aboutsummaryrefslogtreecommitdiff
path: root/src/Experiments/NewPipeline/CStringification.v
blob: 1bd34316e5487f6acfe81e1f10bc9f7e560c67c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
Require Import Coq.ZArith.ZArith.
Require Import Coq.MSets.MSetPositive.
Require Import Coq.FSets.FMapPositive.
Require Import Coq.Strings.String.
Require Import Coq.Strings.Ascii.
Require Import Coq.Bool.Bool.
Require Import Crypto.Util.ListUtil Coq.Lists.List.
Require Crypto.Util.Strings.String.
Require Import Crypto.Util.Strings.Decimal.
Require Import Crypto.Util.Strings.HexString.
Require Import Crypto.Util.Strings.Show.
Require Import Crypto.Util.ZRange.
Require Import Crypto.Util.ZRange.Operations.
Require Import Crypto.Util.ZRange.Show.
Require Import Crypto.Util.Option.
Require Import Crypto.Util.OptionList.
Require Import Crypto.Experiments.NewPipeline.Language.
Require Import Crypto.Experiments.NewPipeline.AbstractInterpretation.
Require Import Crypto.Util.Bool.Equality.
Require Import Crypto.Util.Notations.
Import ListNotations. Local Open Scope zrange_scope. Local Open Scope Z_scope.

Module Compilers.
  Local Set Boolean Equality Schemes.
  Local Set Decidable Equality Schemes.
  Export Language.Compilers.
  Export AbstractInterpretation.Compilers.
  Import invert_expr.
  Import defaults.

  Module ToString.
    Local Open Scope string_scope.

    Module Import ZRange.
      Module Export type.
        Module Export base.
          Fixpoint show_interp {t} : Show (ZRange.type.base.interp t)
            := match t return bool -> ZRange.type.base.interp t -> string with
               | base.type.unit => @show unit _
               | base.type.Z => @show zrange _
               | base.type.bool => @show bool _
               | base.type.nat => @show nat _
               | base.type.prod A B
                 => fun _ '(a, b)
                    => "(" ++ @show_interp A false a ++ ", " ++ @show_interp B true b ++ ")"
               | base.type.list A
                 => let SA := @show_interp A in
                    @show (list (ZRange.type.base.interp A)) _
               end%string.
          Global Existing Instance show_interp.
          Module Export option.
            Fixpoint show_interp {t} : Show (ZRange.type.base.option.interp t)
              := match t return bool -> ZRange.type.base.option.interp t -> string with
                 | base.type.unit => @show unit _
                 | base.type.Z => @show (option zrange) _
                 | base.type.bool => @show (option bool) _
                 | base.type.nat => @show (option nat) _
                 | base.type.prod A B
                   => let SA := @show_interp A in
                      let SB := @show_interp B in
                      @show (ZRange.type.base.option.interp A * ZRange.type.base.option.interp B) _
                 | base.type.list A
                   => let SA := @show_interp A in
                      @show (option (list (ZRange.type.base.option.interp A))) _
                 end.
            Global Existing Instance show_interp.
          End option.
        End base.

        Module option.
          Global Instance show_interp {t} : Show (ZRange.type.option.interp t)
            := fun parens
               => match t return ZRange.type.option.interp t -> string with
                  | type.base t
                    => fun v : ZRange.type.base.option.interp t
                       => show parens v
                  | type.arrow s d => fun _ => "λ"
                  end.
        End option.
      End type.
    End ZRange.

    Module PHOAS.
      Module type.
        Module base.
          Global Instance show_base : Show base.type.base
            := fun _ t => match t with
                       | base.type.unit => "()"
                       | base.type.Z => "ℤ"
                       | base.type.bool => "𝔹"
                       | base.type.nat => "ℕ"
                       end.
          Fixpoint show_type (with_parens : bool) (t : base.type) : string
            := match t with
               | base.type.type_base t => show with_parens t
               | base.type.prod A B => maybe_wrap_parens
                                        with_parens
                                        (@show_type false A ++ " * " ++ @show_type true B)
               | base.type.list A => "[" ++ @show_type false A ++ "]"
               end.
          Fixpoint show_base_interp {t} : Show (base.base_interp t)
            := match t with
               | base.type.unit => @show unit _
               | base.type.Z => @show Z _
               | base.type.bool => @show bool _
               | base.type.nat => @show nat _
               end.
          Global Existing Instance show_base_interp.
          Fixpoint show_interp {t} : Show (base.interp t)
            := match t with
               | base.type.type_base t => @show (base.base_interp t) _
               | base.type.prod A B => @show (base.interp A * base.interp B) _
               | base.type.list A => @show (list (base.interp A)) _
               end.
          Global Existing Instance show_interp.
          Global Instance show : Show base.type := show_type.
        End base.
        Fixpoint show_for_each_lhs_of_arrow {base_type} {f : type.type base_type -> Type} {show_f : forall t, Show (f t)} {t : type.type base_type} : Show (type.for_each_lhs_of_arrow f t)
          := match t return bool -> type.for_each_lhs_of_arrow f t -> string with
             | type.base t => @show unit _
             | type.arrow s d
               => fun with_parens '((x, xs) : f s * type.for_each_lhs_of_arrow f d)
                  => let _ : Show (f s) := show_f s in
                     let _ : Show (type.for_each_lhs_of_arrow f d) := @show_for_each_lhs_of_arrow base_type f show_f d in
                     show with_parens (x, xs)
             end.
        Global Existing Instance show_for_each_lhs_of_arrow.

        Fixpoint show_type {base_type} {S : Show base_type} (with_parens : bool) (t : type.type base_type) : string
          := match t with
             | type.base t => S with_parens t
             | type.arrow s d
               => maybe_wrap_parens
                   with_parens
                   (@show_type base_type S true s ++ " → " ++ @show_type base_type S false d)
             end.
        Global Instance show {base_type} {S : Show base_type} : Show (type.type base_type) := show_type.
      End type.

      Definition bitwidth_to_string (v : Z) : string
        := (if v =? 2^Z.log2 v then "2^" ++ decimal_string_of_Z (Z.log2 v) else HexString.of_Z v).
      Definition show_range_or_ctype (v : zrange) : string
        := if (v.(lower) =? 0) && (v.(upper) =? 2^(Z.log2 (v.(upper) + 1)) - 1)
           then ("uint" ++ decimal_string_of_Z (Z.log2 (v.(upper) + 1)) ++ "_t")%string
           else let lg2 := 1 + Z.log2 (-v.(lower)) in
                if (v.(lower) =? -2^(lg2-1)) && (v.(upper) =? 2^(lg2-1)-1)
                then ("int" ++ decimal_string_of_Z lg2 ++ "_t")%string
                else show false v.
      Definition show_compact_Z (with_parens : bool) (v : Z) : string
        := let is_neg := v <? 0 in
           (if is_neg then "-" else "")
             ++ (let v := Z.abs v in
                 (if v <=? 2^8
                  then decimal_string_of_Z v
                  else if v =? 2^(Z.log2 v)
                       then "2^" ++ (decimal_string_of_Z (Z.log2 v))
                       else if v =? 2^(Z.log2_up v) - 1
                            then maybe_wrap_parens is_neg ("2^" ++ (decimal_string_of_Z (Z.log2_up v)) ++ "-1")
                            else Hex.show_Z with_parens v)).

      Fixpoint make_castb {t} : ZRange.type.base.option.interp t -> option string
        := match t with
           | base.type.Z => option_map show_range_or_ctype
           | base.type.type_base t => fun _ => None
           | base.type.prod A B
             => fun '(r1, r2)
                => match @make_castb A r1, @make_castb B r2 with
                   | Some c1, Some c2 => Some (c1 ++ ", " ++ c2)
                   | None, Some c => Some ("??, " ++ c)
                   | Some c, None => Some (c ++ ", ??")
                   | None, None => None
                   end
           | base.type.list A => fun _ => None
           end.
      Fixpoint make_cast {t} : ZRange.type.option.interp t -> option string
        := match t with
           | type.base t => @make_castb t
           | type.arrow _ _ => fun _ => None
           end.

      Definition maybe_wrap_cast (with_cast : bool) {t} (xr : (nat -> string) * ZRange.type.option.interp t) (lvl : nat) : string
        := match with_cast, make_cast (snd xr) with
           | true, Some c => "(" ++ c ++ ")" ++ fst xr 10%nat
           | _, _ => fst xr lvl
           end.

      Fixpoint show_application (with_casts : bool) {t : type} (f : nat -> string) (args : type.for_each_lhs_of_arrow (fun t => (nat -> string) * ZRange.type.option.interp t)%type t)
        : nat -> string
        := match t return type.for_each_lhs_of_arrow (fun t => (nat -> string) * ZRange.type.option.interp t)%type t -> nat -> string with
           | type.base _ => fun 'tt lvl => f lvl
           | type.arrow s d
             => fun '(x, xs) lvl
                => @show_application
                     with_casts d
                     (fun lvl'
                      => maybe_wrap_parens (Nat.ltb lvl' 11) (f 11%nat ++ " @ " ++ maybe_wrap_cast with_casts x 10%nat))
                     xs
                     lvl
           end args.

      Module ident.
        Definition show_ident_lvl (with_casts : bool) {t} (idc : ident.ident t)
          : type.for_each_lhs_of_arrow (fun t => (nat -> string) * ZRange.type.option.interp t)%type t -> (nat -> string) * ZRange.type.base.option.interp (type.final_codomain t)
          := match idc in ident.ident t return type.for_each_lhs_of_arrow (fun t => (nat -> string) * ZRange.type.option.interp t)%type t -> (nat -> string) * ZRange.type.base.option.interp (type.final_codomain t) with
             | ident.Literal base.type.Z v => fun 'tt => (fun lvl => show_compact_Z (Nat.eqb lvl 0) v, ZRange.type.base.option.None)
             | ident.Literal t v => fun 'tt => (fun lvl => show (Nat.eqb lvl 0) v, ZRange.type.base.option.None)
             | ident.Nat_succ => fun '((x, xr), tt) => (fun lvl => maybe_wrap_parens (Nat.ltb lvl 10) ((x 10%nat) ++ ".+1"), ZRange.type.base.option.None)
             | ident.Nat_pred => fun '((x, xr), tt) => (fun lvl => maybe_wrap_parens (Nat.ltb lvl 10) ((x 10%nat) ++ ".-1"), ZRange.type.base.option.None)
             | ident.Nat_max => fun '((x, xr), ((y, yr), tt)) => (fun lvl => maybe_wrap_parens (Nat.ltb lvl 10) ("Nat.max " ++ x 9%nat ++ " " ++ y 9%nat), ZRange.type.base.option.None)
             | ident.Nat_mul => fun '((x, xr), ((y, yr), tt)) => (fun lvl => maybe_wrap_parens (Nat.ltb lvl 40) (x 40%nat ++ " *ℕ " ++ y 39%nat), ZRange.type.base.option.None)
             | ident.Nat_add => fun '((x, xr), ((y, yr), tt)) => (fun lvl => maybe_wrap_parens (Nat.ltb lvl 50) (x 50%nat ++ " +ℕ " ++ y 49%nat), ZRange.type.base.option.None)
             | ident.Nat_sub => fun '((x, xr), ((y, yr), tt)) => (fun lvl => maybe_wrap_parens (Nat.ltb lvl 50) (x 50%nat ++ " -ℕ " ++ y 49%nat), ZRange.type.base.option.None)
             | ident.nil t => fun 'tt => (fun _ => "[]", ZRange.type.base.option.None)
             | ident.cons t => fun '(x, ((y, yr), tt)) => (fun lvl => maybe_wrap_parens (Nat.ltb lvl 60) (maybe_wrap_cast with_casts x 59%nat ++ " :: " ++ y 60%nat), ZRange.type.base.option.None)
             | ident.pair A B => fun '(x, (y, tt)) => (fun lvl => maybe_wrap_parens (Nat.ltb lvl 201) (maybe_wrap_cast with_casts x 201%nat ++ ", " ++ maybe_wrap_cast with_casts y 200%nat), ZRange.type.base.option.None)
             | ident.fst A B => fun '((x, xr), tt) => (fun _ => x 0%nat ++ "₁", fst xr)
             | ident.snd A B => fun '((x, xr), tt) => (fun _ => x 0%nat ++ "₂", snd xr)
             | ident.prod_rect A B T => fun '((f, fr), ((p, pr), tt)) => (fun _ => "match " ++ p 200%nat ++ " with " ++ f 200%nat ++ " end", ZRange.type.base.option.None)
             | ident.bool_rect T => fun '(t, (f, ((b, br), tt))) => (fun lvl => maybe_wrap_parens (Nat.ltb lvl 200) ("if " ++ b 200%nat ++ " then " ++ maybe_wrap_cast with_casts t 200%nat ++ " else " ++ maybe_wrap_cast with_casts f 200%nat), ZRange.type.base.option.None)
             | ident.nat_rect P
               => fun args => (show_application with_casts (fun _ => "nat_rect") args, ZRange.type.base.option.None)
             | ident.list_rect A P
               => fun args => (show_application with_casts (fun _ => "list_rect") args, ZRange.type.base.option.None)
             | ident.list_case A P
               => fun args => (show_application with_casts (fun _ => "list_case") args, ZRange.type.base.option.None)
             | ident.List_length T
               => fun args => (show_application with_casts (fun _ => "len") args, ZRange.type.base.option.None)
             | ident.List_seq
               => fun args => (show_application with_casts (fun _ => "seq") args, ZRange.type.base.option.None)
             | ident.List_repeat A
               => fun args => (show_application with_casts (fun _ => "repeat") args, ZRange.type.base.option.None)
             | ident.List_combine A B
               => fun args => (show_application with_casts (fun _ => "combine") args, ZRange.type.base.option.None)
             | ident.List_map A B
               => fun args => (show_application with_casts (fun _ => "map") args, ZRange.type.base.option.None)
             | ident.List_app A
               => fun '((xs, xsr), ((ys, ysr), tt)) => (fun lvl => maybe_wrap_parens (Nat.ltb lvl 60) (xs 59%nat ++ " ++ " ++ ys 60%nat), ZRange.type.base.option.None)
             | ident.List_rev A
               => fun args => (show_application with_casts (fun _ => "rev") args, ZRange.type.base.option.None)
             | ident.List_flat_map A B
               => fun args => (show_application with_casts (fun _ => "flat_map") args, ZRange.type.base.option.None)
             | ident.List_partition A
               => fun args => (show_application with_casts (fun _ => "partition") args, ZRange.type.base.option.None)
             | ident.List_fold_right A B
               => fun args => (show_application with_casts (fun _ => "fold_right") args, ZRange.type.base.option.None)
             | ident.List_update_nth T
               => fun args => (show_application with_casts (fun _ => "update_nth") args, ZRange.type.base.option.None)
             | ident.List_nth_default T
               => fun '((d, dr), ((ls, lsr), ((i, ir), tt))) => (fun lvl => maybe_wrap_parens (Nat.ltb lvl 10) (ls 10%nat ++ "[" ++ i 200%nat ++ "]"), ZRange.type.base.option.None)
             | ident.Z_mul => fun '((x, xr), ((y, yr), tt)) => (fun lvl => maybe_wrap_parens (Nat.ltb lvl 40) (x 40%nat ++ " * " ++ y 39%nat), ZRange.type.base.option.None)
             | ident.Z_add => fun '((x, xr), ((y, yr), tt)) => (fun lvl => maybe_wrap_parens (Nat.ltb lvl 50) (x 50%nat ++ " + " ++ y 49%nat), ZRange.type.base.option.None)
             | ident.Z_sub => fun '((x, xr), ((y, yr), tt)) => (fun lvl => maybe_wrap_parens (Nat.ltb lvl 50) (x 50%nat ++ " - " ++ y 49%nat), ZRange.type.base.option.None)
             | ident.Z_pow => fun '((x, xr), ((y, yr), tt)) => (fun lvl => maybe_wrap_parens (Nat.ltb lvl 30) (x 30%nat ++ " ^ " ++ y 29%nat), ZRange.type.base.option.None)
             | ident.Z_opp => fun '((x, xr), tt) => (fun lvl => maybe_wrap_parens (Nat.ltb lvl 35) ("-" ++ x 35%nat), ZRange.type.base.option.None)
             | ident.Z_bneg => fun '((x, xr), tt) => (fun lvl => maybe_wrap_parens (Nat.ltb lvl 75) ("!" ++ x 75%nat), ZRange.type.base.option.None)
             | ident.Z_lnot_modulo => fun '((x, xr), ((m, mr), tt)) => (fun lvl => maybe_wrap_parens (Nat.ltb lvl 75) ("~" ++ x 75%nat ++ (if with_casts then " (mod " ++ m 200%nat ++ ")" else "")), ZRange.type.base.option.None)
             | ident.Z_div => fun '((x, xr), ((y, yr), tt)) => (fun lvl => maybe_wrap_parens (Nat.ltb lvl 40) (x 40%nat ++ " / " ++ y 39%nat), ZRange.type.base.option.None)
             | ident.Z_modulo => fun '((x, xr), ((y, yr), tt)) => (fun lvl => maybe_wrap_parens (Nat.ltb lvl 40) (x 40%nat ++ " mod " ++ y 39%nat), ZRange.type.base.option.None)
             | ident.Z_eqb => fun '((x, xr), ((y, yr), tt)) => (fun lvl => maybe_wrap_parens (Nat.ltb lvl 70) (x 69%nat ++ " = " ++ y 69%nat), ZRange.type.base.option.None)
             | ident.Z_leb => fun '((x, xr), ((y, yr), tt)) => (fun lvl => maybe_wrap_parens (Nat.ltb lvl 70) (x 69%nat ++ " ≤ " ++ y 69%nat), ZRange.type.base.option.None)
             | ident.Z_geb => fun '((x, xr), ((y, yr), tt)) => (fun lvl => maybe_wrap_parens (Nat.ltb lvl 70) (x 69%nat ++ " ≥ " ++ y 69%nat), ZRange.type.base.option.None)
             | ident.Z_log2
               => fun args => (show_application with_casts (fun _ => "Z.log2") args, ZRange.type.base.option.None)
             | ident.Z_log2_up
               => fun args => (show_application with_casts (fun _ => "Z.log2_up") args, ZRange.type.base.option.None)
             | ident.Z_of_nat
               => fun args => (show_application with_casts (fun _ => "(ℕ→ℤ)") args, ZRange.type.base.option.None)
             | ident.Z_to_nat
               => fun args => (show_application with_casts (fun _ => "(ℤ→ℕ)") args, ZRange.type.base.option.None)
             | ident.Z_shiftr => fun '((x, xr), ((y, yr), tt)) => (fun lvl => maybe_wrap_parens (Nat.ltb lvl 30) (x 30%nat ++ " >> " ++ y 29%nat), ZRange.type.base.option.None)
             | ident.Z_shiftl => fun '((x, xr), ((y, yr), tt)) => (fun lvl => maybe_wrap_parens (Nat.ltb lvl 30) (x 30%nat ++ " << " ++ y 29%nat), ZRange.type.base.option.None)
             | ident.Z_land => fun '((x, xr), ((y, yr), tt)) => (fun lvl => maybe_wrap_parens (Nat.ltb lvl 50) (x 50%nat ++ " & " ++ y 49%nat), ZRange.type.base.option.None)
             | ident.Z_lor => fun '((x, xr), ((y, yr), tt)) => (fun lvl => maybe_wrap_parens (Nat.ltb lvl 50) (x 50%nat ++ " | " ++ y 49%nat), ZRange.type.base.option.None)
             | ident.Z_mul_split
               => fun args => (show_application with_casts (fun _ => "Z.mul_split") args, ZRange.type.base.option.None)
             | ident.Z_add_get_carry
               => fun args => (show_application with_casts (fun _ => "Z.add_get_carry") args, ZRange.type.base.option.None)
             | ident.Z_add_with_carry
               => fun args => (show_application with_casts (fun _ => "Z.add_with_carry") args, ZRange.type.base.option.None)
             | ident.Z_add_with_get_carry
               => fun args => (show_application with_casts (fun _ => "Z.add_with_get_carry") args, ZRange.type.base.option.None)
             | ident.Z_sub_get_borrow
               => fun args => (show_application with_casts (fun _ => "Z.sub_get_borrow") args, ZRange.type.base.option.None)
             | ident.Z_sub_with_get_borrow
               => fun args => (show_application with_casts (fun _ => "Z.sub_with_get_borrow") args, ZRange.type.base.option.None)
             | ident.Z_zselect
               => fun args => (show_application with_casts (fun _ => "Z.zselect") args, ZRange.type.base.option.None)
             | ident.Z_add_modulo
               => fun args => (show_application with_casts (fun _ => "Z.add_modulo") args, ZRange.type.base.option.None)
             | ident.Z_rshi
               => fun args => (show_application with_casts (fun _ => "Z.rshi") args, ZRange.type.base.option.None)
             | ident.Z_cc_m
               => fun args => (show_application with_casts (fun _ => "Z.cc_m") args, ZRange.type.base.option.None)
             | ident.Z_cast range
               => fun '((x, xr), tt) => (x, Some range)
             | ident.Z_cast2 (r1, r2)
               => fun '((x, xr), tt) => (x, (Some r1, Some r2))
             | ident.fancy_add log2wordmax imm
               => fun args => (show_application with_casts (fun lvl' => maybe_wrap_parens (Nat.ltb lvl' 11) ("fancy.add 2^" ++ decimal_string_of_Z log2wordmax ++ " " ++ HexString.of_Z imm)) args, ZRange.type.base.option.None)
             | ident.fancy_addc log2wordmax imm
               => fun args => (show_application with_casts (fun lvl' => maybe_wrap_parens (Nat.ltb lvl' 11) ("fancy.addc 2^" ++ decimal_string_of_Z log2wordmax ++ " " ++ HexString.of_Z imm)) args, ZRange.type.base.option.None)
             | ident.fancy_sub log2wordmax imm
               => fun args => (show_application with_casts (fun lvl' => maybe_wrap_parens (Nat.ltb lvl' 11) ("fancy.sub 2^" ++ decimal_string_of_Z log2wordmax ++ " " ++ HexString.of_Z imm)) args, ZRange.type.base.option.None)
             | ident.fancy_subb log2wordmax imm
               => fun args => (show_application with_casts (fun lvl' => maybe_wrap_parens (Nat.ltb lvl' 11) ("fancy.subb 2^" ++ decimal_string_of_Z log2wordmax ++ " " ++ HexString.of_Z imm)) args, ZRange.type.base.option.None)
             | ident.fancy_mulll log2wordmax
               => fun args => (show_application with_casts (fun lvl' => maybe_wrap_parens (Nat.ltb lvl' 11) ("fancy.mulll 2^" ++ decimal_string_of_Z log2wordmax)) args, ZRange.type.base.option.None)
             | ident.fancy_mullh log2wordmax
               => fun args => (show_application with_casts (fun lvl' => maybe_wrap_parens (Nat.ltb lvl' 11) ("fancy.mullh 2^" ++ decimal_string_of_Z log2wordmax)) args, ZRange.type.base.option.None)
             | ident.fancy_mulhl log2wordmax
               => fun args => (show_application with_casts (fun lvl' => maybe_wrap_parens (Nat.ltb lvl' 11) ("fancy.mulhl 2^" ++ decimal_string_of_Z log2wordmax)) args, ZRange.type.base.option.None)
             | ident.fancy_mulhh log2wordmax
               => fun args => (show_application with_casts (fun lvl' => maybe_wrap_parens (Nat.ltb lvl' 11) ("fancy.mulhh 2^" ++ decimal_string_of_Z log2wordmax)) args, ZRange.type.base.option.None)
             | ident.fancy_rshi log2wordmax x
               => fun args => (show_application with_casts (fun lvl' => maybe_wrap_parens (Nat.ltb lvl' 11) ("fancy.rshi 2^" ++ decimal_string_of_Z log2wordmax ++ " " ++ decimal_string_of_Z x)) args, ZRange.type.base.option.None)
             | ident.fancy_selc
               => fun args => (show_application with_casts (fun _ => "fancy.selc") args, ZRange.type.base.option.None)
             | ident.fancy_selm log2wordmax
               => fun args => (show_application with_casts (fun lvl' => maybe_wrap_parens (Nat.ltb lvl' 11) ("fancy.selm 2^" ++ decimal_string_of_Z log2wordmax)) args, ZRange.type.base.option.None)
             | ident.fancy_sell
               => fun args => (show_application with_casts (fun _ => "fancy.sell") args, ZRange.type.base.option.None)
             | ident.fancy_addm
               => fun args => (show_application with_casts (fun _ => "fancy.addm") args, ZRange.type.base.option.None)
             end.
        Global Instance show_ident {t} : Show (ident.ident t)
          := fun with_parens idc
             => match idc with
                | ident.Literal base.type.Z v => show_compact_Z with_parens v
                | ident.Literal t v => show with_parens v
                | ident.Nat_succ => "Nat.succ"
                | ident.Nat_pred => "Nat.pred"
                | ident.Nat_max => "Nat.max"
                | ident.Nat_mul => "Nat.mul"
                | ident.Nat_add => "Nat.add"
                | ident.Nat_sub => "Nat.sub"
                | ident.nil t => "[]"
                | ident.cons t => "(::)"
                | ident.pair A B => "(,)"
                | ident.fst A B => "fst"
                | ident.snd A B => "snd"
                | ident.prod_rect A B T => "prod_rect"
                | ident.bool_rect T => "bool_rect"
                | ident.nat_rect P => "nat_rect"
                | ident.list_rect A P => "list_rect"
                | ident.list_case A P => "list_case"
                | ident.List_length T => "length"
                | ident.List_seq => "seq"
                | ident.List_repeat A => "repeat"
                | ident.List_combine A B => "combine"
                | ident.List_map A B => "map"
                | ident.List_app A => "(++)"
                | ident.List_rev A => "rev"
                | ident.List_flat_map A B => "flat_map"
                | ident.List_partition A => "partition"
                | ident.List_fold_right A B => "fold_right"
                | ident.List_update_nth T => "update_nth"
                | ident.List_nth_default T => "nth"
                | ident.Z_add => "(+)"
                | ident.Z_mul => "( * )"
                | ident.Z_pow => "(^)"
                | ident.Z_sub => "(-)"
                | ident.Z_opp => "-"
                | ident.Z_div => "(/)"
                | ident.Z_modulo => "(mod)"
                | ident.Z_eqb => "(=)"
                | ident.Z_leb => "(≤)"
                | ident.Z_geb => "(≥)"
                | ident.Z_log2 => "log₂"
                | ident.Z_log2_up => "⌈log₂⌉"
                | ident.Z_of_nat => "(ℕ→ℤ)"
                | ident.Z_to_nat => "(ℤ→ℕ)"
                | ident.Z_shiftr => "(>>)"
                | ident.Z_shiftl => "(<<)"
                | ident.Z_land => "(&)"
                | ident.Z_lor => "(|)"
                | ident.Z_lnot_modulo => "~"
                | ident.Z_bneg => "!"
                | ident.Z_mul_split => "Z.mul_split"
                | ident.Z_add_get_carry => "Z.add_get_carry"
                | ident.Z_add_with_carry => "Z.add_with_carry"
                | ident.Z_add_with_get_carry => "Z.add_with_get_carry"
                | ident.Z_sub_get_borrow => "Z.sub_get_borrow"
                | ident.Z_sub_with_get_borrow => "Z.sub_with_get_borrow"
                | ident.Z_zselect => "Z.zselect"
                | ident.Z_add_modulo => "Z.add_modulo"
                | ident.Z_rshi => "Z.rshi"
                | ident.Z_cc_m => "Z.cc_m"
                | ident.Z_cast range => "(" ++ show_range_or_ctype range ++ ")"
                | ident.Z_cast2 (r1, r2) => "(" ++ show_range_or_ctype r1 ++ ", " ++ show_range_or_ctype r2 ++ ")"
                | ident.fancy_add log2wordmax imm
                  => maybe_wrap_parens with_parens ("fancy.add 2^" ++ decimal_string_of_Z log2wordmax ++ " " ++ HexString.of_Z imm)
                | ident.fancy_addc log2wordmax imm
                  => maybe_wrap_parens with_parens ("fancy.addc 2^" ++ decimal_string_of_Z log2wordmax ++ " " ++ HexString.of_Z imm)
                | ident.fancy_sub log2wordmax imm
                  => maybe_wrap_parens with_parens ("fancy.sub 2^" ++ decimal_string_of_Z log2wordmax ++ " " ++ HexString.of_Z imm)
                | ident.fancy_subb log2wordmax imm
                  => maybe_wrap_parens with_parens ("fancy.subb 2^" ++ decimal_string_of_Z log2wordmax ++ " " ++ HexString.of_Z imm)
                | ident.fancy_mulll log2wordmax
                  => maybe_wrap_parens with_parens ("fancy.mulll 2^" ++ decimal_string_of_Z log2wordmax)
                | ident.fancy_mullh log2wordmax
                  => maybe_wrap_parens with_parens ("fancy.mullh 2^" ++ decimal_string_of_Z log2wordmax)
                | ident.fancy_mulhl log2wordmax
                  => maybe_wrap_parens with_parens ("fancy.mulhl 2^" ++ decimal_string_of_Z log2wordmax)
                | ident.fancy_mulhh log2wordmax
                  => maybe_wrap_parens with_parens ("fancy.mulhh 2^" ++ decimal_string_of_Z log2wordmax)
                | ident.fancy_rshi log2wordmax x
                  => maybe_wrap_parens with_parens ("fancy.rshi 2^" ++ decimal_string_of_Z log2wordmax ++ " " ++ decimal_string_of_Z x)
                | ident.fancy_selc => "fancy.selc"
                | ident.fancy_selm log2wordmax
                  => maybe_wrap_parens with_parens ("fancy.selm 2^" ++ decimal_string_of_Z log2wordmax)
                | ident.fancy_sell => "fancy.sell"
                | ident.fancy_addm => "fancy.addm"
                end.
      End ident.

      Module expr.
        Local Notation show_ident := ident.show_ident.
        Local Notation show_ident_lvl := ident.show_ident_lvl.
        Fixpoint get_eta_cps_args {A} (t : type) (idx : positive) {struct t}
          : (type.for_each_lhs_of_arrow (fun y => (nat -> string) * ZRange.type.option.interp y)%type t -> positive -> A) -> list string * A
          := match t with
             | type.arrow s d
               => fun k
                  => let n := "x" ++ decimal_string_of_pos idx in
                     let '(args, show_f) := @get_eta_cps_args A d (Pos.succ idx) (fun arglist => k (((fun _ => n), ZRange.type.option.None), arglist)) in
                     (n :: args, show_f)
             | type.base _
               => fun k => (nil, k tt idx)
             end.
        Section helper.
          Context (k : forall t, @expr.expr base.type ident (fun _ => string) t -> type.for_each_lhs_of_arrow (fun t => (nat -> string) * ZRange.type.option.interp t)%type t -> positive -> (positive * (nat -> list string)) * ZRange.type.base.option.interp (type.final_codomain t)).
          Fixpoint show_eta_abs_cps' {t} (idx : positive) (e : @expr.expr base.type ident (fun _ => string) t)
            : (positive * (list string * (nat -> list string))) * ZRange.type.base.option.interp (type.final_codomain t)
            := match e in expr.expr t return (unit -> _ * ZRange.type.base.option.interp (type.final_codomain t)) -> _ * ZRange.type.base.option.interp (type.final_codomain t) with
               | expr.Abs s d f
                 => fun _
                    => let n := "x" ++ decimal_string_of_pos idx in
                       let '(_, (args, show_f), r) := @show_eta_abs_cps' d (Pos.succ idx) (f n) in
                       (idx,
                        (n :: args, show_f),
                        r)
               | _
                 => fun default
                    => default tt
               end (fun _
                    => let '(args, (idx, show_f, r)) := get_eta_cps_args _ idx (@k _ e) in
                       ((idx, (args, show_f)), r)).
          Definition show_eta_abs_cps (with_casts : bool) {t} (idx : positive) (e : @expr.expr base.type ident (fun _ => string) t) (extraargs : type.for_each_lhs_of_arrow (fun t => (nat -> string) * ZRange.type.option.interp t)%type t)
            : (positive * (nat -> list string)) * ZRange.type.base.option.interp (type.final_codomain t)
            := let '(idx, (args, show_f), r) := @show_eta_abs_cps' t idx e in
               let argstr := String.concat " " args in
               (idx,
                fun lvl
                => match show_f lvl with
                   | nil => [show_application with_casts (fun _ => "(λ " ++ argstr ++ ", (* NOTHING‽ *))") extraargs 11%nat]%string
                   | show_f::nil
                     => [show_application with_casts (fun _ => "(λ " ++ argstr ++ ", " ++ show_f ++ ")") extraargs 11%nat]%string
                   | show_f
                     => ["(λ " ++ argstr ++ ","]%string ++ (List.map (fun v => String " " (String " " v)) show_f) ++ [")" ++ show_application with_casts (fun _ => "") extraargs 11%nat]%string
                   end%list,
                   r).
          Definition show_eta_cps {t} (idx : positive) (e : @expr.expr base.type ident (fun _ => string) t)
            : (positive * (nat -> list string)) * ZRange.type.option.interp t
            := let '(idx, (args, show_f), r) := @show_eta_abs_cps' t idx e in
               let argstr := String.concat " " args in
               (idx,
                (fun lvl
                 => match args, show_f lvl with
                    | nil, show_f => show_f
                    | _, nil => ["(λ " ++ argstr ++ ", (* NOTHING‽ *))"]%string
                    | _, show_f::nil
                      => ["(λ " ++ argstr ++ ", " ++ show_f ++ ")"]%string
                    | _, show_f
                      => ["(λ " ++ argstr ++ ","]%string ++ (List.map (fun v => String " " (String " " v)) show_f) ++ [")"]
                    end%list),
                match t return ZRange.type.base.option.interp (type.final_codomain t) -> ZRange.type.option.interp t with
                | type.base _ => fun r => r
                | type.arrow _ _ => fun _ => ZRange.type.option.None
                end r).
        End helper.

        Fixpoint show_expr_lines (with_casts : bool) {t} (e : @expr.expr base.type ident (fun _ => string) t) (args : type.for_each_lhs_of_arrow (fun t => (nat -> string) * ZRange.type.option.interp t)%type t) (idx : positive) {struct e} : (positive * (nat -> list string)) * ZRange.type.base.option.interp (type.final_codomain t)
          := match e in expr.expr t return type.for_each_lhs_of_arrow (fun t => (nat -> string) * ZRange.type.option.interp t)%type t -> (positive * (nat -> list string)) * ZRange.type.base.option.interp (type.final_codomain t) with
             | expr.Ident t idc
               => fun args => let '(v, r) := @show_ident_lvl with_casts t idc args in
                              (idx, fun lvl => [v lvl], r)
             | expr.Var t v
               => fun args => (idx, fun lvl => [show_application with_casts (fun _ => v) args lvl], ZRange.type.base.option.None)
             | expr.Abs s d f as e
               => fun args
                  => show_eta_abs_cps (fun t e args idx => let '(idx, v, r) := @show_expr_lines with_casts t e args idx in (idx, fun _ => v 200%nat, r)) with_casts idx e args
             | expr.App s d f x
               => fun args
                  => let '(idx', x', xr) := show_eta_cps (fun t e args idx => @show_expr_lines with_casts t e args idx) idx x in
                     @show_expr_lines
                       with_casts _ f
                       (((fun lvl => String.concat String.NewLine (x' lvl)), xr),
                        args)
                       idx
             | expr.LetIn A (type.base B) x f
               => fun 'tt
                  => let n := "x" ++ decimal_string_of_pos idx in
                     let '(_, show_x, xr) := show_eta_cps (fun t e args idx => @show_expr_lines with_casts t e args idx) idx x in
                     let '(idx, show_f, fr) := show_eta_cps (fun t e args idx => @show_expr_lines with_casts t e args idx) (Pos.succ idx) (f n) in
                     let ty_str := match make_cast xr with
                                   | Some c => " : " ++ c
                                   | None => ""
                                   end in
                     let expr_let_line := "expr_let " ++ n ++ ty_str ++ " := " in
                     (idx,
                      (fun lvl
                       => match show_x 200%nat with
                          | nil => [expr_let_line ++ "(* NOTHING‽ *) in"]%string ++ show_f 200%nat
                          | show_x::nil => [expr_let_line ++ show_x ++ " in"]%string ++ show_f 200%nat
                          | show_x::rest
                            => ([expr_let_line ++ show_x]%string)
                                 ++ (List.map (fun l => String.of_list (List.repeat " "%char (String.length expr_let_line)) ++ l)%string
                                              rest)
                                 ++ ["in"]
                                 ++ show_f 200%nat
                          end%list),
                      fr)
             | expr.LetIn A B x f
               => fun args
                  => let n := "x" ++ decimal_string_of_pos idx in
                     let '(_, show_x, xr) := show_eta_cps (fun t e args idx => @show_expr_lines with_casts t e args idx) idx x in
                     let '(idx, show_f, fr) := show_eta_cps (fun t e args idx => @show_expr_lines with_casts t e args idx) (Pos.succ idx) (f n) in
                     let ty_str := match make_cast xr with
                                   | Some c => " : " ++ c
                                   | None => ""
                                   end in
                     let expr_let_line := "expr_let " ++ n ++ ty_str ++ " := " in
                     (idx,
                      (fun lvl
                       => (["("]
                             ++ (map
                                   (String " ")
                                   match show_x 200%nat with
                                   | nil => [expr_let_line ++ "(* NOTHING‽ *) in"]%string ++ show_f 200%nat
                                   | show_x::nil => [expr_let_line ++ show_x ++ " in"]%string ++ show_f 200%nat
                                   | show_x::rest
                                     => ([expr_let_line ++ show_x]%string)
                                          ++ (List.map (fun l => String.of_list (List.repeat " "%char (String.length expr_let_line)) ++ l)%string
                                                       rest)
                                          ++ ["in"]
                                          ++ show_f 200%nat
                                   end%list)
                             ++ [")"; show_application with_casts (fun _ => "") args 11%nat])%list),
                      ZRange.type.base.option.None)
             end args.
        Fixpoint show_var_expr {var t} (with_parens : bool) (e : @expr.expr base.type ident var t) : string
          := match e with
             | expr.Ident t idc => show with_parens idc
             | expr.Var t v => maybe_wrap_parens with_parens ("VAR_(" ++ show false t ++ ")")
             | expr.Abs s d f => "λ_(" ++ show false t ++ ")"
             | expr.App s d f x
               => let show_f := @show_var_expr _ _ false f in
                  let show_x := @show_var_expr _ _ true x in
                  maybe_wrap_parens with_parens (show_f ++ " @ " ++ show_x)
             | expr.LetIn A B x f
               => let show_x := @show_var_expr _ _ false x in
                  maybe_wrap_parens with_parens ("expr_let _ := " ++ show_x ++ " in _")
             end%string.
        Definition partially_show_expr {var t} : Show (@expr.expr base.type ident var t) := show_var_expr.
        Global Instance show_lines_expr {t} : ShowLines (@expr.expr base.type ident (fun _ => string) t)
          := fun with_parens e => let '(_, v, _) := show_eta_cps (fun t e args idx => @show_expr_lines true t e args idx) 1%positive e in v (if with_parens then 0%nat else 201%nat).
        Global Instance show_lines_Expr {t} : ShowLines (@expr.Expr base.type ident t)
          := fun with_parens e => show_lines with_parens (e _).
        Global Instance show_expr {t} : Show (@expr.expr base.type ident (fun _ => string) t)
          := fun with_parens e => String.concat String.NewLine (show_lines with_parens e).
        Global Instance show_Expr {t} : Show (@expr.Expr base.type ident t)
          := fun with_parens e => show with_parens (e _).
      End expr.
    End PHOAS.

    Module C.
      Module type.
        Inductive primitive := Z | Zptr.
        Inductive type := type_primitive (t : primitive) | prod (A B : type) | unit.
        Module Export Notations.
          Global Coercion type_primitive : primitive >-> type.
          Delimit Scope Ctype_scope with Ctype.

          Bind Scope Ctype_scope with type.
          Notation "()" := unit : Ctype_scope.
          Notation "A * B" := (prod A B) : Ctype_scope.
          Notation type := type.
        End Notations.
      End type.
      Import type.Notations.

      Module int.
        Inductive type := signed (lgbitwidth : nat) | unsigned (lgbitwidth : nat).

        Definition lgbitwidth_of (t : type) : nat
          := match t with
             | signed lgbitwidth => lgbitwidth
             | unsigned lgbitwidth => lgbitwidth
             end.
        Definition bitwidth_of (t : type) : Z := 2^Z.of_nat (lgbitwidth_of t).
        Definition is_signed (t : type) : bool := match t with signed _ => true | unsigned _ => false end.
        Definition is_unsigned (t : type) : bool := negb (is_signed t).
        Definition to_zrange (t : type) : zrange
          := let bw := bitwidth_of t in
             if is_signed t
             then r[-2^bw ~> 2^(bw-1) - 1]
             else r[0 ~> 2^bw - 1].
        Definition is_tighter_than (t1 t2 : type)
          := ZRange.is_tighter_than_bool (to_zrange t1) (to_zrange t2).
        Definition of_zrange_relaxed (r : zrange) : type
          := let lg2 := Z.log2_up ((upper r - lower r) + 1) in
             let lg2u := Z.log2_up (upper r + 1) in
             let lg2l := (if (lower r <? 0) then 1 + Z.log2_up (-lower r) else 0) in
             let lg2 := Z.max lg2 (Z.max lg2u lg2l) in
             let lg2lg2u := Z.log2_up lg2 in
             if (0 <=? lower r)
             then unsigned (Z.to_nat lg2lg2u)
             else signed (Z.to_nat lg2lg2u).
        Definition of_zrange (r : zrange) : option type
          := let t := of_zrange_relaxed r in
             let r' := to_zrange t in
             if (r' =? r)%zrange
             then Some t
             else None.
        Definition unsigned_counterpart_of (t : type) : type
          := unsigned (lgbitwidth_of t).

        Global Instance show_type : Show type
          := fun with_parens t
             => maybe_wrap_parens
                 with_parens
                 ((if is_unsigned t then "u" else "") ++ "int" ++ decimal_string_of_Z (bitwidth_of t)).

        Definition union (t1 t2 : type) : type := of_zrange_relaxed (ZRange.union (to_zrange t1) (to_zrange t2)).

        Fixpoint base_interp (t : base.type) : Set
          := match t with
             | base.type.Z => type
             | base.type.type_base _ => unit
             | base.type.prod A B => base_interp A * base_interp B
             | base.type.list A => list (base_interp A)
             end%type.

        Module option.
          Fixpoint interp (t : base.type) : Set
            := match t with
               | base.type.Z => option type
               | base.type.type_base _ => unit
               | base.type.prod A B => interp A * interp B
               | base.type.list A => option (list (interp A))
               end%type.
          Fixpoint None {t} : interp t
            := match t with
               | base.type.Z => Datatypes.None
               | base.type.type_base _ => tt
               | base.type.prod A B => (@None A, @None B)
               | base.type.list A => Datatypes.None
               end.
          Fixpoint Some {t} : base_interp t -> interp t
            := match t with
               | base.type.Z => Datatypes.Some
               | base.type.type_base _ => fun tt => tt
               | base.type.prod A B => fun '(a, b) => (@Some A a, @Some B b)
               | base.type.list A => fun ls => Datatypes.Some (List.map (@Some A) ls)
               end.
        End option.

        Module Export Notations.
          Notation _Bool := (unsigned 0).
          Notation uint8 := (unsigned 3).
          Notation int8 := (signed 3).
          Notation uint16 := (unsigned 4).
          Notation int16 := (signed 4).
          Notation uint32 := (unsigned 5).
          Notation int32 := (signed 5).
          Notation uint64 := (unsigned 6).
          Notation int64 := (signed 6).
          Notation uint128 := (unsigned 7).
          Notation int128 := (signed 7).
        End Notations.
      End int.
      Import int.Notations.

      Example of_zrange_int32 : int.of_zrange_relaxed r[-2^31 ~> 2^31-1] = int32 := eq_refl.
      Example of_zrange_int64 : int.of_zrange_relaxed r[-2^31-1 ~> 2^31-1] = int64 := eq_refl.
      Example of_zrange_int64' : int.of_zrange_relaxed r[-2^31 ~> 2^31] = int64 := eq_refl.
      Example of_zrange_uint32 : int.of_zrange_relaxed r[0 ~> 2^32-1] = uint32 := eq_refl.
      Example of_zrange_uint64 : int.of_zrange_relaxed r[0 ~> 2^32] = uint64 := eq_refl.

      Section ident.
        Import type.
        Inductive ident : type -> type -> Set :=
        | literal (v : BinInt.Z) : ident unit Z
        | List_nth (n : Datatypes.nat) : ident Zptr Z
        | Addr : ident Z Zptr
        | Dereference : ident Zptr Z
        | Z_shiftr (offset : BinInt.Z) : ident Z Z
        | Z_shiftl (offset : BinInt.Z) : ident Z Z
        | Z_land : ident (Z * Z) Z
        | Z_lor : ident (Z * Z) Z
        | Z_add : ident (Z * Z) Z
        | Z_mul : ident (Z * Z) Z
        | Z_sub : ident (Z * Z) Z
        | Z_opp : ident Z Z
        | Z_lnot (ty:int.type) : ident Z Z
        | Z_bneg : ident Z Z
        | Z_mul_split (lgs:BinInt.Z) : ident ((Zptr * Zptr) * (Z * Z)) unit
        | Z_add_with_get_carry (lgs:BinInt.Z) : ident ((Zptr * Zptr) * (Z * Z * Z)) unit
        | Z_sub_with_get_borrow (lgs:BinInt.Z) : ident ((Zptr * Zptr) * (Z * Z * Z)) unit
        | Z_zselect (ty:int.type) : ident (Zptr * (Z * Z * Z)) unit
        | Z_add_modulo : ident (Z * Z * Z) Z
        | Z_static_cast (ty : int.type) : ident Z Z
        .
      End ident.

      Inductive arith_expr : type -> Set :=
      | AppIdent {s d} (idc : ident s d) (arg : arith_expr s) : arith_expr d
      | Var (t : type.primitive) (v : string) : arith_expr t
      | Pair {A B} (a : arith_expr A) (b : arith_expr B) : arith_expr (A * B)
      | TT : arith_expr type.unit.

      Inductive stmt :=
      | Call (val : arith_expr type.unit)
      | Assign (declare : bool) (t : type.primitive) (sz : option int.type) (name : string) (val : arith_expr t)
      | AssignZPtr (name : string) (sz : option int.type) (val : arith_expr type.Z)
      | DeclareVar (t : type.primitive) (sz : option int.type) (name : string)
      | AssignNth (name : string) (n : nat) (val : arith_expr type.Z).
      Definition expr := list stmt.

      Module Export Notations.
        Export int.Notations.
        Export type.Notations.
        Delimit Scope Cexpr_scope with Cexpr.
        Bind Scope Cexpr_scope with expr.
        Bind Scope Cexpr_scope with stmt.
        Bind Scope Cexpr_scope with arith_expr.
        Infix "@@" := AppIdent : Cexpr_scope.
        Notation "( x , y , .. , z )" := (Pair .. (Pair x%Cexpr y%Cexpr) .. z%Cexpr) : Cexpr_scope.
        Notation "( )" := TT : Cexpr_scope.

        Notation "()" := TT : Cexpr_scope.
        Notation "x ;; y" := (@cons stmt x%Cexpr y%Cexpr) (at level 70, right associativity, format "'[v' x ;; '/' y ']'") : Cexpr_scope.
      End Notations.

      Definition invert_literal {t} (e : arith_expr t) : option (BinInt.Z)
        := match e with
           | AppIdent s d (literal v) arg => Some v
           | _ => None
           end.

      Module OfPHOAS.
        Fixpoint base_var_data (t : base.type) : Set
          := match t with
             | base.type.unit
               => unit
             | base.type.nat
             | base.type.bool
               => Empty_set
             | base.type.Z => string * option int.type
             | base.type.prod A B => base_var_data A * base_var_data B
             | base.type.list A => string * option int.type * nat
             end.
        Definition var_data (t : Compilers.type.type base.type) : Set
          := match t with
             | type.base t => base_var_data t
             | type.arrow s d => Empty_set
             end.

        Fixpoint arith_expr_for_base (t : base.type) : Set
          := match t with
             | base.type.Z
               => arith_expr type.Z * option int.type
             | base.type.prod A B
               => arith_expr_for_base A * arith_expr_for_base B
             | base.type.list A => list (arith_expr_for_base A)
             | base.type.type_base _ as t
               => base.interp t
             end.
        Definition arith_expr_for (t : Compilers.type.type base.type) : Set
          := match t with
             | type.base t => arith_expr_for_base t
             | type.arrow s d => Empty_set
             end.

        (** Quoting
            http://en.cppreference.com/w/c/language/conversion:

            ** Integer promotions

            Integer promotion is the implicit conversion of a value of
            any integer type with rank less or equal to rank of int or
            of a bit field of type _Bool, int, signed int, unsigned
            int, to the value of type int or unsigned int

            If int can represent the entire range of values of the
            original type (or the range of values of the original bit
            field), the value is converted to type int. Otherwise the
            value is converted to unsigned int. *)
        (** We assume a 32-bit [int] type *)
        Definition integer_promote_type (t : int.type) : int.type
          := if int.is_tighter_than t int32
             then int32
             else t.

        (** Quoting
            http://en.cppreference.com/w/c/language/conversion:

            rank above is a property of every integer type and is
            defined as follows:

            1) the ranks of all signed integer types are different and
               increase with their precision: rank of signed char <
               rank of short < rank of int < rank of long int < rank
               of long long int

            2) the ranks of all signed integer types equal the ranks
               of the corresponding unsigned integer types

            3) the rank of any standard integer type is greater than
               the rank of any extended integer type of the same size
               (that is, rank of __int64 < rank of long long int, but
               rank of long long < rank of __int128 due to the rule
               (1))

            4) rank of char equals rank of signed char and rank of
               unsigned char

            5) the rank of _Bool is less than the rank of any other
               standard integer type

            6) the rank of any enumerated type equals the rank of its
               compatible integer type

            7) ranking is transitive: if rank of T1 < rank of T2 and
               rank of T2 < rank of T3 then rank of T1 < rank of T3

            8) any aspects of relative ranking of extended integer
               types not covered above are implementation defined *)
        (** We define the rank to be the bitwidth, which satisfies
            (1), (2), (4), (5), and (7).  Points (3) and (6) do not
            apply. *)
        Definition rank (r : int.type) : BinInt.Z := int.bitwidth_of r.
        Definition IMPOSSIBLE {T} (v : T) : T. exact v. Qed.
        (** Quoting
            http://en.cppreference.com/w/c/language/conversion: *)
        Definition common_type (t1 t2 : int.type) : int.type
          (** First of all, both operands undergo integer promotions
              (see below). Then *)
          := let t1 := integer_promote_type t1 in
             let t2 := integer_promote_type t2 in
             (** - If the types after promotion are the same, that
                   type is the common type *)
             if int.type_beq t1 t2 then
               t1
             (** - Otherwise, if both operands after promotion have
                   the same signedness (both signed or both unsigned),
                   the operand with the lesser conversion rank (see
                   below) is implicitly converted to the type of the
                   operand with the greater conversion rank *)
             else if bool_beq (int.is_signed t1) (int.is_signed t2) then
               (if rank t1 >=? rank t2 then t1 else t2)
             (** - Otherwise, the signedness is different: If the
                   operand with the unsigned type has conversion rank
                   greater or equal than the rank of the type of the
                   signed operand, then the operand with the signed
                   type is implicitly converted to the unsigned type
                   *)
             else if int.is_unsigned t1 && (rank t1 >=? rank t2) then
               t1
             else if int.is_unsigned t2 && (rank t2 >=? rank t1) then
               t2
             (** - Otherwise, the signedness is different and the
                   signed operand's rank is greater than unsigned
                   operand's rank. In this case, if the signed type
                   can represent all values of the unsigned type, then
                   the operand with the unsigned type is implicitly
                   converted to the type of the signed operand. *)
             else if int.is_signed t1 && int.is_tighter_than t2 t1 then
               t1
             else if int.is_signed t2 && int.is_tighter_than t1 t2 then
               t2
             (** - Otherwise, both operands undergo implicit
                   conversion to the unsigned type counterpart of the
                   signed operand's type. *)
             (** N.B. This case ought to be impossible in our code,
                   where [rank] is the bitwidth. *)
             else if int.is_signed t1 then
               int.unsigned_counterpart_of t1
             else
               int.unsigned_counterpart_of t2.

        Definition Zcast_down_if_needed
          : option int.type -> arith_expr_for_base base.type.Z -> arith_expr_for_base base.type.Z
          := fun desired_type '(e, known_type)
             => match desired_type, known_type with
               | None, _ => (e, known_type)
               | Some desired_type, Some known_type
                 => if int.is_tighter_than known_type desired_type
                   then (e, Some known_type)
                   else (Z_static_cast desired_type @@ e, Some desired_type)
               | Some desired_type, None
                 => (Z_static_cast desired_type @@ e, Some desired_type)
               end%core%Cexpr.

        Fixpoint cast_down_if_needed {t}
          : int.option.interp t -> arith_expr_for_base t -> arith_expr_for_base t
          := match t with
             | base.type.Z => Zcast_down_if_needed
             | base.type.type_base _ => fun _ x => x
             | base.type.prod A B
               => fun '(r1, r2) '(e1, e2) => (@cast_down_if_needed A r1 e1,
                                          @cast_down_if_needed B r2 e2)
             | base.type.list A
               => fun r1 ls
                 => match r1 with
                   | Some r1 => List.map (fun '(r, e) => @cast_down_if_needed A r e)
                                        (List.combine r1 ls)
                   | None => ls
                   end
             end.

        Definition Zcast_up_if_needed
          : option int.type -> arith_expr_for_base base.type.Z -> arith_expr_for_base base.type.Z
          := fun desired_type '(e, known_type)
             => match desired_type, known_type with
               | None, _ | _, None => (e, known_type)
               | Some desired_type, Some known_type
                 => if int.is_tighter_than desired_type known_type
                   then (e, Some known_type)
                   else (Z_static_cast desired_type @@ e, Some desired_type)%core%Cexpr
               end.

        Fixpoint cast_up_if_needed {t}
          : int.option.interp t -> arith_expr_for_base t -> arith_expr_for_base t
          := match t with
             | base.type.Z => Zcast_up_if_needed
             | base.type.type_base _ => fun _ x => x
             | base.type.prod A B
               => fun '(r1, r2) '(e1, e2) => (@cast_up_if_needed A r1 e1,
                                          @cast_up_if_needed B r2 e2)
             | base.type.list A
               => fun r1 ls
                 => match r1 with
                   | Some r1 => List.map (fun '(r, e) => @cast_up_if_needed A r e)
                                        (List.combine r1 ls)
                   | None => ls
                   end
             end.

        Definition cast_bigger_up_if_needed
                   (desired_type : option int.type)
                   (args : arith_expr_for (base.type.Z * base.type.Z))
          : arith_expr_for (base.type.Z * base.type.Z)
          := match desired_type with
             | None => args
             | Some _
               => let '((e1, t1), (e2, t2)) := args in
                 match t1, t2 with
                 | None, _ | _, None => args
                 | Some t1', Some t2'
                   => if int.is_tighter_than t2' t1'
                     then (Zcast_up_if_needed desired_type (e1, t1), (e2, t2))
                     else ((e1, t1), Zcast_up_if_needed desired_type (e2, t2))
                 end
             end.

        Definition arith_bin_arith_expr_of_PHOAS_ident
                   (s:=(base.type.Z * base.type.Z)%etype)
                   (d:=base.type.Z)
                   (idc : ident (type.Z * type.Z) type.Z)
          : option int.type -> arith_expr_for s -> arith_expr_for d
          := fun desired_type '((e1, t1), (e2, t2))
             => let t1 := option_map integer_promote_type t1 in
               let t2 := option_map integer_promote_type t2 in
               let '((e1, t1), (e2, t2))
                   := cast_bigger_up_if_needed desired_type ((e1, t1), (e2, t2)) in
               let ct := (t1 <- t1; t2 <- t2; Some (common_type t1 t2))%option in
               Zcast_down_if_needed desired_type ((idc @@ (e1, e2))%Cexpr, ct).

        Local Definition fakeprod (A B : Compilers.type.type base.type) : Compilers.type.type base.type
          := match A, B with
             | type.base A, type.base B => type.base (base.type.prod A B)
             | type.arrow _ _, _
             | _, type.arrow _ _
               => type.base (base.type.type_base base.type.unit)
             end.
        Definition arith_expr_for_uncurried_domain (t : Compilers.type.type base.type)
          := match t with
             | type.base t => unit
             | type.arrow s d => arith_expr_for (type.uncurried_domain fakeprod s d)
             end.

        Section with_bind.
          (* N.B. If we make the [bind*_err] notations, then Coq can't
             infer types correctly; if we make them [Local
             Definition]s or [Let]s, then [ocamlopt] fails with
             "Error: The type of this module, [...], contains type
             variables that cannot be generalized".  We need to run
             [cbv] below to actually unfold them. >.< *)
          Local Notation ErrT T := (T + list string)%type.
          Local Notation ret v := (@inl _ (list string) v) (only parsing).
          Local Notation "x <- v ; f" := (match v with
                                          | inl x => f
                                          | inr err => inr err
                                          end).
          Reserved Notation "A1 ,, A2 <- X ; B" (at level 70, A2 at next level, right associativity, format "'[v' A1 ,,  A2  <-  X ; '/' B ']'").
          Reserved Notation "A1 ,, A2 <- X1 , X2 ; B" (at level 70, A2 at next level, right associativity, format "'[v' A1 ,,  A2  <-  X1 ,  X2 ; '/' B ']'").
          Reserved Notation "A1 ,, A2 ,, A3 <- X ; B" (at level 70, A2 at next level, A3 at next level, right associativity, format "'[v' A1 ,,  A2 ,,  A3  <-  X ; '/' B ']'").
          Reserved Notation "A1 ,, A2 ,, A3 <- X1 , X2 , X3 ; B" (at level 70, A2 at next level, A3 at next level, right associativity, format "'[v' A1 ,,  A2 ,,  A3  <-  X1 ,  X2 ,  X3 ; '/' B ']'").
          Reserved Notation "A1 ,, A2 ,, A3 ,, A4 <- X ; B" (at level 70, A2 at next level, A3 at next level, A4 at next level, right associativity, format "'[v' A1 ,,  A2 ,,  A3 ,,  A4  <-  X ; '/' B ']'").
          Reserved Notation "A1 ,, A2 ,, A3 ,, A4 <- X1 , X2 , X3 , X4 ; B" (at level 70, A2 at next level, A3 at next level, A4 at next level, right associativity, format "'[v' A1 ,,  A2 ,,  A3 ,,  A4  <-  X1 ,  X2 ,  X3 ,  X4 ; '/' B ']'").
          Reserved Notation "A1 ,, A2 ,, A3 ,, A4 ,, A5 <- X ; B" (at level 70, A2 at next level, A3 at next level, A4 at next level, A5 at next level, right associativity, format "'[v' A1 ,,  A2 ,,  A3 ,,  A4 ,,  A5  <-  X ; '/' B ']'").
          Reserved Notation "A1 ,, A2 ,, A3 ,, A4 ,, A5 <- X1 , X2 , X3 , X4 , X5 ; B" (at level 70, A2 at next level, A3 at next level, A4 at next level, A5 at next level, right associativity, format "'[v' A1 ,,  A2 ,,  A3 ,,  A4 ,,  A5  <-  X1 ,  X2 ,  X3 ,  X4 ,  X5 ; '/' B ']'").
          Let bind2_err {A B C} (v1 : ErrT A) (v2 : ErrT B) (f : A -> B -> ErrT C) : ErrT C
            := match v1, v2 with
               | inl x1, inl x2 => f x1 x2
               | inr err, inl _ | inl _, inr err => inr err
               | inr err1, inr err2 => inr (List.app err1 err2)
               end.
          Local Notation "x1 ,, x2 <- v1 , v2 ; f"
            := (bind2_err v1 v2 (fun x1 x2 => f)).
          Local Notation "x1 ,, x2 <- v ; f"
            := (x1 ,, x2 <- fst v , snd v; f).
          Let bind3_err {A B C R} (v1 : ErrT A) (v2 : ErrT B) (v3 : ErrT C) (f : A -> B -> C -> ErrT R) : ErrT R
            := (x12 ,, x3 <- (x1 ,, x2 <- v1, v2; inl (x1, x2)), v3;
                  let '(x1, x2) := x12 in
                  f x1 x2 x3).
          Local Notation "x1 ,, x2 ,, x3 <- v1 , v2 , v3 ; f"
            := (bind3_err v1 v2 v3 (fun x1 x2 x3 => f)).
          Local Notation "x1 ,, x2 ,, x3 <- v ; f"
            := (let '(v1, v2, v3) := v in x1 ,, x2 ,, x3 <- v1 , v2 , v3; f).
          Let bind4_err {A B C D R} (v1 : ErrT A) (v2 : ErrT B) (v3 : ErrT C) (v4 : ErrT D) (f : A -> B -> C -> D -> ErrT R) : ErrT R
            := (x12 ,, x34 <- (x1 ,, x2 <- v1, v2; inl (x1, x2)), (x3 ,, x4 <- v3, v4; inl (x3, x4));
                  let '((x1, x2), (x3, x4)) := (x12, x34) in
                  f x1 x2 x3 x4).
          Local Notation "x1 ,, x2 ,, x3 ,, x4 <- v1 , v2 , v3 , v4 ; f"
            := (bind4_err v1 v2 v3 v4 (fun x1 x2 x3 x4 => f)).
          Local Notation "x1 ,, x2 ,, x3 ,, x4 <- v ; f"
            := (let '(v1, v2, v3, v4) := v in x1 ,, x2 ,, x3 ,, x4 <- v1 , v2 , v3 , v4; f).
          Let bind5_err {A B C D E R} (v1 : ErrT A) (v2 : ErrT B) (v3 : ErrT C) (v4 : ErrT D) (v5 : ErrT E) (f : A -> B -> C -> D -> E -> ErrT R) : ErrT R
            := (x12 ,, x345 <- (x1 ,, x2 <- v1, v2; inl (x1, x2)), (x3 ,, x4 ,, x5 <- v3, v4, v5; inl (x3, x4, x5));
                  let '((x1, x2), (x3, x4, x5)) := (x12, x345) in
                  f x1 x2 x3 x4 x5).
          Local Notation "x1 ,, x2 ,, x3 ,, x4 ,, x5 <- v1 , v2 , v3 , v4 , v5 ; f"
            := (bind5_err v1 v2 v3 v4 v5 (fun x1 x2 x3 x4 x5 => f)).
          Local Notation "x1 ,, x2 ,, x3 ,, x4 ,, x5 <- v ; f"
            := (let '(v1, v2, v3, v4, v5) := v in x1 ,, x2 ,, x3 ,, x4 ,, x5 <- v1 , v2 , v3 , v4 , v5; f).

          Definition maybe_log2 (s : Z) : option Z
            := if 2^Z.log2 s =? s then Some (Z.log2 s) else None.
          Definition maybe_loglog2 (s : Z) : option nat
            := (v <- maybe_log2 s;
                  v <- maybe_log2 v;
                  if Z.leb 0 v
                  then Some (Z.to_nat v)
                  else None).


          Definition arith_expr_of_PHOAS_ident
                     {t}
                     (idc : ident.ident t)
            : int.option.interp (type.final_codomain t) -> type.interpM_final (fun T => ErrT T) arith_expr_for_base t
            := match idc in ident.ident t return int.option.interp (type.final_codomain t) -> type.interpM_final (fun T => ErrT T) arith_expr_for_base t with
               | ident.Literal base.type.Z v
                 => fun r => ret (cast_down_if_needed
                                r
                                (literal v @@ TT, Some (int.of_zrange_relaxed r[v~>v])))
               | ident.nil t
                 => fun _ => ret nil
               | ident.cons t
                 => fun r x xs => ret (cast_down_if_needed r (cons x xs))
               | ident.fst A B => fun r xy => ret (cast_down_if_needed r (@fst _ _ xy))
               | ident.snd A B => fun r xy => ret (cast_down_if_needed r (@snd _ _ xy))
               | ident.List_nth_default base.type.Z
                 => fun r d ls n
                   => List.nth_default (inr ["Invalid list index " ++ show false n]%string)
                                      (List.map (fun x => ret (cast_down_if_needed r x)) ls) n
               | ident.Z_shiftr
                 => fun rout '(e, r) '(offset, roffset)
                   => let rin := option_map integer_promote_type r in
                     match invert_literal offset with
                     | Some offset => ret (cast_down_if_needed rout (Z_shiftr offset @@ e, rin))
                     | None => inr ["Invalid right-shift by a non-literal"]%string
                     end
               | ident.Z_shiftl
                 => fun rout '(e, r) '(offset, roffset)
                   => let rin := option_map integer_promote_type r in
                     match invert_literal offset with
                     | Some offset
                       => let '(e', rin') := cast_up_if_needed rout (e, rin) in
                         ret (cast_down_if_needed rout (Z_shiftl offset @@ e', rin'))
                     | None => inr ["Invalid left-shift by a non-literal"]%string
                     end
               | ident.Z_bneg
                 => fun rout '(e, r)
                   => (** N.B. We assume that C will implicitly cast the output of [!e] to whatever integer type it wants it in *)
                     ret (Z_bneg @@ e, rout)
               | ident.Z_land => fun r x y => ret (arith_bin_arith_expr_of_PHOAS_ident Z_land r (x, y))
               | ident.Z_lor => fun r x y => ret (arith_bin_arith_expr_of_PHOAS_ident Z_lor r (x, y))
               | ident.Z_add => fun r x y => ret (arith_bin_arith_expr_of_PHOAS_ident Z_add r (x, y))
               | ident.Z_mul => fun r x y => ret (arith_bin_arith_expr_of_PHOAS_ident Z_mul r (x, y))
               | ident.Z_sub => fun r x y => ret (arith_bin_arith_expr_of_PHOAS_ident Z_sub r (x, y))
               | ident.Z_lnot_modulo
                 => fun rout '(e, r) '(modulus, _)
                   => let rin := option_map integer_promote_type r in
                     match invert_literal modulus with
                     | Some modulus
                       => match maybe_loglog2 modulus with
                         | Some lgbitwidth
                           => let ty := int.unsigned lgbitwidth in
                             let rin' := Some ty in
                             let '(e, _) := Zcast_up_if_needed rin' (e, r) in
                             ret (cast_down_if_needed rout (cast_up_if_needed rout (Z_lnot ty @@ e, rin')))
                         | None => inr ["Invalid modulus for Z.lnot (not 2^(2^_)): " ++ show false modulus]%string
                         end
                     | None => inr ["Invalid non-literal modulus for Z.lnot"]%string
                     end
               | ident.pair A B
                 => fun _ _ _ => inr ["Invalid identifier in arithmetic expression " ++ show true idc]%string
               | ident.Z_opp (* we pretend this is [0 - _] *)
                 => fun r y => let zero := (literal 0 @@ TT, Some (int.of_zrange_relaxed r[0~>0])) in
                           ret (arith_bin_arith_expr_of_PHOAS_ident Z_sub r (zero, y))
               | ident.Literal _ v
                 => fun _ => ret v
               | ident.Nat_succ
               | ident.Nat_pred
               | ident.Nat_max
               | ident.Nat_mul
               | ident.Nat_add
               | ident.Nat_sub
               | ident.prod_rect _ _ _
               | ident.bool_rect _
               | ident.nat_rect _
               | ident.list_rect _ _
               | ident.list_case _ _
               | ident.List_length _
               | ident.List_seq
               | ident.List_repeat _
               | ident.List_combine _ _
               | ident.List_map _ _
               | ident.List_app _
               | ident.List_rev _
               | ident.List_flat_map _ _
               | ident.List_partition _
               | ident.List_fold_right _ _
               | ident.List_update_nth _
               | ident.List_nth_default _
               | ident.Z_pow
               | ident.Z_div
               | ident.Z_modulo
               | ident.Z_eqb
               | ident.Z_leb
               | ident.Z_geb
               | ident.Z_log2
               | ident.Z_log2_up
               | ident.Z_of_nat
               | ident.Z_to_nat
               | ident.Z_zselect
               | ident.Z_mul_split
               | ident.Z_add_get_carry
               | ident.Z_add_with_carry
               | ident.Z_add_with_get_carry
               | ident.Z_sub_get_borrow
               | ident.Z_sub_with_get_borrow
               | ident.Z_add_modulo
               | ident.Z_rshi
               | ident.Z_cc_m
               | ident.Z_cast _
               | ident.Z_cast2 _
               | ident.fancy_add _ _
               | ident.fancy_addc _ _
               | ident.fancy_sub _ _
               | ident.fancy_subb _ _
               | ident.fancy_mulll _
               | ident.fancy_mullh _
               | ident.fancy_mulhl _
               | ident.fancy_mulhh _
               | ident.fancy_rshi _ _
               | ident.fancy_selc
               | ident.fancy_selm _
               | ident.fancy_sell
               | ident.fancy_addm
                 => fun _ => type.interpM_return _ _ _ (inr ["Invalid identifier in arithmetic expression " ++ show true idc]%string)
               end%core%Cexpr%option%zrange.

          Fixpoint collect_args_and_apply_unknown_casts {t}
            : (int.option.interp (type.final_codomain t) -> type.interpM_final (fun T => ErrT T) arith_expr_for_base t)
              -> type.interpM_final
                  (fun T => ErrT T)
                  (fun t => int.option.interp t -> ErrT (arith_expr_for_base t))
                  t
            := match t
                     return ((int.option.interp (type.final_codomain t) -> type.interpM_final (fun T => ErrT T) arith_expr_for_base t)
                             -> type.interpM_final
                                 (fun T => ErrT T)
                                 (fun t => int.option.interp t -> ErrT (arith_expr_for_base t))
                                 t)
               with
               | type.base t => fun v => ret v
               | type.arrow (type.base s) d
                 => fun f
                     (x : (int.option.interp s -> ErrT (arith_expr_for_base s)))
                   => match x int.option.None with
                     | inl x'
                       => @collect_args_and_apply_unknown_casts
                           d
                           (fun rout => f rout x')
                     | inr errs => type.interpM_return _ _ _ (inr errs)
                     end
               | type.arrow (type.arrow _ _) _
                 => fun _ => type.interpM_return _ _ _ (inr ["Invalid higher-order function"])
               end.

          Definition collect_args_and_apply_known_casts {t}
                     (idc : ident.ident t)
            : ErrT (type.interpM_final
                      (fun T => ErrT T)
                      (fun t => int.option.interp t -> ErrT (arith_expr_for_base t))
                      t)
            := match idc in ident.ident t
                     return ErrT
                              (type.interpM_final
                                 (fun T => ErrT T)
                                 (fun t => int.option.interp t -> ErrT (arith_expr_for_base t))
                                 t)
               with
               | ident.Z_cast r
                 => inl (fun arg => inl (fun r' => arg <- arg (Some (int.of_zrange_relaxed r)); ret (Zcast_down_if_needed r' arg)))
               | ident.Z_cast2 (r1, r2)
                 => inl (fun arg => inl (fun r' => arg <- (arg (Some (int.of_zrange_relaxed r1), Some (int.of_zrange_relaxed r2)));
                                              ret (cast_down_if_needed (t:=base.type.Z*base.type.Z) r' arg)))
               | ident.pair A B
                 => inl (fun ea eb
                        => inl
                            (fun '(ra, rb)
                             => ea' ,, eb' <- ea ra, eb rb;
                                 inl (ea', eb')))
               | ident.nil _
                 => inl (inl (fun _ => inl nil))
               | ident.cons t
                 => inl
                     (fun x xs
                      => inl
                          (fun rls
                           => let mkcons (r : int.option.interp t)
                                        (rs : int.option.interp (base.type.list t))
                                 := x ,, xs <- x r, xs rs;
                                      inl (cons x xs) in
                             match rls with
                             | Some (cons r rs) => mkcons r (Some rs)
                             | Some nil
                             | None
                               => mkcons int.option.None int.option.None
                             end))
               | _ => inr ["Invalid identifier where cast or constructor was expected: " ++ show false idc]%string
               end.

          Definition collect_args_and_apply_casts {t} (idc : ident.ident t)
                     (convert_no_cast : int.option.interp (type.final_codomain t) -> type.interpM_final (fun T => ErrT T) arith_expr_for_base t)
            : type.interpM_final
                (fun T => ErrT T)
                (fun t => int.option.interp t -> ErrT (arith_expr_for_base t))
                t
            := match collect_args_and_apply_known_casts idc with
               | inl res => res
               | inr errs => collect_args_and_apply_unknown_casts convert_no_cast
               end.

          Fixpoint arith_expr_of_base_PHOAS_Var
                   {t}
            : base_var_data t -> int.option.interp t -> ErrT (arith_expr_for_base t)
            := match t with
               | base.type.Z
                 => fun '(n, r) r' => ret (cast_down_if_needed r' (Var type.Z n, r))
               | base.type.prod A B
                 => fun '(da, db) '(ra, rb)
                   => (ea,, eb <- @arith_expr_of_base_PHOAS_Var A da ra, @arith_expr_of_base_PHOAS_Var B db rb;
                        inl (ea, eb))
               | base.type.list base.type.Z
                 => fun '(n, r, len) r'
                   => ret (List.map
                            (fun i => (List_nth i @@ Var type.Zptr n, r))%core%Cexpr
                            (List.seq 0 len))
               | base.type.list _
               | base.type.type_base _
                 => fun _ _ => inr ["Invalid type " ++ show false t]%string
               end.

          Fixpoint arith_expr_of_PHOAS
                   {t}
                   (e : @Compilers.expr.expr base.type ident.ident var_data t)
            : type.interpM_final
                (fun T => ErrT T)
                (fun t => int.option.interp t -> ErrT (arith_expr_for_base t))
                t
            := match e in expr.expr t
                     return type.interpM_final
                              (fun T => ErrT T)
                              (fun t => int.option.interp t -> ErrT (arith_expr_for_base t))
                              t
               with
               | expr.Var (type.base _) v
                 => ret (arith_expr_of_base_PHOAS_Var v)
               | expr.Ident t idc
                 => collect_args_and_apply_casts idc (arith_expr_of_PHOAS_ident idc)
               | expr.App (type.base s) d f x
                 => let x' := @arith_expr_of_PHOAS s x in
                   match x' with
                   | inl x' => @arith_expr_of_PHOAS _ f x'
                   | inr errs => type.interpM_return _ _ _ (inr errs)
                   end
               | expr.Var (type.arrow _ _) _
                 => type.interpM_return _ _ _ (inr ["Invalid non-arithmetic let-bound Var of type " ++ show false t]%string)
               | expr.App (type.arrow _ _) _ _ _
                 => type.interpM_return _ _ _ (inr ["Invalid non-arithmetic let-bound App of type " ++ show false t]%string)
               | expr.LetIn _ _ _ _
                 => type.interpM_return _ _ _ (inr ["Invalid non-arithmetic let-bound LetIn of type " ++ show false t]%string)
               | expr.Abs _ _ _
                 => type.interpM_return _ _ _ (inr ["Invalid non-arithmetic let-bound Abs of type: " ++ show false t]%string)
               end.

          Definition arith_expr_of_base_PHOAS
                     {t:base.type}
                     (e : @Compilers.expr.expr base.type ident.ident var_data t)
                     (rout : int.option.interp t)
            : ErrT (arith_expr_for_base t)
            := (e' <- arith_expr_of_PHOAS e; e' rout).

          Fixpoint make_return_assignment_of_base_arith {t}
            : base_var_data t
              -> @Compilers.expr.expr base.type ident.ident var_data t
              -> ErrT expr
            := match t return base_var_data t -> expr.expr t -> ErrT expr with
               | base.type.Z
                 => fun '(n, r) e
                   => (rhs <- arith_expr_of_base_PHOAS e r;
                        let '(e, r) := rhs in
                        ret [AssignZPtr n r e])
               | base.type.type_base _ => fun _ _ => inr ["Invalid type " ++ show false t]%string
               | base.type.prod A B
                 => fun '(rva, rvb) e
                   => match invert_pair e with
                     | Some (ea, eb)
                       => ea',, eb' <- @make_return_assignment_of_base_arith A rva ea, @make_return_assignment_of_base_arith B rvb eb;
                           ret (ea' ++ eb')
                     | None => inr ["Invalid non-pair expr of type " ++ show false t]%string
                     end
               | base.type.list base.type.Z
                 => fun '(n, r, len) e
                   => (ls <- arith_expr_of_base_PHOAS e (Some (repeat r len));
                        ret (List.map
                               (fun '(i, (e, _)) => AssignNth n i e)
                               (List.combine (List.seq 0 len) ls)))
               | base.type.list _ => fun _ _ => inr ["Invalid type of expr: " ++ show false t]%string
               end%list.
          Definition make_return_assignment_of_arith {t}
            : var_data t
              -> @Compilers.expr.expr base.type ident.ident var_data t
              -> ErrT expr
            := match t with
               | type.base t => make_return_assignment_of_base_arith
               | type.arrow s d => fun _ _ => inr ["Invalid type of expr: " ++ show false t]%string
               end.

          Definition report_type_mismatch (expected : defaults.type) (given : defaults.type) : string
            := ("Type mismatch; expected " ++ show false expected ++ " but given " ++ show false given ++ ".")%string.

          Fixpoint arith_expr_of_PHOAS_args
                   {t}
            : type.for_each_lhs_of_arrow (@Compilers.expr.expr base.type ident.ident var_data) t
              -> ErrT (type.for_each_lhs_of_arrow (fun t => @Compilers.expr.expr base.type ident.ident var_data t * (arith_expr type.Z * option int.type)) t)
            := match t with
               | type.base t => fun 'tt => inl tt
               | type.arrow (type.base base.type.Z) d
                 => fun '(arg, args)
                   => arg' ,, args' <- arith_expr_of_base_PHOAS arg int.option.None , @arith_expr_of_PHOAS_args d args;
                       inl ((arg, arg'), args')
               | type.arrow s d
                 => fun '(arg, args)
                   => arg' ,, args' <- @inr unit _ ["Invalid argument of non-ℤ type " ++ show false s]%string , @arith_expr_of_PHOAS_args d args;
                       inr ["Impossible! (type error got lost somewhere)"]
               end.

          Let recognize_1ref_ident
                     {t}
                     (idc : ident.ident t)
                     (rout : option int.type)
            : type.for_each_lhs_of_arrow (fun t => @Compilers.expr.expr base.type ident.ident var_data t * (arith_expr type.Z * option int.type))%type t
              -> ErrT (arith_expr type.Zptr -> expr)
            := let _ := @PHOAS.expr.partially_show_expr in
               match idc with
               | ident.Z_zselect
                 => fun '((econdv, (econd, rcond)), ((e1v, (e1, r1)), ((e2v, (e2, r2)), tt)))
                   => match rcond with
                     | Some (int.unsigned 0)
                       => let r1 := option_map integer_promote_type r1 in
                         let r2 := option_map integer_promote_type r2 in
                         let '((e1, r1), (e2, r2))
                             := cast_bigger_up_if_needed rout ((e1, r1), (e2, r2)) in
                         let ct := (r1 <- r1; r2 <- r2; Some (common_type r1 r2))%option in
                         ty <- match ct, rout with
                              | Some ct, Some rout
                                => if int.type_beq ct rout
                                  then inl ct
                                  else inr ["Casting the result of Z.zselect to a type other than the common type is not currently supported.  (Cannot cast a pointer to " ++ show false rout ++ " to a pointer to " ++ show false ct ++ ".)"]%string
                              | None, _ => inr ["Unexpected None result of common-type calculation for Z.zselect"]
                              | _, None => inr ["Missing cast annotation on return of Z.zselect"]
                              end;
                           ret (fun retptr => [Call (Z_zselect ty @@ (retptr, (econd, e1, e2)))]%Cexpr)
                     | _ => inr ["Invalid argument to Z.zselect not known to be 0 or 1: " ++ show false econdv]%string
                     end
               | _ => fun _ => inr ["Unrecognized identifier (expecting a 1-pointer-returning function): " ++ show false idc]%string
               end.

          Definition bounds_check (descr : string) {t} (idc : ident.ident t) (s : BinInt.Z) {t'} (ev : @Compilers.expr.expr base.type ident.ident var_data t') (found : option int.type)
            : ErrT unit
            := let _ := @PHOAS.expr.partially_show_expr in
               match found with
               | None => inr ["Missing range on " ++ descr ++ " " ++ show true idc ++ ": " ++ show true ev]%string
               | Some ty
                 => if int.is_tighter_than ty (int.of_zrange_relaxed r[0~>2^s-1])
                   then ret tt
                   else inr ["Final bounds check failed on " ++ descr ++ " " ++ show false idc ++ "; expected an unsigned " ++ decimal_string_of_Z s ++ "-bit number (" ++ show false (int.of_zrange_relaxed r[0~>2^s-1]) ++ "), but found a " ++ show false ty ++ "."]%string
               end.

          Let recognize_3arg_2ref_ident
                     (t:=(base.type.Z -> base.type.Z -> base.type.Z -> base.type.Z * base.type.Z)%etype)
                     (idc : ident.ident t)
                     (rout : option int.type * option int.type)
                     (args : type.for_each_lhs_of_arrow (fun t => @Compilers.expr.expr base.type ident.ident var_data t * (arith_expr type.Z * option int.type))%type t)
            : ErrT (arith_expr (type.Zptr * type.Zptr) -> expr)
            := let _ := @PHOAS.expr.partially_show_expr in
               let '((s, _), ((e1v, (e1, r1)), ((e2v, (e2, r2)), tt))) := args in
               match (s <- invert_Literal s; maybe_log2 s)%option, idc return ErrT (arith_expr (type.Zptr * type.Zptr) -> expr)
               with
               | Some s, ident.Z_mul_split
                 => (_ ,, _ ,, _ ,, _
                      <- bounds_check "first argument to" idc s e1v r1,
                    bounds_check "second argument to" idc s e2v r2,
                    bounds_check "first return value of" idc s e2v (fst rout),
                    bounds_check "second return value of" idc s e2v (snd rout);
                      inl (fun retptr => [Call (Z_mul_split s @@ (retptr, (e1, e2)))%Cexpr]))
               | Some s, ident.Z_add_get_carry as idc
               | Some s, ident.Z_sub_get_borrow as idc
                 => let idc' : ident _ _ := invert_Some match idc with
                                                       | ident.Z_add_get_carry => Some (Z_add_with_get_carry s)
                                                       | ident.Z_sub_get_borrow => Some (Z_sub_with_get_borrow s)
                                                       | _ => None
                                                       end in
                   (_ ,, _ ,, _ ,, _
                      <- bounds_check "first argument to" idc s e1v r1,
                    bounds_check "second argument to" idc s e2v r2,
                    bounds_check "first return value of" idc s e2v (fst rout),
                    bounds_check "second return value of" idc 1 (* boolean carry/borrow *) e2v (snd rout);
                      inl (fun retptr => [Call (idc' @@ (retptr, (literal 0 @@ TT, e1, e2)))%Cexpr]))
               | Some _, _ => inr ["Unrecognized identifier when attempting to construct an assignment with 2 arguments: " ++ show true idc]%string
               | None, _ => inr ["Expression is not a literal power of two of type ℤ: " ++ show true s ++ " (when trying to parse the first argument of " ++ show true idc ++ ")"]%string
               end.

          Let recognize_4arg_2ref_ident
                     (t:=(base.type.Z -> base.type.Z -> base.type.Z -> base.type.Z -> base.type.Z * base.type.Z)%etype)
                     (idc : ident.ident t)
                     (rout : option int.type * option int.type)
                     (args : type.for_each_lhs_of_arrow (fun t => @Compilers.expr.expr base.type ident.ident var_data t * (arith_expr type.Z * option int.type))%type t)
            : ErrT (arith_expr (type.Zptr * type.Zptr) -> expr)
            := let _ := @PHOAS.expr.partially_show_expr in
               let '((s, _), ((e1v, (e1, r1)), ((e2v, (e2, r2)), ((e3v, (e3, r3)), tt)))) := args in
               match (s <- invert_Literal s; maybe_log2 s)%option, idc return ErrT (arith_expr (type.Zptr * type.Zptr) -> expr)
               with
               | Some s, ident.Z_add_with_get_carry as idc
               | Some s, ident.Z_sub_with_get_borrow as idc
                 => let idc' : ident _ _ := invert_Some match idc with
                                                       | ident.Z_add_with_get_carry => Some (Z_add_with_get_carry s)
                                                       | ident.Z_sub_with_get_borrow => Some (Z_sub_with_get_borrow s)
                                                       | _ => None
                                                       end in
                   (_ ,, _ ,, _ ,, _ ,, _
                      <- (bounds_check "first (carry) argument to" idc 1 e1v r1,
                         bounds_check "second argument to" idc s e2v r2,
                         bounds_check "third argument to" idc s e2v r2,
                         bounds_check "first return value of" idc s e2v (fst rout),
                         bounds_check "second (carry) return value of" idc 1 (* boolean carry/borrow *) e2v (snd rout));
                      inl (fun retptr => [Call (idc' @@ (retptr, (e1, e2, e3)))%Cexpr]))
               | Some _, _ => inr ["Unrecognized identifier when attempting to construct an assignment with 2 arguments: " ++ show true idc]%string
               | None, _ => inr ["Expression is not a literal power of two of type ℤ: " ++ show true s ++ " (when trying to parse the first argument of " ++ show true idc ++ ")"]%string
               end.

          Let recognize_2ref_ident
                     {t}
            : forall (idc : ident.ident t)
                (rout : option int.type * option int.type)
                (args : type.for_each_lhs_of_arrow (fun t => @Compilers.expr.expr base.type ident.ident var_data t * (arith_expr type.Z * option int.type))%type t),
              ErrT (arith_expr (type.Zptr * type.Zptr) -> expr)
            := match t with
               | (type.base base.type.Z -> type.base base.type.Z -> type.base base.type.Z -> type.base (base.type.Z * base.type.Z))%etype
                 => recognize_3arg_2ref_ident
               | (type.base base.type.Z -> type.base base.type.Z -> type.base base.type.Z -> type.base base.type.Z -> type.base (base.type.Z * base.type.Z))%etype
                 => recognize_4arg_2ref_ident
               | _ => fun idc rout args => inr ["Unrecognized type for function call: " ++ show false t ++ " (when trying to handle the identifer " ++ show false idc ++ ")"]%string
               end.

          Definition declare_name
                     (descr : string)
                     (count : positive)
                     (make_name : positive -> option string)
                     (r : option int.type)
            : ErrT (expr * string * arith_expr type.Zptr)
            := (n ,, r <- (match make_name count with
                          | Some n => ret n
                          | None => inr ["Variable naming-function does not support the index " ++ show false count]%string
                          end,
                          match r with
                          | Some r => ret r
                          | None => inr ["Missing return type annotation for " ++ descr]%string
                          end);
                  ret ([DeclareVar type.Z (Some r) n], n, (Addr @@ Var type.Z n)%Cexpr)).

          Let make_assign_arg_1ref_opt
                     (e : @Compilers.expr.expr base.type ident.ident var_data base.type.Z)
                     (count : positive)
                     (make_name : positive -> option string)
            : ErrT (expr * var_data base.type.Z)
            := let _ := @PHOAS.expr.partially_show_expr in
               let e1 := e in
               let '(rout, e) := match invert_Z_cast e with
                                 | Some (r, e) => (Some (int.of_zrange_relaxed r), e)
                                 | None => (None, e)
                                 end%core in
               let res_ref
                   := match invert_AppIdent_curried e with
                      | Some (existT _ (idc, args))
                        => args <- arith_expr_of_PHOAS_args args;
                            idce <- recognize_1ref_ident idc rout args;
                            v <- declare_name (show false idc) count make_name rout;
                            let '(decls, n, retv) := v in
                            ret ((decls ++ (idce retv))%list, (n, rout))
                      | None => inr ["Invalid assignment of non-identifier-application: " ++ show false e]%string
                      end in
               match res_ref with
               | inl res => ret res
               | inr _
                 => e1 <- arith_expr_of_base_PHOAS e1 None;
                     let '(e1, r1) := e1 in
                     match make_name count with
                     | Some n1
                       => ret ([Assign true type.Z r1 n1 e1], (n1, r1))
                     | None => inr ["Variable naming-function does not support the index " ++ show false count]%string
                     end
               end.

          Let make_assign_arg_2ref
                     (e : @Compilers.expr.expr base.type ident.ident var_data (base.type.Z * base.type.Z))
                     (count : positive)
                     (make_name : positive -> option string)
            : ErrT (expr * var_data (base.type.Z * base.type.Z))
            := let _ := @PHOAS.expr.partially_show_expr in
               let '((rout1, rout2), e)
                   := match invert_Z_cast2 e with
                      | Some ((r1, r2), e) => ((Some (int.of_zrange_relaxed r1), Some (int.of_zrange_relaxed r2)), e)
                      | None => ((None, None), e)
                      end%core in
               match invert_AppIdent_curried e with
               | Some (existT t (idc, args))
                 => args <- arith_expr_of_PHOAS_args args;
                     idce <- recognize_2ref_ident idc (rout1, rout2) args;
                     v1,, v2 <- (declare_name (show false idc) count make_name rout1,
                                declare_name (show false idc) (Pos.succ count) make_name rout2);
                     let '(decls1, n1, retv1) := v1 in
                     let '(decls2, n2, retv2) := v2 in
                     ret (decls1 ++ decls2 ++ (idce (retv1, retv2)%Cexpr), ((n1, rout1), (n2, rout2)))%list
               | None => inr ["Invalid assignment of non-identifier-application: " ++ show false e]%string
               end.

          Let make_assign_arg_ref
                     {t}
            : forall (e : @Compilers.expr.expr base.type ident.ident var_data t)
                (count : positive)
                (make_name : positive -> option string),
              ErrT (expr * var_data t)
            := let _ := @PHOAS.expr.partially_show_expr in
               match t with
               | type.base base.type.Z => make_assign_arg_1ref_opt
               | type.base (base.type.Z * base.type.Z)%etype => make_assign_arg_2ref
               | _ => fun e _ _ => inr ["Invalid type of assignment expression: " ++ show false t ++ " (with expression " ++ show true e ++ ")"]
               end.

          Fixpoint size_of_type (t : base.type) : positive
            := match t with
               | base.type.type_base t => 1
               | base.type.prod A B => size_of_type A + size_of_type B
               | base.type.list A => 1
               end%positive.

          Let make_uniform_assign_expr_of_PHOAS
                     {s} (e1 : @Compilers.expr.expr base.type ident.ident var_data s)
                     {d} (e2 : var_data s -> var_data d -> ErrT expr)
                     (count : positive)
                     (make_name : positive -> option string)
                     (vd : var_data d)
            : ErrT expr
            := let _ := @PHOAS.expr.partially_show_expr in (* for TC resolution *)
               e1_vs <- make_assign_arg_ref e1 count make_name;
                 let '(e1, vs) := e1_vs in
                 e2 <- e2 vs vd;
                   ret (e1 ++ e2)%list.

          (* See above comment about extraction issues *)
          Definition make_assign_expr_of_PHOAS
                     {s} (e1 : @Compilers.expr.expr base.type ident.ident var_data s)
                     {s' d} (e2 : var_data s' -> var_data d -> ErrT expr)
                     (count : positive)
                     (make_name : positive -> option string)
                     (v : var_data d)
            : ErrT expr
            := Eval cbv beta iota delta [bind2_err bind3_err bind4_err bind5_err recognize_1ref_ident recognize_3arg_2ref_ident recognize_4arg_2ref_ident recognize_2ref_ident make_assign_arg_1ref_opt make_assign_arg_2ref make_assign_arg_ref make_uniform_assign_expr_of_PHOAS make_uniform_assign_expr_of_PHOAS] in
                match type.try_transport base.try_make_transport_cps _ _ s' e1 with
                | Some e1 => make_uniform_assign_expr_of_PHOAS e1 e2 count make_name v
                | None => inr [report_type_mismatch s' s]
                end.

          Fixpoint expr_of_base_PHOAS
                   {t}
                   (e : @Compilers.expr.expr base.type ident.ident var_data t)
                   (count : positive)
                   (make_name : positive -> option string)
                   {struct e}
            : forall (ret_val : var_data t), ErrT expr
            := match e in expr.expr t return var_data t -> ErrT expr with
               | expr.LetIn (type.base s) d e1 e2
                 => make_assign_expr_of_PHOAS
                     e1
                     (fun vs vd => @expr_of_base_PHOAS d (e2 vs) (size_of_type s + count)%positive make_name vd)
                     count make_name
               | expr.LetIn (type.arrow _ _) _ _ _ as e
               | expr.Var _ _ as e
               | expr.Ident _ _ as e
               | expr.App _ _ _ _ as e
               | expr.Abs _ _ _ as e
                 => fun v => make_return_assignment_of_arith v e
               end%expr_pat%option.

          Fixpoint base_var_data_of_bounds {t}
                   (count : positive)
                   (make_name : positive -> option string)
                   {struct t}
            : ZRange.type.base.option.interp t -> option (positive * var_data t)
            := match t return ZRange.type.base.option.interp t -> option (positive * var_data t) with
               | base.type.Z
                 => fun r => (n <- make_name count;
                            Some (Pos.succ count, (n, option_map int.of_zrange_relaxed r)))
               | base.type.prod A B
                 => fun '(ra, rb)
                   => (va <- @base_var_data_of_bounds A count make_name ra;
                        let '(count, va) := va in
                        vb <- @base_var_data_of_bounds B count make_name rb;
                          let '(count, vb) := vb in
                          Some (count, (va, vb)))
               | base.type.list base.type.Z
                 => fun r
                   => (ls <- r;
                        n <- make_name count;
                        Some (Pos.succ count,
                              (n,
                               match List.map (option_map int.of_zrange_relaxed) ls with
                               | nil => None
                               | cons x xs
                                 => List.fold_right
                                     (fun r1 r2 => r1 <- r1; r2 <- r2; Some (int.union r1 r2))
                                     x
                                     xs
                               end,
                               length ls)))
               | base.type.unit
                 => fun _ => Some (count, tt)
               | base.type.list _
               | base.type.type_base _
                 => fun _ => None
               end%option.

          Definition var_data_of_bounds {t}
                     (count : positive)
                     (make_name : positive -> option string)
            : ZRange.type.option.interp t -> option (positive * var_data t)
            := match t with
               | type.base t => base_var_data_of_bounds count make_name
               | type.arrow s d => fun _ => None
               end.

          Fixpoint expr_of_PHOAS'
                   {t}
                   (e : @Compilers.expr.expr base.type ident.ident var_data t)
                   (make_in_name : positive -> option string)
                   (make_name : positive -> option string)
                   (inbounds : type.for_each_lhs_of_arrow ZRange.type.option.interp t)
                   (out_data : var_data (type.final_codomain t))
                   (count : positive)
                   (in_to_body_count : positive -> positive)
                   {struct t}
            : ErrT (type.for_each_lhs_of_arrow var_data t * var_data (type.final_codomain t) * expr)
            := let _ := @PHOAS.expr.partially_show_expr in (* for TC resolution *)
               match t return @Compilers.expr.expr base.type ident.ident var_data t -> type.for_each_lhs_of_arrow ZRange.type.option.interp t -> var_data (type.final_codomain t) -> ErrT (type.for_each_lhs_of_arrow var_data t * var_data (type.final_codomain t) * expr) with
               | type.base t
                 => fun e tt vd
                   => rv <- expr_of_base_PHOAS e (in_to_body_count count) make_name vd;
                       ret (tt, vd, rv)
               | type.arrow s d
                 => fun e '(inbound, inbounds) vd
                   => match var_data_of_bounds count make_in_name inbound, invert_Abs e with
                     | Some (count, vs), Some f
                       => retv <- @expr_of_PHOAS' d (f vs) make_in_name make_name inbounds vd count in_to_body_count;
                           let '(vss, vd, rv) := retv in
                           ret (vs, vss, vd, rv)
                     | None, _ => inr ["Unable to bind names for all arguments and bounds at type " ++ show false s]%string%list
                     | _, None => inr ["Invalid non-λ expression of arrow type (" ++ show false t ++ "): " ++ show true e]%string%list
                     end
               end%core%expr e inbounds out_data.

          Definition expr_of_PHOAS
                     {t}
                     (e : @Compilers.expr.expr base.type ident.ident var_data t)
                     (make_in_name : positive -> option string)
                     (make_out_name : positive -> option string)
                     (make_name : positive -> option string)
                     (inbounds : type.for_each_lhs_of_arrow ZRange.type.option.interp t)
                     (outbounds : ZRange.type.option.interp (type.final_codomain t))
                     (count : positive)
                     (in_to_body_count out_to_in_count : positive -> positive)
            : ErrT (type.for_each_lhs_of_arrow var_data t * var_data (type.final_codomain t) * expr)
            := match var_data_of_bounds count make_out_name outbounds with
               | Some vd
                 => let '(count, vd) := vd in
                   let count := out_to_in_count count in
                   @expr_of_PHOAS' t e make_in_name make_name inbounds vd count in_to_body_count
               | None => inr ["Unable to bind names for all return arguments and bounds at type " ++ show false (type.final_codomain t)]%string
               end.

          Definition ExprOfPHOAS
                     {t}
                     (e : @Compilers.expr.Expr base.type ident.ident t)
                     (name_list : option (list string))
                     (inbounds : type.for_each_lhs_of_arrow ZRange.type.option.interp t)
            : ErrT (type.for_each_lhs_of_arrow var_data t * var_data (type.final_codomain t) * expr)
            := (let outbounds := partial.Extract e inbounds in
                let make_name_gen prefix := match name_list with
                                            | None => fun p => Some (prefix ++ decimal_string_of_Z (Zpos p))
                                            | Some ls => fun p => List.nth_error ls (pred (Pos.to_nat p))
                                            end in
                let make_in_name := make_name_gen "arg" in
                let make_out_name := make_name_gen "out" in
                let make_name := make_name_gen "x" in
                let reset_if_names_given := match name_list with
                                            | Some _ => fun p : positive => p
                                            | None => fun _ : positive => 1%positive
                                            end in
                expr_of_PHOAS (e _) make_in_name make_out_name make_name inbounds outbounds 1 reset_if_names_given reset_if_names_given).
        End with_bind.
      End OfPHOAS.

      Module String.
        Definition typedef_header (prefix : string) (bitwidths_used : PositiveSet.t)
        : list string
          := (["#include <stdint.h>"]
                ++ (if PositiveSet.mem 1 bitwidths_used
                    then ["typedef unsigned char " ++ prefix ++ "uint1;";
                            "typedef signed char " ++ prefix ++ "int1;"]%string
                    else [])
                ++ (if PositiveSet.mem 128 bitwidths_used
                    then ["typedef signed __int128 " ++ prefix ++ "int128;";
                            "typedef unsigned __int128 " ++ prefix ++ "uint128;"]%string
                    else []))%list.

        Definition stdint_bitwidths : list Z := [8; 16; 32; 64].
        Definition is_special_bitwidth (bw : Z) := negb (existsb (Z.eqb bw) stdint_bitwidths).

        Module int.
          Module type.
            Definition to_string (prefix : string) (t : int.type) : string
              := ((if is_special_bitwidth (int.bitwidth_of t) then prefix else "")
                    ++ (if int.is_unsigned t then "u" else "")
                    ++ "int"
                    ++ decimal_string_of_Z (int.bitwidth_of t)
                    ++ (if is_special_bitwidth (int.bitwidth_of t) then "" else "_t"))%string.
            Definition to_literal_macro_string (t : int.type) : option string
              := if Z.ltb (int.bitwidth_of t) 8
                 then None
                 else Some ((if int.is_unsigned t then "U" else "")
                              ++ "INT"
                              ++ decimal_string_of_Z (int.bitwidth_of t)
                              ++ "_C")%string.
          End type.
        End int.

        Module type.
          Module primitive.
            Definition to_string (prefix : string) (t : type.primitive) (r : option int.type) : string
              := match r with
                 | Some int_t => int.type.to_string prefix int_t
                 | None => "ℤ"
                 end ++ match t with
                        | type.Zptr => "*"
                        | type.Z => ""
                        end.
          End primitive.
        End type.
      End String.

      Module primitive.
        Definition to_string (prefix : string) (t : type.primitive) (v : BinInt.Z) : string
          := match t, String.int.type.to_literal_macro_string (int.of_zrange_relaxed r[v ~> v]) with
             | type.Z, Some macro
               => macro ++ "(" ++ HexString.of_Z v ++ ")"
             | type.Z, None => HexString.of_Z v
             | type.Zptr, _ => "#error ""literal address " ++ HexString.of_Z v ++ """;"
             end.
      End primitive.

      Fixpoint arith_to_string (prefix : string) {t} (e : arith_expr t) : string
        := match e with
           | (literal v @@ _) => primitive.to_string prefix type.Z v
           | (List_nth n @@ Var _ v)
             => "(" ++ v ++ "[" ++ decimal_string_of_Z (Z.of_nat n) ++ "])"
           | (Addr @@ Var _ v) => "&" ++ v
           | (Dereference @@ e) => "( *" ++ @arith_to_string prefix _ e ++ " )"
           | (Z_shiftr offset @@ e)
             => "(" ++ @arith_to_string prefix _ e ++ " >> " ++ decimal_string_of_Z offset ++ ")"
           | (Z_shiftl offset @@ e)
             => "(" ++ @arith_to_string prefix _ e ++ " << " ++ decimal_string_of_Z offset ++ ")"
           | (Z_land @@ (e1, e2))
             => "(" ++ @arith_to_string prefix _ e1 ++ " & " ++ @arith_to_string prefix _ e2 ++ ")"
           | (Z_lor @@ (e1, e2))
             => "(" ++ @arith_to_string prefix _ e1 ++ " | " ++ @arith_to_string prefix _ e2 ++ ")"
           | (Z_add @@ (x1, x2))
             => "(" ++ @arith_to_string prefix _ x1 ++ " + " ++ @arith_to_string prefix _ x2 ++ ")"
           | (Z_mul @@ (x1, x2))
             => "(" ++ @arith_to_string prefix _ x1 ++ " * " ++ @arith_to_string prefix _ x2 ++ ")"
           | (Z_sub @@ (x1, x2))
             => "(" ++ @arith_to_string prefix _ x1 ++ " - " ++ @arith_to_string prefix _ x2 ++ ")"
           | (Z_opp @@ e)
             => "(-" ++ @arith_to_string prefix _ e ++ ")"
           | (Z_lnot _ @@ e)
             => "(~" ++ @arith_to_string prefix _ e ++ ")"
           | (Z_bneg @@ e)
             => "(!" ++ @arith_to_string prefix _ e ++ ")"
           | (Z_mul_split lg2s @@ args)
             => prefix
                 ++ "mulx_u"
                 ++ decimal_string_of_Z lg2s ++ "(" ++ @arith_to_string prefix _ args ++ ")"
           | (Z_add_with_get_carry lg2s @@ args)
             => prefix
                 ++ "addcarryx_u"
                 ++ decimal_string_of_Z lg2s ++ "(" ++ @arith_to_string prefix _ args ++ ")"
           | (Z_sub_with_get_borrow lg2s @@ args)
             => prefix
                 ++ "subborrowx_u"
                 ++ decimal_string_of_Z lg2s ++ "(" ++ @arith_to_string prefix _ args ++ ")"
           | (Z_zselect ty @@ args)
             => prefix
                 ++ "cmovznz_"
                 ++ (if int.is_unsigned ty then "u" else "")
                 ++ decimal_string_of_Z (int.bitwidth_of ty) ++ "(" ++ @arith_to_string prefix _ args ++ ")"
           | (Z_add_modulo @@ (x1, x2, x3)) => "#error addmodulo;"
           | (Z_static_cast int_t @@ e)
             => "(" ++ String.type.primitive.to_string prefix type.Z (Some int_t) ++ ")"
                    ++ @arith_to_string prefix _ e
           | Var _ v => v
           | Pair A B a b
             => @arith_to_string prefix A a ++ ", " ++ @arith_to_string prefix B b
           | (List_nth _ @@ _)
           | (Addr @@ _)
           | (Z_add @@ _)
           | (Z_mul @@ _)
           | (Z_sub @@ _)
           | (Z_land @@ _)
           | (Z_lor @@ _)
           | (Z_add_modulo @@ _)
             => "#error bad_arg;"
           | TT
             => "#error tt;"
           end%core%Cexpr.

      Fixpoint stmt_to_string (prefix : string) (e : stmt) : string
        := match e with
           | Call val
             => arith_to_string prefix val ++ ";"
           | Assign true t sz name val
             => String.type.primitive.to_string prefix t sz ++ " " ++ name ++ " = " ++ arith_to_string prefix val ++ ";"
           | Assign false _ sz name val
             => name ++ " = " ++ arith_to_string prefix val ++ ";"
           | AssignZPtr name sz val
             => "*" ++ name ++ " = " ++ arith_to_string prefix val ++ ";"
           | DeclareVar t sz name
             => String.type.primitive.to_string prefix t sz ++ " " ++ name ++ ";"
           | AssignNth name n val
             => name ++ "[" ++ decimal_string_of_Z (Z.of_nat n) ++ "] = " ++ arith_to_string prefix val ++ ";"
           end.
      Definition to_strings (prefix : string) (e : expr) : list string
        := List.map (stmt_to_string prefix) e.

      Record ident_infos :=
        { bitwidths_used : PositiveSet.t;
          addcarryx_lg_splits : PositiveSet.t;
          mulx_lg_splits : PositiveSet.t;
          cmovznz_bitwidths : PositiveSet.t }.
      Definition ident_info_empty : ident_infos
        := Build_ident_infos PositiveSet.empty PositiveSet.empty PositiveSet.empty PositiveSet.empty.
      Definition ident_info_union (x y : ident_infos) : ident_infos
        := let (x0, x1, x2, x3) := x in
           let (y0, y1, y2, y3) := y in
           Build_ident_infos
             (PositiveSet.union x0 y0)
             (PositiveSet.union x1 y1)
             (PositiveSet.union x2 y2)
             (PositiveSet.union x3 y3).
      Definition ident_info_of_bitwidths_used (v : PositiveSet.t) : ident_infos
        := {| bitwidths_used := v;
              addcarryx_lg_splits := PositiveSet.empty;
              mulx_lg_splits := PositiveSet.empty;
              cmovznz_bitwidths := PositiveSet.empty |}.
      Definition ident_info_of_addcarryx (v : PositiveSet.t) : ident_infos
        := {| bitwidths_used := PositiveSet.empty;
              addcarryx_lg_splits := v;
              mulx_lg_splits := PositiveSet.empty;
              cmovznz_bitwidths := PositiveSet.empty |}.
      Definition ident_info_of_mulx (v : PositiveSet.t) : ident_infos
        := {| bitwidths_used := PositiveSet.empty;
              addcarryx_lg_splits := PositiveSet.empty;
              mulx_lg_splits := v;
              cmovznz_bitwidths := PositiveSet.empty |}.
      Definition ident_info_of_cmovznz (v : PositiveSet.t) : ident_infos
        := {| bitwidths_used := PositiveSet.empty;
              addcarryx_lg_splits := PositiveSet.empty;
              mulx_lg_splits := PositiveSet.empty;
              cmovznz_bitwidths := v |}.

      Definition collect_bitwidths_of_int_type (t : int.type) : PositiveSet.t
        := PositiveSet.add (Z.to_pos (int.bitwidth_of t)) PositiveSet.empty.
      Definition collect_infos_of_ident {s d} (idc : ident s d) : ident_infos
        := match idc with
           | Z_static_cast ty => ident_info_of_bitwidths_used (collect_bitwidths_of_int_type ty)
           | Z_mul_split lg2s
             => ident_info_of_mulx (PositiveSet.add (Z.to_pos lg2s) PositiveSet.empty)
           | Z_add_with_get_carry lg2s
           | Z_sub_with_get_borrow lg2s
             => ident_info_of_addcarryx (PositiveSet.add (Z.to_pos lg2s) PositiveSet.empty)
           | Z_zselect ty
             => ident_info_of_cmovznz (collect_bitwidths_of_int_type ty)
           | literal _
           | List_nth _
           | Addr
           | Dereference
           | Z_shiftr _
           | Z_shiftl _
           | Z_land
           | Z_lor
           | Z_add
           | Z_mul
           | Z_sub
           | Z_opp
           | Z_bneg
           | Z_lnot _
           | Z_add_modulo
             => ident_info_empty
           end.
      Fixpoint collect_infos_of_arith_expr {t} (e : arith_expr t) : ident_infos
        := match e with
           | AppIdent s d idc arg => ident_info_union (collect_infos_of_ident idc) (@collect_infos_of_arith_expr _ arg)
           | Var t v => ident_info_empty
           | Pair A B a b => ident_info_union (@collect_infos_of_arith_expr _ a) (@collect_infos_of_arith_expr _ b)
           | TT => ident_info_empty
           end.

      Fixpoint collect_infos_of_stmt (e : stmt) : ident_infos
        := match e with
           | Assign _ _ (Some sz) _ val
           | AssignZPtr _ (Some sz) val
             => ident_info_union (ident_info_of_bitwidths_used (collect_bitwidths_of_int_type sz)) (collect_infos_of_arith_expr val)
           | Call val
           | Assign _ _ None _ val
           | AssignZPtr _ None val
           | AssignNth _ _ val
             => collect_infos_of_arith_expr val
           | DeclareVar _ (Some sz) _
             => ident_info_of_bitwidths_used (collect_bitwidths_of_int_type sz)
           | DeclareVar _ None _
             => ident_info_empty
           end.

      Fixpoint collect_infos (e : expr) : ident_infos
        := fold_right
             ident_info_union
             ident_info_empty
             (List.map
                collect_infos_of_stmt
                e).

      Import OfPHOAS.

      Fixpoint to_base_arg_list (prefix : string) {t} : base_var_data t -> list string
        := match t return base_var_data t -> _ with
           | base.type.Z
             => fun '(n, r) => [String.type.primitive.to_string prefix type.Z r ++ " " ++ n]
           | base.type.prod A B
             => fun '(va, vb) => (@to_base_arg_list prefix A va ++ @to_base_arg_list prefix B vb)%list
           | base.type.list base.type.Z
             => fun '(n, r, len) => ["const " ++ String.type.primitive.to_string prefix type.Z r ++ " " ++ n ++ "[" ++ decimal_string_of_Z (Z.of_nat len) ++ "]"]
           | base.type.list _ => fun _ => ["#error ""complex list"";"]
           | base.type.unit => fun _ => ["#error unit;"]
           | base.type.nat => fun _ => ["#error ℕ;"]
           | base.type.bool => fun _ => ["#error bool;"]
           end.

      Definition to_arg_list (prefix : string) {t} : var_data t -> list string
        := match t return var_data t -> _ with
           | type.base t => to_base_arg_list prefix
           | type.arrow _ _ => fun _ => ["#error arrow;"]
           end.

      Fixpoint to_arg_list_for_each_lhs_of_arrow (prefix : string) {t} : type.for_each_lhs_of_arrow var_data t -> list string
        := match t return type.for_each_lhs_of_arrow var_data t -> _ with
           | type.base t => fun _ => nil
           | type.arrow s d
             => fun '(x, xs)
                => to_arg_list prefix x ++ @to_arg_list_for_each_lhs_of_arrow prefix d xs
           end%list.

      Fixpoint to_base_retarg_list prefix {t} : base_var_data t -> list string
        := match t return base_var_data t -> _ with
           | base.type.Z
             => fun '(n, r) => [String.type.primitive.to_string prefix type.Zptr r ++ " " ++ n]
           | base.type.prod A B
             => fun '(va, vb) => (@to_base_retarg_list prefix A va ++ @to_base_retarg_list prefix B vb)%list
           | base.type.list base.type.Z
             => fun '(n, r, len) => [String.type.primitive.to_string prefix type.Z r ++ " " ++ n ++ "[" ++ decimal_string_of_Z (Z.of_nat len) ++ "]"]
           | base.type.list _ => fun _ => ["#error ""complex list"";"]
           | base.type.unit => fun _ => ["#error unit;"]
           | base.type.nat => fun _ => ["#error ℕ;"]
           | base.type.bool => fun _ => ["#error bool;"]
           end.

      Definition to_retarg_list (prefix : string) {t} : var_data t -> list string
        := match t return var_data t -> _ with
           | type.base _ => to_base_retarg_list prefix
           | type.arrow _ _ => fun _ => ["#error arrow;"]
           end.

      Fixpoint bound_to_string {t : base.type} : var_data t -> ZRange.type.base.option.interp t -> list string
        := match t return var_data t -> ZRange.type.base.option.interp t -> list string with
           | base.type.Z
             => fun '(name, _) arg
                => [(name ++ ": ")
                      ++ match arg with
                         | Some arg => show false arg
                         | None => show false arg
                         end]%string
           | base.type.prod A B
             => fun '(va, vb) '(a, b)
                => @bound_to_string A va a ++ @bound_to_string B vb b
           | base.type.list A
             => fun '(name, _, _) arg
                => [(name ++ ": ")
                      ++ match ZRange.type.base.option.lift_Some arg with
                         | Some arg => show false arg
                         | None => show false arg
                         end]%string
           | base.type.unit
           | base.type.bool
           | base.type.nat
             => fun _ _ => nil
           end%list.

      Fixpoint input_bounds_to_string {t} : type.for_each_lhs_of_arrow var_data t -> type.for_each_lhs_of_arrow ZRange.type.option.interp t -> list string
        := match t return type.for_each_lhs_of_arrow var_data t -> type.for_each_lhs_of_arrow ZRange.type.option.interp t -> list string with
           | type.base t => fun _ _ => nil
           | type.arrow (type.base s) d
             => fun '(v, vs) '(arg, args)
                => (bound_to_string v arg)
                     ++ @input_bounds_to_string d vs args
           | type.arrow s d
             => fun '(absurd, _) => match absurd : Empty_set with end
           end%list.

      Definition to_function_lines (static : bool) (prefix : string) (name : string)
                 {t}
                 (f : type.for_each_lhs_of_arrow var_data t * var_data (type.final_codomain t) * expr)
        : list string
        := let '(args, rets, body) := f in
           (((((if static then "static " else "")
                 ++ "void "
                 ++ name ++ "("
                 ++ (String.concat ", " (to_retarg_list prefix rets ++ to_arg_list_for_each_lhs_of_arrow prefix args))
                 ++ ") {")%string)
               :: (List.map (fun s => "  " ++ s)%string (to_strings prefix body)))
              ++ ["}"])%list.

      Definition ToFunctionLines (static : bool) (prefix : string) (name : string) (comment : list string)
                 {t}
                 (e : @Compilers.expr.Expr base.type ident.ident t)
                 (name_list : option (list string))
                 (inbounds : type.for_each_lhs_of_arrow ZRange.type.option.interp t)
                 (outbounds : ZRange.type.base.option.interp (type.final_codomain t))
        : (list string * ident_infos) + string
        := match ExprOfPHOAS e name_list inbounds with
           | inl (indata, outdata, f)
             => inl ((["/*"]
                        ++ (List.map (fun s => " * " ++ s)%string comment)
                        ++ [" * Input Bounds:"]
                        ++ List.map (fun v => " *   " ++ v)%string (input_bounds_to_string indata inbounds)
                        ++ [" * Output Bounds:"]
                        ++ List.map (fun v => " *   " ++ v)%string (bound_to_string outdata outbounds)
                        ++ [" */"]
                        ++ to_function_lines static prefix name (indata, outdata, f))%list,
                     collect_infos f)
           | inr nil
             => inr ("Unknown internal error in converting " ++ name ++ " to C")%string
           | inr [err]
             => inr ("Error in converting " ++ name ++ " to C:" ++ String.NewLine ++ err)%string
           | inr errs
             => inr ("Errors in converting " ++ name ++ " to C:" ++ String.NewLine ++ String.concat String.NewLine errs)%string
           end.

      Definition LinesToString (lines : list string)
        : string
        := String.concat String.NewLine lines.

      Definition ToFunctionString (static : bool) (prefix : string) (name : string) (comment : list string)
                 {t}
                 (e : @Compilers.expr.Expr base.type ident.ident t)
                 (name_list : option (list string))
                 (inbounds : type.for_each_lhs_of_arrow ZRange.type.option.interp t)
                 (outbounds : ZRange.type.option.interp (type.final_codomain t))
        : (string * ident_infos) + string
        := match ToFunctionLines static prefix name comment e name_list inbounds outbounds with
           | inl (ls, used_types) => inl (LinesToString ls, used_types)
           | inr err => inr err
           end.
    End C.
    Notation ToFunctionLines := C.ToFunctionLines.
    Notation ToFunctionString := C.ToFunctionString.
    Notation LinesToString := C.LinesToString.
  End ToString.
End Compilers.