun k
                    => @pattern_default_interp'
                         _ _ f evm
                         (fun ef
                          => @pattern_default_interp'
                               _ _ x evm
                               (fun ex
                                => k (ef ex)))
               end.

          Definition pattern_default_interp {t} (p : pattern t)
            : @with_unification_resultT var t p var
            (*: @with_unif_rewrite_ruleTP_gen var t p false false false*)
            := pattern.type.lam_forall_vars
                 (fun evm
                  => pattern_default_interp' p evm id).

          Definition deep_rewrite_ruleTP_gen_good_relation
                     {should_do_again with_opt under_lets : bool} {t}
                     (v1 : @deep_rewrite_ruleTP_gen should_do_again with_opt under_lets t)
                     (v2 : var t)
            : Prop
            := let v1 := normalize_deep_rewrite_rule v1 in
               match v1 with
               | None => True
               | Some v1 => UnderLets.interp_related
                              ident_interp
                              (fun e
                               => expr_interp_related
                                    ((if should_do_again
                                         return (@expr.expr base.type ident (if should_do_again then @value var else var) t) -> _
                                      then reify_expr
                                      else fun v1 => v1) e))
                              v1
                              v2
               end.

          Definition rewrite_rule_data_interp_goodT
                     {t} {p : pattern t} (r : @rewrite_rule_data t p)
            : Prop
            := forall x y,
              related_unification_resultT (fun t => value_interp_related) x y
              -> option_eq
                   (fun fx gy
                    => related_sigT_by_eq
                         (fun evm
                          => @deep_rewrite_ruleTP_gen_good_relation
                               (rew_should_do_again _ _ r) (rew_with_opt _ _ r) (rew_under_lets _ _ r) (pattern.type.subst_default t evm))
                         fx gy)
                   (app_with_unification_resultT_cps (rew_replacement _ _ r) x _ (@Some _))
                   (app_with_unification_resultT_cps (pattern_default_interp p) y _ (@Some _)).

          Definition rewrite_rules_interp_goodT
                     (rews : rewrite_rulesT)
            : Prop
            := forall p r,
              List.In (existT _ p r) rews
              -> rewrite_rule_data_interp_goodT r.

          Definition rewrite_rule_data_interp_goodT_curried
                     {t} {p : pattern t} (r : @rewrite_rule_data t p)
            : Prop
            := under_with_unification_resultT_relation_hetero
                 (fun _ => value_interp_related)
                 (fun evm => deep_rewrite_ruleTP_gen_good_relation)
                 (rew_replacement _ _ r)
                 (pattern_default_interp p).

          Definition rewrite_rules_interp_goodT_curried
                     (rews : rewrite_rulesT)
            : Prop
            := forall p r,
              List.In (existT _ p r) rews
              -> rewrite_rule_data_interp_goodT_curried r.

          Lemma rewrite_rules_interp_goodT_by_curried rews
            : rewrite_rules_interp_goodT_curried rews -> rewrite_rules_interp_goodT rews.
          Proof using Type.
            cbv [rewrite_rules_interp_goodT rewrite_rules_interp_goodT_curried rewrite_rule_data_interp_goodT rewrite_rule_data_interp_goodT_curried].
            intro H.
            repeat (let x := fresh "x" in intro x; specialize (H x)).
            intros X Y HXY.
            pose proof (related_app_with_unification_resultT _ _ _ _ _ _ ltac:(eassumption) HXY) as H'.
            progress cbv [deep_rewrite_ruleTP_gen] in *.
            match goal with
            | [ H : option_eq ?R ?x ?y |- option_eq ?R' ?x' ?y' ]
              => change (option_eq R' x y); destruct x eqn:?, y eqn:?; cbv [option_eq] in H |- *
            end.
            all: repeat first [ reflexivity
                              | progress inversion_option
                              | exfalso; assumption
                              | assumption ].
          Qed.
        End with_interp.
      End with_var.
    End Compile.
  End RewriteRules.
End Compilers.