aboutsummaryrefslogtreecommitdiff
path: root/src/Experiments/NewPipeline/RewriterRulesInterpGood.v
blob: 7647b1f064a02afa5c1f1c3c9fc560fb4e00e87a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
Require Import Coq.ZArith.ZArith.
Require Import Coq.micromega.Lia.
Require Import Coq.Lists.List.
Require Import Coq.Classes.Morphisms.
Require Import Coq.MSets.MSetPositive.
Require Import Coq.FSets.FMapPositive.
Require Import Crypto.Experiments.NewPipeline.Language.
Require Import Crypto.Experiments.NewPipeline.LanguageInversion.
Require Import Crypto.Experiments.NewPipeline.LanguageWf.
Require Import Crypto.Experiments.NewPipeline.UnderLetsProofs.
Require Import Crypto.Experiments.NewPipeline.GENERATEDIdentifiersWithoutTypesProofs.
Require Import Crypto.Experiments.NewPipeline.Rewriter.
Require Import Crypto.Experiments.NewPipeline.RewriterWf1.
Require Import Crypto.Util.ZUtil.Tactics.LtbToLt.
Require Import Crypto.Util.ZUtil.Tactics.DivModToQuotRem.
Require Import Crypto.Util.ZUtil.Tactics.PullPush.Modulo.
Require Import Crypto.Util.ZUtil.Hints.
Require Import Crypto.Util.ZUtil.Hints.Core.
Require Import Crypto.Util.ZUtil.ZSimplify.Core.
Require Import Crypto.Util.ZUtil.ZSimplify.
Require Import Crypto.Util.ZUtil.ZSimplify.Simple.
Require Import Crypto.Util.ZUtil.Definitions.
Require Import Crypto.Util.ZUtil.AddGetCarry.
Require Import Crypto.Util.ZUtil.MulSplit.
Require Import Crypto.Util.ZUtil.Zselect.
Require Import Crypto.Util.Tactics.NormalizeCommutativeIdentifier.
Require Import Crypto.Util.Tactics.BreakMatch.
Require Import Crypto.Util.Tactics.SplitInContext.
Require Import Crypto.Util.Tactics.SpecializeAllWays.
Require Import Crypto.Util.Tactics.SpecializeBy.
Require Import Crypto.Util.Tactics.RewriteHyp.
Require Import Crypto.Util.Tactics.Head.
Require Import Crypto.Util.Prod.
Require Import Crypto.Util.Bool.
Require Import Crypto.Util.ListUtil.
Require Import Crypto.Util.ListUtil.ForallIn.
Require Import Crypto.Util.NatUtil.
Require Import Crypto.Util.Option.
Require Import Crypto.Util.CPSNotations.
Require Import Crypto.Util.HProp.
Require Import Crypto.Util.Decidable.
Import ListNotations. Local Open Scope list_scope.
Local Open Scope Z_scope.

Import EqNotations.
Module Compilers.
  Import Language.Compilers.
  Import LanguageInversion.Compilers.
  Import LanguageWf.Compilers.
  Import UnderLetsProofs.Compilers.
  Import GENERATEDIdentifiersWithoutTypesProofs.Compilers.
  Import Rewriter.Compilers.
  Import RewriterWf1.Compilers.
  Import expr.Notations.
  Import RewriterWf1.Compilers.RewriteRules.
  Import defaults.

  Module Import RewriteRules.
    Import Rewriter.Compilers.RewriteRules.

    Local Lemma rlist_rect_eq {var A P ivar} Pnil Pcons ls
      : @rlist_rect var A P ivar Pnil Pcons ls
        = match invert_expr.reflect_list ls with
          | Some ls
            => Some (list_rect
                       (fun _ => _)
                       Pnil
                       (fun x xs rec => rec' <-- rec; Pcons x xs rec')
                       ls)%under_lets
          | None => None
          end.
    Proof. cbv [rlist_rect Compile.option_bind' Option.bind]; reflexivity. Qed.

    Local Lemma UnderLets_interp_list_rect {A P} Pnil Pcons ls
      : UnderLets.interp
          (@ident.interp)
          (list_rect
             (fun _ : list A => UnderLets.UnderLets base.type ident _ P)
             Pnil
             (fun x xs rec => rec' <-- rec; Pcons x xs rec')
             ls)%under_lets
        = list_rect
            (fun _ => P)
            (UnderLets.interp (@ident.interp) Pnil)
            (fun x xs rec => UnderLets.interp (@ident.interp) (Pcons x xs rec))
            ls.
    Proof.
      induction ls as [|x xs IHxs]; cbn [list_rect]; [ reflexivity | ].
      rewrite UnderLets.interp_splice, IHxs; reflexivity.
    Qed.

    Local Notation rewrite_rules_interp_goodT := (@Compile.rewrite_rules_interp_goodT ident pattern.ident (@pattern.ident.arg_types) (@pattern.ident.type_vars) (@pattern.ident.to_typed) (@ident.interp)).

    Local Ltac do_cbv0 :=
      cbv [id
             Compile.rewrite_rules_interp_goodT
             Compile.rewrite_rule_data_interp_goodT Compile.under_with_unification_resultT_relation_hetero Compile.under_with_unification_resultT'_relation_hetero Compile.wf_with_unification_resultT Compile.under_type_of_list_relation_cps pattern.pattern_of_anypattern pattern.type_of_anypattern Compile.rew_replacement Compile.rew_is_cps Compile.rew_should_do_again Compile.rew_with_opt Compile.rew_under_lets Compile.wf_with_unification_resultT' Compile.pattern_default_interp pattern.type.under_forall_vars_relation Compile.deep_rewrite_ruleTP_gen Compile.with_unification_resultT' pattern.ident.arg_types pattern.type.lam_forall_vars Compile.pattern_default_interp' pattern.collect_vars PositiveMap.empty Compile.ident_collect_vars pattern.ident.type_vars pattern.type.collect_vars PositiveSet.elements PositiveSet.union pattern.base.collect_vars PositiveSet.empty PositiveSet.xelements Compile.lam_type_of_list id pattern.ident.to_typed Compile.forall2_type_of_list_cps Compile.deep_rewrite_ruleTP_gen_good_relation Compile.normalize_deep_rewrite_rule_cps_id_hypsT Compile.normalize_deep_rewrite_rule pattern.type.subst_default PositiveSet.add PositiveSet.rev PositiveSet.rev_append PositiveMap.add Compile.option_bind' Compile.wf_value Compile.value pattern.base.subst_default PositiveMap.find Compile.rewrite_ruleTP ident.smart_Literal Compile.value_interp_related Compile.value'_interp_related].
    Local Ltac do_cbv :=
      do_cbv0;
      cbv [List.map List.fold_right List.rev list_rect orb List.app].

    Local Ltac start_interp_good :=
      do_cbv;
      lazymatch goal with
      | [ |- forall x p, In (@existT ?A ?P x p) ?ls -> @?Q x p ]
        => let Q' := fresh in
           pose Q as Q';
           change (forall x p, In (@existT A P x p) ls -> Q' x p);
           apply (@forall_In_existT A P Q' ls); cbn [projT1 projT2]; cbv [id];
           subst Q'; cbn [projT1 projT2]
      end;
      do_cbv0;
      repeat first [ progress intros
                   | match goal with
                     | [ |- { pf : ?x = ?x | _ } ] => (exists eq_refl)
                     | [ |- True /\ _ ] => split; [ exact I | ]
                     end
                   | progress cbn [eq_rect] in * ];
      cbn [fst snd base.interp base.base_interp type.interp projT1 projT2 UnderLets.interp expr.interp type.related ident.interp ident.gen_interp] in *.

    Local Ltac interp_good_t_step :=
      first [ reflexivity
            | match goal with
              | [ |- context[(fst ?x, snd ?x)] ] => progress eta_expand
              | [ |- context[match ?x with pair a b => _ end] ] => progress eta_expand
              end
            | progress cbn [expr.interp ident.interp ident.gen_interp fst snd Compile.reify Compile.reflect Compile.wf_value' Compile.value' Option.bind UnderLets.interp list_case type.interp base.interp base.base_interp ident.to_fancy invert_Some ident.fancy.interp ident.fancy.interp_with_wordmax Compile.reify_expr] in *
            | progress cbv [Compile.option_bind' respectful] in *
            | progress fold (@type.interp _ base.interp)
            | progress fold (@base.interp)
            | match goal with
              | [ |- context[List.map _ (Lists.List.repeat _ _)] ] => rewrite map_repeat
              | [ |- context[List.map _ (List.map _ _)] ] => rewrite map_map
              | [ |- context[List.map (fun x => x) _] ] => rewrite map_id
              | [ |- context[List.map _ (List.rev _)] ] => rewrite map_rev
              | [ |- context[List.map _ (firstn _ _)] ] => rewrite <- firstn_map
              | [ |- context[List.map _ (skipn _ _)] ] => rewrite <- skipn_map
              | [ |- context[List.length (List.map _ _)] ] => rewrite map_length
              | [ |- context[List.combine (List.map _ _) _] ] => rewrite combine_map_l
              | [ |- context[List.combine _ (List.map _ _)] ] => rewrite combine_map_r
              | [ |- context[expr.interp _ (reify_list _)] ] => rewrite interp_reify_list
              | [ |- context[expr.interp _ (UnderLets.to_expr ?e)] ] => rewrite UnderLets.interp_to_expr
              | [ |- context[UnderLets.interp _ (UnderLets.splice_list _ _)] ] => rewrite UnderLets.interp_splice_list
              | [ |- context[rlist_rect] ] => rewrite rlist_rect_eq
              | [ |- context[UnderLets.interp _ (list_rect _ _ _ _)] ] => rewrite UnderLets_interp_list_rect
              | [ |- context[UnderLets.interp _ (UnderLets.splice _ _)] ] => rewrite UnderLets.interp_splice
              | [ |- context[list_rect _ _ _ (List.map _ _)] ] => rewrite list_rect_map
              | [ |- list_rect _ _ _ _ = List.app ?ls1 ?ls2 ]
                =>  rewrite (eq_app_list_rect ls1 ls2)
              | [ |- list_rect _ _ _ _ = @flat_map ?A ?B ?f ?ls ]
                =>  rewrite (@eq_flat_map_list_rect A B f ls)
              | [ |- list_rect _ _ _ _ = @partition ?A ?f ?ls ]
                =>  rewrite (@eq_partition_list_rect A f ls)
              | [ |- list_rect _ _ _ _ = @List.map ?A ?B ?f ?ls ]
                => rewrite (@eq_map_list_rect A B f ls)
              | [ |- _ = @fold_right ?A ?B ?f ?v ?ls ]
                =>  rewrite (@eq_fold_right_list_rect A B f v ls)
              end
            | progress intros
            | progress subst
            | progress inversion_option
            | progress Z.ltb_to_lt
            | progress split_andb
            | match goal with
              | [ |- Lists.List.repeat _ _ = Lists.List.repeat _ _ ] => apply f_equal2
              | [ |- firstn _ _ = firstn _ _ ] => apply f_equal2
              | [ |- skipn _ _ = skipn _ _ ] => apply f_equal2
              | [ |- rev _ = rev _ ] => apply f_equal
              | [ |- List.app ?l1 ?l2 = List.app ?l1' ?l2 ] => apply f_equal2
              | [ |- List.app ?l1 ?l2 = List.app ?l1 ?l2' ] => apply f_equal2
              | [ |- cons _ _ = cons _ _ ] => apply f_equal2
              | [ |- list_rect _ ?Pnil ?Pcons ?ls = list_rect _ ?Pnil ?Pcons' ?ls ]
                => apply list_rect_Proper; [ reflexivity | repeat intro | reflexivity ]
              | [ |- bool_rect _ ?x ?y ?b = bool_rect _ ?x ?y ?b' ]
                => apply f_equal3; [ reflexivity | reflexivity | solve [ repeat interp_good_t_step ] ]
              | [ H : expr.wf _ ?v1 ?v2 |- expr.interp _ ?v1 = expr.interp _ ?v2 ]
                => apply (expr.wf_interp_Proper _ _ _ H ltac:(assumption))
              | [ |- ?R (?f (?g (if ?b then ?x else ?y))) (bool_rect ?A ?B ?C ?D) ]
                => rewrite <- (@Bool.pull_bool_if _ _ g b), <- (@Bool.pull_bool_if _ _ f b);
                   change (R (bool_rect _ (f (g x)) (f (g y)) b) (bool_rect A B C D))
              | [ |- context[invert_expr.reflect_list ?ls] ]
                => destruct (invert_expr.reflect_list ls) eqn:?; expr.invert_subst
              | [ |- ?f (nth_default _ _ _) = _ ]
                => rewrite <- (@map_nth_default_always _ _ f)
              | [ |- map ?f ?ls = map ?g ?ls ] => apply map_ext_in
              | [ |- List.map _ (update_nth _ _ _) = update_nth _ _ _ ] => apply map_update_nth_ext
              | [ H : ?x = ?x -> _ |- _ ] => specialize (H eq_refl)
              | [ H : forall v : unit, _ |- _ ] => specialize (H tt)
              | [ H : _ = expr.interp ?ii ?v |- _ ] => is_var v; generalize dependent (expr.interp ii v); clear v
              | [ |- bool_rect _ _ _ ?b = bool_rect _ _ _ ?b ]
                => is_var b; destruct b; cbv [bool_rect]
              | [ H : (forall x y, _ -> expr.interp _ (UnderLets.interp _ (?f1 x)) = expr.interp _ (UnderLets.interp _ (?f2 y)))
                  |- expr.interp _ (UnderLets.interp _ (?f1 ?x1)) = expr.interp _ (UnderLets.interp _ (?f2 ?x2)) ]
                => apply H
              | [ H : (forall x y, _ -> forall x' y', _ -> expr.interp _ (UnderLets.interp _ (?f1 x x')) = expr.interp _ (UnderLets.interp _ (?f2 y y')))
                  |- expr.interp _ (UnderLets.interp _ (?f1 ?x1 ?y1)) = expr.interp _ (UnderLets.interp _ (?f2 ?x2 ?y2)) ]
                => apply H
              | [ |- context G[rwhen ?v ?b] ]
                => let c := constr:(rwhen v b) in
                   let c := (eval cbv [rwhen] in c) in
                   let G' := context G[c] in
                   change G';
                   destruct b eqn:?
              | [ |- context G[rwhenl ?v ?b] ]
                => let c := constr:(rwhenl v b) in
                   let c := (eval cbv [rwhenl] in c) in
                   let G' := context G[c] in
                   change G';
                   destruct b eqn:?
              | [ H : negb ?b = true |- _ ] => rewrite (@Bool.negb_true_iff b) in H
              | [ |- context[expr.interp ?ii ?v] ]
                => is_var v; generalize dependent (expr.interp ii v); clear v; intro v
              | [ |- context[Z.mul_split ?a ?b ?c] ]
                => rewrite (surjective_pairing (Z.mul_split a b c)), Z.mul_split_div, Z.mul_split_mod
              | [ |- context[Z.zselect] ] => rewrite Z.zselect_correct
              | [ |- context[Z.sub_get_borrow_full ?a ?b ?c] ]
                => rewrite (surjective_pairing (Z.sub_get_borrow_full a b c)), Z.sub_get_borrow_full_div, Z.sub_get_borrow_full_mod
              | [ |- context[Z.sub_with_get_borrow_full ?a ?b ?c ?d] ]
                => rewrite (surjective_pairing (Z.sub_with_get_borrow_full a b c d)), Z.sub_with_get_borrow_full_div, Z.sub_with_get_borrow_full_mod
              | [ |- context[Z.add_get_carry_full ?a ?b ?c] ]
                => rewrite (surjective_pairing (Z.add_get_carry_full a b c)), Z.add_get_carry_full_div, Z.add_get_carry_full_mod
              | [ |- context[Z.add_with_get_carry_full ?a ?b ?c ?d] ]
                => rewrite (surjective_pairing (Z.add_with_get_carry_full a b c d)), Z.add_with_get_carry_full_div, Z.add_with_get_carry_full_mod
              | [ |- pair _ _ = pair _ _ ] => apply f_equal2
              | [ |- ?a mod ?b = ?a' mod ?b ] => apply f_equal2; lia
              | [ |- ?a / ?b = ?a' / ?b ] => apply f_equal2; lia
              | [ |- Z.opp _ = Z.opp _ ] => apply f_equal
              end
            | match goal with
              | [ |- context[?f (list_rect _ _ _ _)] ]
                => match f with
                   | expr.interp _ => idtac
                   | Compile.reify_expr => idtac
                   end;
                   erewrite (@push_f_list_rect _ _ f)
                     by (intros;
                         repeat first [ progress cbn [expr.interp ident.interp ident.gen_interp UnderLets.interp Compile.reify_expr]
                                      | rewrite UnderLets.interp_splice ];
                         match goal with
                         | [ |- ?LHS = ?Pcons' ?x ?xs ?rec ]
                           => let LHS' := match (eval pattern x, xs, rec in LHS) with ?f _ _ _ => f end in
                              unify Pcons' LHS'; reflexivity
                         end)
              | [ |- context[?f (nat_rect _ _ _ _)] ]
                => match f with
                   | expr.interp _ => idtac
                   | UnderLets.interp _ => idtac
                   | Compile.reify_expr => idtac
                   end;
                   erewrite (@push_f_nat_rect _ _ f)
                     by (intros;
                         repeat first [ progress cbn [expr.interp ident.interp ident.gen_interp UnderLets.interp Compile.reify_expr]
                                      | rewrite UnderLets.interp_splice ];
                         match goal with
                         | [ |- ?LHS = ?PS' ?x ?rec ]
                           => let LHS' := match (eval pattern x, rec in LHS) with ?f _ _ => f end in
                              unify PS' LHS'; reflexivity
                         end)
              | [ |- ?f (list_rect _ _ _ _) = list_rect _ _ _ _ ]
                => match f with
                   | expr.interp _ => idtac
                   | Compile.reify_expr => idtac
                   end;
                   erewrite (@push_f_list_rect _ _ f);
                   [ apply list_rect_Proper; repeat intro; try reflexivity | ]
              | [ |- ?f (nat_rect _ _ _ _) = nat_rect _ _ _ _ ]
                => match f with
                   | expr.interp _ => idtac
                   | UnderLets.interp _ => idtac
                   | Compile.reify_expr => idtac
                   end;
                   erewrite (@push_f_nat_rect _ _ f);
                   [ apply nat_rect_Proper_nondep; repeat intro; try reflexivity | ]
              end
            | break_innermost_match_step
            | break_innermost_match_hyps_step
            | match goal with
              | [ H : context[expr.interp _ (UnderLets.interp _ (?f _ _ _))]
                  |- expr.interp _ (UnderLets.interp _ (?f _ _ _)) = _ ]
                => apply H
              | [ |- context[Z.shiftl] ] => rewrite Z.shiftl_mul_pow2 by auto with zarith
              | [ |- context[Z.shiftr] ] => rewrite Z.shiftr_div_pow2 by auto with zarith
              | [ |- context[Z.shiftl _ (-_)] ] => rewrite Z.shiftl_opp_r
              | [ H : ?x = 2^Z.log2 ?x |- context[2^Z.log2 ?x] ] => rewrite <- H
              | [ H : ?x = 2^?n |- context[Z.land _ (?x - 1)] ]
                => rewrite !Z.sub_1_r, H, <- Z.ones_equiv, Z.land_ones by auto with zarith
              | [ |- _ = _ :> BinInt.Z ] => progress normalize_commutative_identifier Z.land Z.land_comm
              | [ H : ?x = ?y, H' : ?x <> ?y |- _ ] => exfalso; apply H', H
              | [ H : ?x = 2^Z.log2_up ?x - 1 |- context[2^Z.log2_up ?x - 1] ] => rewrite <- H
              | [ H : ?x = 2^Z.log2 ?x, H' : context[2^Z.log2 ?x] |- _ = _ :> BinInt.Z ]
                => rewrite <- H in H'
              | [ |- _ = _ :> BinInt.Z ] => progress autorewrite with zsimplify_const
              | [ |- ?f (?g (nat_rect _ _ _ ?n ?v)) = nat_rect _ _ _ ?n _ ]
                => revert v; is_var n; induction n; intro v; cbn [nat_rect]
              | [ |- _ mod ?x = _ mod ?x ]
                => progress (push_Zmod; pull_Zmod)
              | [ |- _ mod ?x = _ mod ?x ]
                => apply f_equal2; (lia + nia)
              | [ |- _ = _ :> BinInt.Z ] => progress autorewrite with zsimplify_fast
              end ].

    Lemma nbe_rewrite_rules_interp_good
      : rewrite_rules_interp_goodT nbe_rewrite_rules.
    Proof using Type.
      Time start_interp_good.
      Time all: repeat interp_good_t_step.
    Qed.

    Axiom proof_admitted : False.
    Local Notation admit := (match proof_admitted with end).

    Lemma arith_rewrite_rules_interp_good max_const
      : rewrite_rules_interp_goodT (arith_rewrite_rules max_const).
    Proof using Type.
      Time start_interp_good.
      Time all: try solve [ repeat interp_good_t_step; (lia + nia) ].
      (* This is mainly for display *)
      all: repeat first [ progress cbn [Compile.value' Compile.reify] in *
                        | progress subst
                        | match goal with
                          | [ H : context[expr.interp ?ii ?v] |- _ ]
                            => is_var v; generalize dependent (expr.interp ii v); clear v; intro v; intros
                          | [ |- context[expr.interp ?ii ?v] ]
                            => is_var v; generalize dependent (expr.interp ii v); clear v; intro v; intros
                          end ].
      (* 9 subgoals (ID 30397)

  max_const, x, x0 : Z
  v1 : expr (type.base base.type.Z)
  ============================
  match
    (x1 <- rwhen (Some (v1, (##0)%expr)%expr_pat) (x0 =? 1);
     Some (UnderLets.Base x1))%option
  with
  | Some v0 =>
      expr.interp (@ident.interp) (UnderLets.interp (@ident.interp) v0) =
      Z.mul_split x x0 (expr.interp (@ident.interp) v1)
  | None => True
  end

subgoal 2 (ID 30445) is:
 match
   (x1 <- rwhen (Some (v1, (##0)%expr)%expr_pat) (x0 =? 1);
    Some (UnderLets.Base x1))%option
 with
 | Some v0 =>
     expr.interp (@ident.interp) (UnderLets.interp (@ident.interp) v0) =
     Z.mul_split x (expr.interp (@ident.interp) v1) x0
 | None => True
 end
subgoal 3 (ID 30493) is:
 match
   (x1 <- rwhen (Some ((- v1)%expr, (##0)%expr)%expr_pat) (x0 =? -1);
    Some (UnderLets.Base x1))%option
 with
 | Some v0 =>
     expr.interp (@ident.interp) (UnderLets.interp (@ident.interp) v0) =
     Z.mul_split x x0 (expr.interp (@ident.interp) v1)
 | None => True
 end
subgoal 4 (ID 30541) is:
 match
   (x1 <- rwhen (Some ((- v1)%expr, (##0)%expr)%expr_pat) (x0 =? -1);
    Some (UnderLets.Base x1))%option
 with
 | Some v0 =>
     expr.interp (@ident.interp) (UnderLets.interp (@ident.interp) v0) =
     Z.mul_split x (expr.interp (@ident.interp) v1) x0
 | None => True
 end
subgoal 5 (ID 30631) is:
 match
   (x0 <- rwhen (Some (v0, (##0)%expr)%expr_pat) (x =? 0);
    Some (UnderLets.Base x0))%option
 with
 | Some v1 =>
     expr.interp (@ident.interp) (UnderLets.interp (@ident.interp) v1) =
     Z.add_get_carry_full v2 x (expr.interp (@ident.interp) v0)
 | None => True
 end
subgoal 6 (ID 30721) is:
 match
   (x0 <- rwhen (Some (v0, (##0)%expr)%expr_pat) (x =? 0);
    Some (UnderLets.Base x0))%option
 with
 | Some v1 =>
     expr.interp (@ident.interp) (UnderLets.interp (@ident.interp) v1) =
     Z.add_get_carry_full v2 (expr.interp (@ident.interp) v0) x
 | None => True
 end
subgoal 7 (ID 30772) is:
 match
   (x2 <- rwhen (Some (v1, (##0)%expr)%expr_pat) ((x0 =? 0) && (x1 =? 0));
    Some (UnderLets.Base x2))%option
 with
 | Some v0 =>
     expr.interp (@ident.interp) (UnderLets.interp (@ident.interp) v0) =
     Z.add_with_get_carry_full x x0 x1 (expr.interp (@ident.interp) v1)
 | None => True
 end
subgoal 8 (ID 30824) is:
 match
   (x2 <- rwhen (Some (v1, (##0)%expr)%expr_pat) ((x0 =? 0) && (x1 =? 0));
    Some (UnderLets.Base x2))%option
 with
 | Some v0 =>
     expr.interp (@ident.interp) (UnderLets.interp (@ident.interp) v0) =
     Z.add_with_get_carry_full x x0 (expr.interp (@ident.interp) v1) x1
 | None => True
 end
subgoal 9 (ID 30915) is:
 match
   rwhenl
     (Some
        (UnderLets.UnderLet
           (#(ident.Z_add_with_get_carry)%expr @ v1 @ v0 @ (##x)%expr @
            (##x0)%expr)%expr_pat
           (fun vc : Z * Z =>
            UnderLets.Base (#(ident.fst)%expr @ ($vc)%expr, (##0)%expr)%expr_pat)))
     ((x =? 0) && (x0 =? 0))
 with
 | Some v2 =>
     expr.interp (@ident.interp) (UnderLets.interp (@ident.interp) v2) =
     Z.add_with_get_carry_full (expr.interp (@ident.interp) v1)
       (expr.interp (@ident.interp) v0) x x0
 | None => True
 end
*)
      1-9: exact admit.
    Qed.

    Local Ltac fancy_local_t :=
      repeat first [ match goal with
                     | [ H : forall s v v', ?invert_low s v = Some v' -> v = _,
                           H' : ?invert_low _ _ = Some _ |- _ ] => apply H in H'
                     end
                   | progress autorewrite with zsimplify in * ].

    Lemma fancy_rewrite_rules_interp_good
            (invert_low invert_high : Z -> Z -> option Z)
            (Hlow : forall s v v', invert_low s v = Some v' -> v = Z.land v' (2^(s/2)-1))
            (Hhigh : forall s v v', invert_high s v = Some v' -> v = Z.shiftr v' (s/2))
      : rewrite_rules_interp_goodT (fancy_rewrite_rules invert_low invert_high).
    Proof using Type.
      Time start_interp_good.
      Time all: try solve [
                      repeat interp_good_t_step;
                        cbv [Option.bind] in *;
                        repeat interp_good_t_step;
                        fancy_local_t;
                        repeat interp_good_t_step ].
      Time all: repeat interp_good_t_step.
      Time all: cbv [Option.bind] in *.
      Time all: repeat interp_good_t_step.
      Time all: fancy_local_t.
      Time all: repeat interp_good_t_step.
      all: repeat first [ progress cbn [Compile.value' Compile.reify] in *
                        | progress subst
                        | match goal with
                          | [ H : context[expr.interp ?ii ?v] |- _ ]
                            => is_var v; generalize dependent (expr.interp ii v); clear v; intro v; intros
                          | [ |- context[expr.interp ?ii ?v] ]
                            => is_var v; generalize dependent (expr.interp ii v); clear v; intro v; intros
                          end ].
      all: repeat match goal with
                  | [ H : _ = _ :> BinInt.Z |- _ ] => revert H
                  | [ v : BinInt.Z |- _ ] => clear v || revert v
                  end.
      (* 16 subgoals (ID 100240)

  invert_low, invert_high : Z -> Z -> option Z
  Hlow : forall s v v' : Z,
         invert_low s v = Some v' -> v = Z.land v' (2 ^ (s / 2) - 1)
  Hhigh : forall s v v' : Z, invert_high s v = Some v' -> v = Z.shiftr v' (s / 2)
  ============================
  forall x x0 v1 v0 : Z,
  x = 2 ^ Z.log2 x -> (v1 + Z.shiftl v0 x0 mod x) / x = (v1 + Z.shiftl v0 x0) / x

subgoal 2 (ID 100250) is:
 forall x x0 v0 v1 : Z,
 x = 2 ^ Z.log2 x -> (v0 + Z.shiftl v1 x0 mod x) / x = (Z.shiftl v1 x0 + v0) / x
subgoal 3 (ID 100260) is:
 forall x x0 v1 v0 : Z,
 x = 2 ^ Z.log2 x -> (v1 + Z.shiftr v0 x0 mod x) / x = (v1 + Z.shiftr v0 x0) / x
subgoal 4 (ID 100270) is:
 forall x x0 v0 v1 : Z,
 x = 2 ^ Z.log2 x -> (v0 + Z.shiftr v1 x0 mod x) / x = (Z.shiftr v1 x0 + v0) / x
subgoal 5 (ID 100278) is:
 forall x v1 v0 : Z, x = 2 ^ Z.log2 x -> (v1 + v0 mod x) / x = (v1 + v0) / x
subgoal 6 (ID 100290) is:
 forall x x0 v1 v0 v4 : Z,
 x = 2 ^ Z.log2 x ->
 (v1 + v0 + Z.shiftl v4 x0 mod x) / x = (v1 + v0 + Z.shiftl v4 x0) / x
subgoal 7 (ID 100302) is:
 forall x x0 v1 v4 v0 : Z,
 x = 2 ^ Z.log2 x ->
 (v1 + v4 + Z.shiftl v0 x0 mod x) / x = (v1 + Z.shiftl v0 x0 + v4) / x
subgoal 8 (ID 100314) is:
 forall x x0 v1 v0 v4 : Z,
 x = 2 ^ Z.log2 x ->
 (v1 + v0 + Z.shiftr v4 x0 mod x) / x = (v1 + v0 + Z.shiftr v4 x0) / x
subgoal 9 (ID 100326) is:
 forall x x0 v1 v4 v0 : Z,
 x = 2 ^ Z.log2 x ->
 (v1 + v4 + Z.shiftr v0 x0 mod x) / x = (v1 + Z.shiftr v0 x0 + v4) / x
subgoal 10 (ID 100336) is:
 forall x v1 v0 v4 : Z,
 x = 2 ^ Z.log2 x -> (v1 + v0 + v4 mod x) / x = (v1 + v0 + v4) / x
subgoal 11 (ID 100346) is:
 forall x x0 v1 v0 : Z,
 x = 2 ^ Z.log2 x -> (v1 - Z.shiftl v0 x0 mod x) / x = (v1 - Z.shiftl v0 x0) / x
subgoal 12 (ID 100356) is:
 forall x x0 v1 v0 : Z,
 x = 2 ^ Z.log2 x -> (v1 - Z.shiftr v0 x0 mod x) / x = (v1 - Z.shiftr v0 x0) / x
subgoal 13 (ID 100364) is:
 forall x v1 v0 : Z, x = 2 ^ Z.log2 x -> (v1 - v0 mod x) / x = (v1 - v0) / x
subgoal 14 (ID 100376) is:
 forall x x0 v1 v0 v4 : Z,
 x = 2 ^ Z.log2 x ->
 (v0 - Z.shiftl v4 x0 mod x - v1) / x = (v0 - Z.shiftl v4 x0 - v1) / x
subgoal 15 (ID 100388) is:
 forall x x0 v1 v0 v4 : Z,
 x = 2 ^ Z.log2 x ->
 (v0 - Z.shiftr v4 x0 mod x - v1) / x = (v0 - Z.shiftr v4 x0 - v1) / x
subgoal 16 (ID 100398) is:
 forall x v1 v0 v4 : Z,
 x = 2 ^ Z.log2 x -> (v0 - v4 mod x - v1) / x = (v0 - v4 - v1) / x
*)
      all: exact admit.
    Qed.
  End RewriteRules.
End Compilers.