aboutsummaryrefslogtreecommitdiff
path: root/src/Experiments/NewPipeline/AbstractInterpretationProofs.v
blob: ebc60d888eae55f49c8137442f61bf9193e234f5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
Require Import Coq.micromega.Lia.
Require Import Coq.ZArith.ZArith.
Require Import Coq.Classes.Morphisms.
Require Import Coq.Classes.RelationPairs.
Require Import Coq.Relations.Relations.
Require Import Crypto.Util.ZRange.
Require Import Crypto.Util.ZRange.BasicLemmas.
Require Import Crypto.Util.Sum.
Require Import Crypto.Util.LetIn.
Require Import Crypto.Util.Prod.
Require Import Crypto.Util.Sigma.
Require Import Crypto.Util.Option.
Require Import Crypto.Util.ListUtil.
Require Import Crypto.Util.NatUtil.
Require Import Crypto.Util.ZUtil.AddGetCarry.
Require Import Crypto.Util.ZUtil.AddModulo.
Require Import Crypto.Util.ZUtil.CC.
Require Import Crypto.Util.ZUtil.MulSplit.
Require Import Crypto.Util.ZUtil.Rshi.
Require Import Crypto.Util.ZUtil.Zselect.
Require Import Crypto.Util.ZUtil.Tactics.LtbToLt.
Require Import Crypto.Util.ZUtil.Tactics.SplitMinMax.
Require Import Crypto.Util.HProp.
Require Import Crypto.Util.Tactics.BreakMatch.
Require Import Crypto.Util.Tactics.DestructHead.
Require Import Crypto.Util.Tactics.SplitInContext.
Require Import Crypto.Util.Tactics.UniquePose.
Require Import Crypto.Util.Tactics.SpecializeBy.
Require Import Crypto.Util.Tactics.SpecializeAllWays.
Require Import Crypto.Util.Tactics.Head.
Require Import Crypto.Experiments.NewPipeline.Language.
Require Import Crypto.Experiments.NewPipeline.LanguageInversion.
Require Import Crypto.Experiments.NewPipeline.LanguageWf.
Require Import Crypto.Experiments.NewPipeline.UnderLetsProofs.
Require Import Crypto.Experiments.NewPipeline.AbstractInterpretation.
Require Import Crypto.Experiments.NewPipeline.AbstractInterpretationWf.

Module Compilers.
  Import Language.Compilers.
  Import UnderLets.Compilers.
  Import AbstractInterpretation.Compilers.
  Import LanguageInversion.Compilers.
  Import LanguageWf.Compilers.
  Import UnderLetsProofs.Compilers.
  Import AbstractInterpretationWf.Compilers.
  Import AbstractInterpretationWf.Compilers.partial.
  Import invert_expr.

  Local Notation related_bounded' b v1 v2
    := (ZRange.type.base.option.is_bounded_by b v1 = true
        /\ ZRange.type.base.option.is_bounded_by b v2 = true
        /\ v1 = v2) (only parsing).
  Local Notation related_bounded
    := (@type.related_hetero3 _ _ _ _ (fun t b v1 v2 => related_bounded' b v1 v2)).

  Module ZRange.
    Module type.
      Module base.
        Module option.
          Lemma is_bounded_by_None t v : ZRange.type.base.option.is_bounded_by (@ZRange.type.base.option.None t) v = true.
          Proof. induction t; cbn; cbv [andb]; break_innermost_match; eauto. Qed.
        End option.
      End base.

      Module option.
        Lemma is_bounded_by_impl_related_hetero t
              (x : ZRange.type.option.interp t) (v : type.interp base.interp t)
        : ZRange.type.option.is_bounded_by x v = true
          -> type.related_hetero (fun t x v => ZRange.type.base.option.is_bounded_by x v = true) x v.
        Proof. induction t; cbn in *; intuition congruence. Qed.
      End option.
    End type.

    Module ident.
      Module option.
        (** First we prove relatedness for some particularly complicated identifiers separately *)
        Section interp_related.
          Context (cast_outside_of_range : zrange -> Z -> Z).

          Local Notation interp_is_related idc
            := (type.related_hetero
                  (fun t st v => ZRange.type.base.option.is_bounded_by st v = true)
                  (ZRange.ident.option.interp idc)
                  (ident.gen_interp cast_outside_of_range idc)).

          Local Ltac z_cast_t :=
            cbn [type.related_hetero ZRange.ident.option.interp ident.interp ident.gen_interp respectful_hetero type.interp ZRange.type.base.option.interp ZRange.type.base.interp base.interp base.base_interp ZRange.type.base.option.Some];
            cbv [ZRange.ident.option.interp_Z_cast ident.cast ZRange.type.base.option.is_bounded_by ZRange.type.base.is_bounded_by is_tighter_than_bool respectful_hetero is_bounded_by_bool];
            intros; break_innermost_match; trivial;
            rewrite ?Bool.andb_true_iff, ?Bool.andb_false_iff in *; destruct_head'_and; destruct_head'_or; repeat apply conj; Z.ltb_to_lt;
            try reflexivity; try lia.

          Lemma interp_related_Z_cast r : interp_is_related (@ident.Z_cast r).
          Proof. z_cast_t. Qed.

          Lemma interp_related_Z_cast2 r : interp_is_related (@ident.Z_cast2 r).
          Proof. z_cast_t. Qed.

          Lemma interp_related_List_flat_map A B : interp_is_related (@ident.List_flat_map A B).
          Proof.
            cbn; cbv [respectful_hetero]; intros.
            destruct_head' option; cbn in *; [ | reflexivity ].
            break_match; cbn in *; [ | reflexivity ].
            let v := (eval cbv [base.interp ZRange.type.base.option.interp ZRange.type.base.interp] in (@ZRange.type.base.option.interp)) in
            progress change v with (@ZRange.type.base.option.interp) in *.
            progress fold (@base.interp) in *.
            rewrite FoldBool.fold_andb_map_iff in *.
            rewrite OptionList.fold_right_option_seq in *.
            destruct_head'_ex.
            destruct_head'_and.
            rewrite List.flat_map_concat_map, concat_fold_right_app.
            subst.
            lazymatch goal with
            | [ H : List.map _ ?ls1 = List.map _ ?ls' |- length (List.fold_right _ _ ?ls1) = length (List.fold_right _ _ (List.map _ ?ls2)) /\ _ ]
              => is_var ls1; is_var ls2; is_var ls';
                   revert dependent ls'; intro ls'; revert dependent ls2; revert ls'; induction ls1 as [|? xs IHxs];
                     intros [|? ls'] [|? ls2]; cbn [length] in *; intros; cbn in *;
                     [ tauto | exfalso; discriminate.. | ]
            end.
            repeat first [ progress cbn in *
                         | progress subst
                         | discriminate
                         | congruence
                         | progress autorewrite with distr_length
                         | progress destruct_head'_and
                         | rewrite combine_app_samelength
                         | rewrite FoldBool.fold_andb_map_iff in *
                         | specialize (IHxs _ _ ltac:(eassumption) ltac:(eassumption) ltac:(eassumption))
                         | match goal with
                           | [ H : cons _ _ = cons _ _ |- _ ] => inversion H; clear H
                           | [ H : S _ = S _ |- _ ] => inversion H; clear H
                           | [ H : forall v, _ = v \/ _ -> _ |- _ ] => pose proof (H _ (or_introl eq_refl)); specialize (fun v pf => H v (or_intror pf))
                           | [ H : forall x y, ?R x y = true -> match ?f x with Some _ => _ | None => _ end = true, H' : Some _ = ?f ?x' |- _ ]
                             => specialize (H _ _ ltac:(eassumption)); rewrite <- H' in H
                           | [ |- context[List.In _ (_ ++ _)] ] => setoid_rewrite List.in_app_iff
                           end
                         | solve [ intuition ] ].
          Qed.

          Lemma interp_related_List_partition A : interp_is_related (@ident.List_partition A).
          Proof.
            cbn; cbv [respectful_hetero]; intros.
            destruct_head' option; cbn in *; [ | break_innermost_match; reflexivity ].
            let v := (eval cbv [base.interp ZRange.type.base.option.interp ZRange.type.base.interp] in (@ZRange.type.base.option.interp)) in
            progress change v with (@ZRange.type.base.option.interp) in *.
            progress fold (@base.interp) in *.
            rewrite FoldBool.fold_andb_map_iff in *.
            destruct_head'_ex.
            destruct_head'_and.
            repeat break_match_step ltac:(fun v => let t := type of v in match (eval hnf in t) with prod _ _ => idtac end).
            repeat match goal with H : option (list _) |- _ => revert dependent H end.
            lazymatch goal with
            | [ Heq : List.partition _ _ = (?l0, ?l1), H : length ?ls1 = length ?ls2 |- _ ]
              => is_var ls1; is_var ls2; is_var l0; is_var l1;
                   revert dependent l0; intro l0; revert dependent l1; intro l1;
                     revert dependent ls2; intro ls2;
                       revert ls2 l0 l1;
                       induction ls1 as [|? xs IHxs]; intros [|? ls2]; cbn [length] in *; cbn in *;
                         [ intros [|? ?] [|? ?]; cbn in *; intros; break_innermost_match; cbn in *;
                           inversion_prod; inversion_option; subst..
                         | ];
                         [ tauto | exfalso; discriminate.. | intros ]
            end.
            repeat first [ progress cbn in *
                         | progress subst
                         | match goal with
                           | [ H : S _ = S _ |- _ ] => inversion H; clear H
                           end
                         | discriminate
                         | congruence
                         | progress destruct_head'_and
                         | progress inversion_prod
                         | progress eta_expand
                         | rewrite Bool.if_const
                         | specialize (fun l0 l1 => IHxs _ l0 l1 ltac:(eassumption))
                         | specialize (fun l0 l1 => IHxs l0 l1 ltac:(eassumption))
                         | specialize (IHxs _ _ (@surjective_pairing _ _ _))
                         | progress Bool.split_andb
                         | match goal with
                           | [ |- context[Option.bind ?x ?y] ] => destruct x eqn:?
                           | [ H : bool_eq _ _ = true |- _ ] => apply bool_eq_ok in H
                           | [ H : forall v, _ = v \/ _ -> _ |- _ ] => pose proof (H _ (or_introl eq_refl)); specialize (fun v pf => H v (or_intror pf))
                           | [ |- context[match ?b with true => ?f ?x | false => ?f ?y end] ]
                             => replace (match b with true => f x | false => f y end)
                               with (f match b with true => x | false => y end)
                                    by now case b
                           | [ H : context[match ?b with true => ?f ?x | false => ?f ?y end] |- _ ]
                             => replace (match b with true => f x | false => f y end)
                               with (f match b with true => x | false => y end)
                               in H
                               by now case b
                           | [ H : _ = (_, _) -> _ |- _ ] => specialize (fun pf1 pf2 => H (@path_prod _ _ _ _ pf1 pf2))
                           | [ H : ?x = _, H' : context[?x] |- _ ] => rewrite H in H'
                           | [ H : ?x = _ :> bool |- context[?x] ] => rewrite H
                           | [ H : forall x y, ?R x y = true -> match ?f x with Some _ => _ | None => _ end _ = true, H' : ?f ?x' = Some _ |- _ ]
                             => specialize (H _ _ ltac:(eassumption)); rewrite H' in H
                           end
                         | progress break_innermost_match_step ].
          Qed.

          Local Ltac handle_lt_le_t_step_fast :=
            first [ match goal with
                    | [ H : (?a <= ?b)%Z, H' : (?b <= ?a)%Z |- _ ]
                      => pose proof (@Z.le_antisymm _ _ H H'); clear H H'
                    | [ H : (?a <= ?b <= ?a)%Z |- _ ]
                      => pose proof (@Z.le_antisymm _ _ (proj1 H) (proj2 H)); clear H
                    end ].

          Local Ltac handle_lt_le_t_step :=
            first [ handle_lt_le_t_step_fast
                  | match goal with
                    | [ |- context[Z.leb ?a ?b = true] ] => rewrite !Z.leb_le
                    | [ |- context[Nat.eqb ?a ?b = true] ] => rewrite !Nat.eqb_eq
                    | [ |- context[Z.eqb ?a ?b = true] ] => rewrite !Z.eqb_eq
                    | [ H : context[andb ?a ?b = true] |- _ ] => rewrite !Bool.andb_true_iff in H
                    | [ H : context[Z.leb ?a ?b = true] |- _ ] => rewrite !Z.leb_le in H
                    | [ H : context[Nat.eqb ?a ?b = true] |- _ ] => rewrite !Nat.eqb_eq in H
                    | [ H : context[Z.eqb ?a ?b = true] |- _ ] => rewrite !Z.eqb_eq in H
                    end ].

          Local Ltac simplify_ranges_t_step_fast :=
            first [ match goal with
                    | [ H : ZRange.lower ?r = ZRange.upper ?r |- _ ]
                      => is_var r; let x := fresh in destruct r as [r x]; cbn in H; subst x
                    | [ H : context[ZRange.type.base.is_bounded_by r[_ ~> _]%zrange _] |- _ ]
                      => progress cbn [ZRange.type.base.is_bounded_by] in H
                    | [ H : context[is_bounded_by_bool _ r[_ ~> _]%zrange] |- _ ]
                      => progress cbv [is_bounded_by_bool] in H
                    end ].
          Local Ltac simplify_ranges_t_step :=
            first [ simplify_ranges_t_step_fast ].

          Local Ltac non_arith_t :=
            repeat first [ assumption
                         | match goal with
                           | [ |- ?R ?x ?x ] => reflexivity
                           | [ H : forall x : unit, _ |- _ ] => specialize (H tt)
                           | [ H : ?x = ?x -> _ |- _ ] => specialize (H eq_refl)
                           | [ H : ?x = ?x |- _ ] => clear H
                           | [ H : false = true |- _ ] => exfalso; clear -H; discriminate
                           | [ H : ~?R ?x ?x |- _ ] => exfalso; apply H; reflexivity
                           | [ |- ZRange.type.base.option.is_bounded_by ZRange.type.base.option.None _ = true ]
                             => apply type.base.option.is_bounded_by_None
                           | [ H : FoldBool.fold_andb_map _ ?l1 ?l2 = true |- length ?l1 = length ?l2 ]
                             => eapply FoldBool.fold_andb_map_length, H
                           | [ H : forall x y, Nat.eqb x y = true -> _ |- _ ] => specialize (fun x => H x x (@Nat.eqb_refl x))
                           | [ H : forall x, true = true -> _ |- _ ] => specialize (fun x => H x eq_refl)
                           | [ H : forall v, List.In v (List.combine ?ls1 ?ls2) -> ?R (fst v) (snd v) = true,
                                 H1 : List.nth_error ?ls1 ?n = Some ?v1,
                                 H2 : List.nth_error ?ls2 ?n = Some ?v2
                                 |- ?R ?v1 ?v2 = true ]
                             => apply (H (v1, v2)), (@nth_error_In _ _ n); clear -H1 H2
                           | [ H : ?T, H' : ~?T |- _ ] => exfalso; solve [ apply H', H ]
                           | [ H : List.nth_error ?ls ?n = Some _, H' : List.nth_error ?ls' ?n = None |- _ ]
                             => let Hlen := fresh in
                                assert (Hlen : length ls = length ls') by congruence;
                                exfalso; clear -H H' Hlen;
                                apply nth_error_value_length in H;
                                apply nth_error_error_length in H';
                                omega
                           | [ |- (0 <= 1)%Z ] => clear; omega
                           end
                         | handle_lt_le_t_step_fast
                         | simplify_ranges_t_step_fast
                         | progress intros
                         | progress subst
                         | progress inversion_option
                         | progress inversion_prod
                         | progress destruct_head'_and
                         | progress destruct_head'_unit
                         | progress destruct_head'_prod
                         | progress destruct_head'_ex
                         | break_innermost_match_step
                         | break_innermost_match_hyps_step
                         | progress cbn [ZRange.type.base.option.is_bounded_by is_bounded_by_bool ZRange.type.base.is_bounded_by lower upper fst snd projT1 projT2 bool_eq base.interp base.base_interp Option.bind FoldBool.fold_andb_map negb ZRange.ident.option.to_literal ZRange.type.base.option.None ident.to_fancy invert_Some ident.fancy.interp ident.fancy.interp_with_wordmax fst snd ZRange.type.base.option.interp ZRange.type.base.interp List.combine List.In] in *
                         | progress destruct_head'_bool
                         | solve [ auto with nocore ]
                         | progress fold (@base.interp) in *
                         | let v := (eval cbv [base.interp ZRange.type.base.option.interp ZRange.type.base.interp] in (@ZRange.type.base.option.interp)) in
                           progress change v with (@ZRange.type.base.option.interp) in *
                         | handle_lt_le_t_step
                         | simplify_ranges_t_step
                         | match goal with
                           | [ |- context[andb ?a ?b = true] ] => rewrite !Bool.andb_true_iff
                           | [ H : FoldBool.fold_andb_map _ _ _ = true |- _ ] => rewrite FoldBool.fold_andb_map_iff in H
                           | [ |- FoldBool.fold_andb_map _ _ _ = true ] => rewrite FoldBool.fold_andb_map_iff
                           | [ H : forall (x : option _), _ |- _ ] => pose proof (H None); specialize (fun x => H (Some x))
                           | [ H : forall x y z (w : option _), _ |- _ ] => pose proof (fun x y z => H x y z None); specialize (fun x y z w => H x y z (Some w))
                           | [ H : forall v, _ = v \/ _ -> _ |- _ ] => pose proof (H _ (or_introl eq_refl)); specialize (fun v pf => H v (or_intror pf))
                           | [ |- context[length ?x] ] => tryif is_var x then fail else (progress autorewrite with distr_length)
                           | [ H : List.In _ (List.combine _ _) |- _ ] => apply List.In_nth_error in H
                           | [ H : context[List.nth_error (List.combine _ _) _] |- _ ] => rewrite nth_error_combine in H
                           | [ |- context[List.nth_error (List.combine _ _) _] ] => rewrite nth_error_combine
                           | [ H : List.nth_error (List.map _ _) _ = Some _ |- _ ] => apply nth_error_map in H
                           | [ H : context[List.nth_error (List.seq _ _) _] |- _ ] => rewrite nth_error_seq in H
                           | [ |- context[List.nth_error (List.seq _ _) _] ] => rewrite nth_error_seq
                           | [ H : context[List.nth_error (List.firstn _ _) _] |- _ ] => rewrite nth_error_firstn in H
                           | [ |- context[List.nth_error (List.firstn _ _) _] ] => rewrite nth_error_firstn
                           | [ H : context[List.nth_error (List.skipn _ _) _] |- _ ] => rewrite nth_error_skipn in H
                           | [ |- context[List.nth_error (List.skipn _ _) _] ] => rewrite nth_error_skipn
                           | [ H : context[List.nth_error (update_nth _ _ _) _] |- _ ] => rewrite nth_update_nth in H
                           | [ |- context[List.nth_error (update_nth _ _ _) _] ] => rewrite nth_update_nth
                           | [ H : context[List.nth_error (List.app _ _) _] |- _ ] => rewrite nth_error_app in H
                           | [ |- context[List.nth_error (List.app _ _) _] ] => rewrite nth_error_app
                           | [ H : context[List.nth_error (List.rev _) _] |- _ ] => rewrite nth_error_rev in H
                           | [ |- context[List.nth_error (List.rev _) _] ] => rewrite nth_error_rev
                           | [ H : List.nth_error (Lists.List.repeat _ _) _ = Some _ |- _ ] => apply nth_error_repeat in H
                           | [ H : List.nth_error (repeat _ _) _ = Some _ |- _ ] => apply nth_error_repeat in H
                           | [ H : length ?l1 = length ?l2 |- context[length ?l1] ] => rewrite H
                           | [ H : length ?l1 = length ?l2, H' : context[length ?l1] |- _ ] => rewrite H in H'
                           | [ |- context[List.flat_map _ _] ] => rewrite List.flat_map_concat_map, concat_fold_right_app
                           | [ H : S _ = S _ |- _ ] => inversion H; clear H
                           | [ H : List.fold_right (fun x y => x <- x; y <- y; Some _)%option (Some ?init) ?ls = Some ?v |- _]
                             => rewrite OptionList.fold_right_option_seq in H
                           | [ |- and _ _ ] => apply conj
                           end
                         | progress cbv [bool_eq option_map List.nth_default Definitions.Z.bneg is_bounded_by_bool] in *
                         | match goal with
                           | [ |- ?R (nat_rect ?P ?O ?S ?n) (nat_rect ?P' ?O' ?S' ?n) = true ]
                             => is_var n; induction n; cbn [nat_rect];
                                generalize dependent (nat_rect P O S); generalize dependent (nat_rect P' O' S');
                                intros
                           | [ |- ?R (nat_rect ?P ?O ?S ?n ?x) (nat_rect ?P' ?O' ?S' ?n ?y) = true ]
                             => is_var n; is_var x; is_var y;
                                revert dependent x; revert dependent y; induction n; cbn [nat_rect];
                                generalize dependent (nat_rect P O S); generalize dependent (nat_rect P' O' S');
                                intros
                           | [ H : length ?ls = length ?ls' |- ?R (List.fold_right ?f ?x ?ls) (List.fold_right ?f' ?x' ?ls') = true ]
                             => is_var ls; is_var ls';
                                let IH := fresh "IH" in
                                revert dependent ls'; induction ls as [|? ls IH]; intros [|? ls']; cbn [List.fold_right length] in *;
                                [
                                 | exfalso; clear -H; discriminate | exfalso; clear -H; discriminate
                                 | specialize (IH ls');
                                   generalize dependent (List.fold_right f x); generalize dependent (List.fold_right f' x') ];
                                intros
                           | [ H : length ?ls = length ?ls' |- ?R (List.fold_right ?f ?x ?ls) (List.fold_right ?f' ?x' ?ls') = true ]
                             => is_var ls; is_var ls';
                                let IH := fresh "IH" in
                                revert dependent ls'; induction ls as [|? ls IH]; intros [|? ls']; intros; cbn [List.fold_right length] in *;
                                [
                                 | exfalso; discriminate | exfalso; discriminate
                                 | specialize (IH ls');
                                   generalize dependent (List.fold_right f x); generalize dependent (List.fold_right f' x') ];
                                intros
                           | [ H : length ?ls = length ?ls' |- ?R (list_rect ?P ?N ?C ?ls) (list_rect ?P' ?N' ?C' ?ls') = true ]
                             => is_var ls; is_var ls';
                                let IH := fresh "IH" in
                                revert dependent ls'; induction ls as [|? ls IH]; intros [|? ls']; intros; cbn [list_rect length] in *;
                                [
                                 | exfalso; discriminate | exfalso; discriminate
                                 | specialize (IH ls');
                                   generalize dependent (list_rect P N C); generalize dependent (list_rect P' N' C') ];
                                intros
                           | [ H : forall a b, ?R a b = true -> ?R' (?f a) (?g b) = true |- ?R' (?f _) (?g _) = true ] => apply H; clear H
                           | [ H : forall a b, ?R a b = true -> forall c d, ?R' c d = true -> ?R'' (?f a c) (?g b d) = true |- ?R'' (?f _ _) (?g _ _) = true ]
                             => apply H; clear H
                           | [ H : forall a b, ?R a b = true -> forall c d, ?R' c d = true -> forall e f, ?R'' e f = true -> ?R''' (?F _ _ _) (?G _ _ _) = true |- ?R''' (?F _ _ _) (?G _ _ _) = true ]
                             => apply H; clear H
                           end ].

          Axiom proof_admitted : False.
          Notation admit := (match proof_admitted with end).

          Lemma interp_related {t} (idc : ident t) : interp_is_related idc.
          Proof.
            destruct idc.
            all: lazymatch goal with
                 | [ |- context[ident.Z_cast] ] => apply interp_related_Z_cast
                 | [ |- context[ident.Z_cast2] ] => apply interp_related_Z_cast2
                 | [ |- context[ident.List_flat_map] ] => apply interp_related_List_flat_map
                 | [ |- context[ident.List_partition] ] => apply interp_related_List_partition
                 | _ => idtac
                 end.
            all: cbn [type.related_hetero ZRange.ident.option.interp ident.interp ident.gen_interp respectful_hetero type.interp ZRange.type.base.option.interp ZRange.type.base.interp base.interp base.base_interp ZRange.type.base.option.Some ZRange.ident.option.of_literal].
            all: cbv [respectful_hetero option_map list_case].
            all: intros.
            all: destruct_head_hnf' prod.
            all: destruct_head_hnf' option.
            Time all: try solve [ non_arith_t ].
            all: cbn [ZRange.type.base.option.is_bounded_by ZRange.type.base.is_bounded_by Option.bind ZRange.ident.option.to_literal ident.fancy.interp invert_Some ident.to_fancy ident.fancy.interp_with_wordmax] in *.
            all: break_innermost_match; try reflexivity.
            Time all: try solve [ non_arith_t ].
            all: repeat first [ progress subst
                              | progress inversion_prod
                              | progress inversion_option
                              | progress destruct_head'_and
                              | progress cbn [ZRange.type.base.option.is_tighter_than lower upper fst snd Option.bind] in *
                              | progress cbv [Definitions.Z.lnot_modulo Definitions.Z.add_with_carry] in *
                              | handle_lt_le_t_step
                              | simplify_ranges_t_step
                              | discriminate
                              | solve [ auto using ZRange.is_bounded_by_bool_Proper_if_sumbool_union ]
                              | match goal with
                                | [ H : ?x = ?x |- _ ] => clear H
                                end
                              | progress rewrite ?Z.mul_split_div, ?Z.mul_split_mod, ?Z.add_get_carry_full_div, ?Z.add_get_carry_full_mod, ?Z.add_with_get_carry_full_div, ?Z.add_with_get_carry_full_mod, ?Z.sub_get_borrow_full_div, ?Z.sub_get_borrow_full_mod, ?Z.sub_with_get_borrow_full_div, ?Z.sub_with_get_borrow_full_mod, ?Z.zselect_correct, ?Z.add_modulo_correct ].
            all: clear cast_outside_of_range.
            all: repeat match goal with
                        | [ H : ?T |- _ ]
                          => lazymatch T with
                            | Z => clear H
                            | zrange => clear H
                            | _ = true => revert H
                            | _ = false => revert H
                            | _ => fail 10 T
                            end
                        end.
            all: exact admit.
          Qed.
        End interp_related.
      End option.
    End ident.
  End ZRange.
  Module Import partial.
    Import AbstractInterpretation.Compilers.partial.
    Import NewPipeline.UnderLets.Compilers.UnderLets.
    Section with_type.
      Context {base_type : Type}.
      Local Notation type := (type base_type).
      Let type_base (x : base_type) : type := type.base x.
      Local Coercion type_base : base_type >-> type.
      Context {ident : type -> Type}.
      Local Notation Expr := (@expr.Expr base_type ident).
      Context (abstract_domain' base_interp : base_type -> Type)
              (ident_interp : forall t, ident t -> type.interp base_interp t)
              (abstraction_relation' : forall t, abstract_domain' t -> base_interp t -> Prop)
              (bottom' : forall A, abstract_domain' A)
              (bottom'_related : forall t v, abstraction_relation' t (bottom' t) v)
              (abstract_interp_ident : forall t, ident t -> type.interp abstract_domain' t)
              (ident_interp_Proper : forall t (idc : ident t), type.related_hetero abstraction_relation' (abstract_interp_ident t idc) (ident_interp t idc))
              (ident_interp_Proper' : forall t, Proper (eq ==> type.eqv) (ident_interp t))
              (abstract_domain'_R : forall t, abstract_domain' t -> abstract_domain' t -> Prop)
              (abstraction_relation'_Proper : forall t, Proper (abstract_domain'_R t ==> eq ==> Basics.impl) (abstraction_relation' t))
              (abstract_domain'_R_Reflexive : forall t, Reflexive (abstract_domain'_R t)).
      Local Notation abstract_domain := (@abstract_domain base_type abstract_domain').
      Definition abstraction_relation {t} : abstract_domain t -> type.interp base_interp t -> Prop
        := type.related_hetero (@abstraction_relation').
      Local Notation bottom := (@bottom base_type abstract_domain' (@bottom')).
      Local Notation bottom_for_each_lhs_of_arrow := (@bottom_for_each_lhs_of_arrow base_type abstract_domain' (@bottom')).
      Local Notation var := (type.interp base_interp).
      Local Notation expr := (@expr.expr base_type ident).
      Local Notation UnderLets := (@UnderLets base_type ident).
      Local Notation value := (@value base_type ident var abstract_domain').
      Local Notation value_with_lets := (@value_with_lets base_type ident var abstract_domain').
      Local Notation state_of_value := (@state_of_value base_type ident var abstract_domain').
      Context (annotate : forall (is_let_bound : bool) t, abstract_domain' t -> @expr var t -> @UnderLets var (@expr var t))
              (interp_ident : forall t, ident t -> value_with_lets t)
              (ident_extract : forall t, ident t -> abstract_domain t)
              (interp_annotate
               : forall is_let_bound t st e
                   (He : abstraction_relation' t st (expr.interp (t:=type.base t) (@ident_interp) e)),
                  expr.interp (@ident_interp) (UnderLets.interp (@ident_interp) (@annotate is_let_bound t st e))
                  = expr.interp (@ident_interp) e).
      Local Notation eta_expand_with_bound' := (@eta_expand_with_bound' base_type ident _ abstract_domain' annotate bottom').
      Local Notation eval_with_bound' := (@partial.eval_with_bound' base_type ident _ abstract_domain' annotate bottom' interp_ident).
      Local Notation extract' := (@extract' base_type ident abstract_domain' ident_extract).
      Local Notation extract_gen := (@extract_gen base_type ident abstract_domain' ident_extract).
      Local Notation reify := (@reify base_type ident _ abstract_domain' annotate bottom').
      Local Notation reflect := (@reflect base_type ident _ abstract_domain' annotate bottom').
      Local Notation interp := (@interp base_type ident var abstract_domain' annotate bottom' interp_ident).

      Lemma bottom_related t v : @abstraction_relation t bottom v.
      Proof using bottom'_related. cbv [abstraction_relation]; induction t; cbn; cbv [respectful_hetero]; eauto. Qed.

      Lemma bottom_for_each_lhs_of_arrow_related t v : type.and_for_each_lhs_of_arrow (@abstraction_relation) (@bottom_for_each_lhs_of_arrow t) v.
      Proof using bottom'_related. induction t; cbn; eauto using bottom_related. Qed.

      (*
      Local Notation reify1 := (@reify base_type ident var1 abstract_domain' annotate1 bottom').
      Local Notation reify2 := (@reify base_type ident var2 abstract_domain' annotate2 bottom').
      Local Notation reflect1 := (@reflect base_type ident var1 abstract_domain' annotate1 bottom').
      Local Notation reflect2 := (@reflect base_type ident var2 abstract_domain' annotate2 bottom').
      Local Notation interp1 := (@interp base_type ident var1 abstract_domain' annotate1 bottom' interp_ident1).
      Local Notation interp2 := (@interp base_type ident var2 abstract_domain' annotate2 bottom' interp_ident2).
      Local Notation eval_with_bound'1 := (@eval_with_bound' base_type ident var1 abstract_domain' annotate1 bottom' interp_ident1).
      Local Notation eval_with_bound'2 := (@eval_with_bound' base_type ident var2 abstract_domain' annotate2 bottom' interp_ident2).
      Local Notation eval'1 := (@eval' base_type ident var1 abstract_domain' annotate1 bottom' interp_ident1).
      Local Notation eval'2 := (@eval' base_type ident var2 abstract_domain' annotate2 bottom' interp_ident2).
      Local Notation eta_expand_with_bound'1 := (@eta_expand_with_bound' base_type ident var1 abstract_domain' annotate1 bottom').
      Local Notation eta_expand_with_bound'2 := (@eta_expand_with_bound' base_type ident var2 abstract_domain' annotate2 bottom').
*)
(*

      Fixpoint value (t : type)
        := (abstract_domain t
            * match t return Type (* COQBUG(https://github.com/coq/coq/issues/7727) *) with
              | type.base t
                => @expr var t
              | type.arrow s d
                => value s -> UnderLets (value d)
              end)%type.

      Definition value_with_lets (t : type)
        := UnderLets (value t).


      Fixpoint bottom {t} : abstract_domain t
        := match t with
           | type.base t => bottom' t
           | type.arrow s d => fun _ => @bottom d
           end.

      Fixpoint bottom_for_each_lhs_of_arrow {t} : type.for_each_lhs_of_arrow abstract_domain t
        := match t return type.for_each_lhs_of_arrow abstract_domain t with
           | type.base t => tt
           | type.arrow s d => (bottom, @bottom_for_each_lhs_of_arrow d)
           end.

      Definition state_of_value {t} : value t -> abstract_domain t
        := match t return value t -> abstract_domain t with
           | type.base t => fun '(st, v) => st
           | type.arrow s d => fun '(st, v) => st
           end.
 *)

      Fixpoint related_bounded_value {t} : abstract_domain t -> value t -> type.interp base_interp t -> Prop
        := match t return abstract_domain t -> value t -> type.interp base_interp t -> Prop with
           | type.base t
             => fun st '(e_st, e) v
                => abstract_domain'_R t st e_st
                   /\ expr.interp ident_interp e = v
                   /\ abstraction_relation' t st v
           | type.arrow s d
             => fun st '(e_st, e) v
                => (** XXX FIXME: DO WE NEED TO DO ANYTHING WITH e_st? *)
                  forall st_s e_s v_s,
                    @related_bounded_value s st_s e_s v_s
                    -> @related_bounded_value d (st st_s) (UnderLets.interp ident_interp (e e_s)) (v v_s)
           end.
      Definition related_bounded_value_with_lets {t} : abstract_domain t -> value_with_lets t -> type.interp base_interp t -> Prop
        := fun st e v => related_bounded_value st (UnderLets.interp ident_interp e) v.

      Axiom proof_admitted : False.
      Notation admit := (match proof_admitted with end).

      Fixpoint interp_reify
               is_let_bound {t} st e v b_in
               (H : related_bounded_value st e v) {struct t}
        : (forall arg1 arg2
                  (Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
                  (Harg1 : type.and_for_each_lhs_of_arrow (@abstraction_relation) b_in arg1),
              type.app_curried (expr.interp ident_interp (UnderLets.interp ident_interp (@reify is_let_bound t e b_in))) arg1
              = type.app_curried v arg2)
          /\ (forall arg1
                     (Harg1 : type.and_for_each_lhs_of_arrow (@abstraction_relation) b_in arg1)
                     (Harg11 : Proper (type.and_for_each_lhs_of_arrow (@type.eqv)) arg1),
                 abstraction_relation'
                   _
                   (type.app_curried st b_in)
                   (type.app_curried (expr.interp ident_interp (UnderLets.interp ident_interp (@reify is_let_bound t e b_in))) arg1))
      with interp_reflect
             {t} st e v
             (H_val : expr.interp ident_interp e == v)
             (Hst : abstraction_relation st (expr.interp ident_interp e))
             {struct t}
           : related_bounded_value
               st
               (@reflect t e st)
               v.
      Proof using interp_annotate abstraction_relation'_Proper abstract_domain'_R_Reflexive bottom'_related.
        all: destruct t as [t|s d];
          [ clear interp_reify interp_reflect
          | pose proof (fun is_let_bound => interp_reify is_let_bound s) as interp_reify_s;
            pose proof (fun is_let_bound => interp_reify is_let_bound d) as interp_reify_d;
            pose proof (interp_reflect s) as interp_reflect_s;
            pose proof (interp_reflect d) as interp_reflect_d;
            clear interp_reify interp_reflect ].
        all: cbn [reify reflect]; fold (@reify) (@reflect).
        all: repeat first [ reflexivity
                          | progress eta_expand
                          | progress cbn [related_bounded_value UnderLets.interp expr.interp type.final_codomain type.related] in *
                          | progress fold (@type.interp)
                          | progress destruct_head'_and
                          | progress destruct_head_hnf' and
                          | progress destruct_head_hnf' unit
                          | progress split_and
                          | rewrite UnderLets.interp_splice
                          | rewrite UnderLets.interp_to_expr
                          | rewrite interp_annotate
                          | solve [ cbv [Proper respectful Basics.impl] in *; eauto ]
                          | progress (repeat apply conj; intros * )
                          | progress subst
                          | progress cbn [type.app_curried type.and_for_each_lhs_of_arrow] in *
                          | progress intros ].
        replace (state_of_value e_s) with st_s.
        eapply interp_reflect_d.
        all: eauto.
        all: cbn [expr.interp].
        move e at bottom.
        eapply H_val.
        all: cbv [respectful] in *.
        all: cbv [abstraction_relation] in *.
        all: cbn [type.related_hetero] in *.
        2:eapply Hst.
        all: eauto.
        rewrite type.related_iff_app_curried.
        intros.
        eapply H1.
        eauto.
        eauto.
        apply bottom_for_each_lhs_of_arrow_related.
        rewrite type.related_hetero_iff_app_curried.
        intros.
        replace x with (@bottom_for_each_lhs_of_arrow s).
        eapply H2.
        all: eauto using bottom_for_each_lhs_of_arrow_related.
        exact admit.
        exact admit.
        exact admit.
      Qed.
      (*
      Fixpoint reify (is_let_bound : bool) {t} : value t -> type.for_each_lhs_of_arrow abstract_domain t -> UnderLets (@expr var t)
        := match t return value t -> type.for_each_lhs_of_arrow abstract_domain t -> UnderLets (@expr var t) with
           | type.base t
             => fun '(st, v) 'tt
                => annotate is_let_bound t st v
           | type.arrow s d
             => fun '(f_st, f_e) '(sv, dv)
                => Base
                     (λ x , (UnderLets.to_expr
                               (fx <-- f_e (@reflect _ (expr.Var x) sv);
                                  @reify false _ fx dv)))
           end%core%expr
      with reflect {t} : @expr var t -> abstract_domain t -> value t
           := match t return @expr var t -> abstract_domain t -> value t with
              | type.base t
                => fun e st => (st, e)
              | type.arrow s d
                => fun e absf
                   => (absf,
                       (fun v
                        => let stv := state_of_value v in
                           (rv <-- (@reify false s v bottom_for_each_lhs_of_arrow);
                              Base (@reflect d (e @ rv) (absf stv))%expr)))
              end%under_lets.
       *)

      Context (interp_ident_Proper
               : forall t idc,
                  related_bounded_value (ident_extract t idc) (UnderLets.interp ident_interp (interp_ident t idc)) (ident_interp t idc)).

      Lemma interp_interp
            G {t} (e_st e1 e2 : expr t)
            (HG : forall t v1 v2 v3, List.In (existT _ t (v1, v2, v3)) G
                                     -> related_bounded_value_with_lets v1 v2 v3)
            (Hwf : expr.wf3 G e_st e1 e2)
        : related_bounded_value_with_lets
            (extract' e_st)
            (interp e1)
            (expr.interp (@ident_interp) e2).
      Proof using interp_ident_Proper interp_annotate abstraction_relation'_Proper.
        cbv [related_bounded_value_with_lets] in *;
          induction Hwf; cbn [extract' interp expr.interp related_bounded_value UnderLets.interp List.In] in *.
        all: repeat first [ progress intros
                          | progress subst
                          | progress inversion_sigma
                          | progress inversion_prod
                          | progress destruct_head'_and
                          | progress destruct_head'_or
                          | progress eta_expand
                          | progress cbn [UnderLets.interp List.In eq_rect fst snd projT1 projT2] in *
                          | rewrite UnderLets.interp_splice
                          | rewrite interp_annotate
                          | solve [ cbv [Proper respectful Basics.impl] in *; eauto ]
                          | progress specialize_by_assumption
                          | progress cbv [Let_In extract'] in *
                          | progress cbn [reify reflect state_of_value related_bounded_value] in *
                          | match goal with
                            | [ H : _ |- _ ] => tryif constr_eq H HG then fail else (apply H; clear H)
                            end
                          | break_innermost_match_step
                          | apply conj
                          | match goal with
                            | [ H : _ = _ |- _ ] => rewrite H
                            end ].
      Qed.

      (*

      Definition eval_with_bound' {t} (e : @expr value_with_lets t)
                 (st : type.for_each_lhs_of_arrow abstract_domain t)
        : expr t
        := UnderLets.to_expr (e' <-- interp e; reify false e' st).

      Definition eval' {t} (e : @expr value_with_lets t) : expr t
        := eval_with_bound' e bottom_for_each_lhs_of_arrow.

      Definition eta_expand_with_bound' {t} (e : @expr var t)
                 (st : type.for_each_lhs_of_arrow abstract_domain t)
        : expr t
        := UnderLets.to_expr (reify false (reflect e bottom) st).

      Section extract.
        Context (ident_extract : forall t, ident t -> abstract_domain t).

        Definition extract' {t} (e : @expr abstract_domain t) : abstract_domain t
          := expr.interp (@ident_extract) e.

        Definition extract_gen {t} (e : @expr abstract_domain t) (bound : type.for_each_lhs_of_arrow abstract_domain t)
          : abstract_domain' (type.final_codomain t)
          := type.app_curried (extract' e) bound.
      End extract.
    End with_var.



      Section extract.
        Context (ident_extract : forall t, ident t -> abstract_domain t)
        {ident_extract_Proper : forall {t}, Proper (eq ==> abstract_domain_R) (ident_extract t)}.

        Local Notation extract' := (@extract' base_type ident abstract_domain' ident_extract).
        Local Notation extract_gen := (@extract_gen base_type ident abstract_domain' ident_extract).

        Lemma extract'_Proper G
              (HG : forall t v1 v2, List.In (existT _ t (v1, v2)) G -> @abstract_domain_R t v1 v2)
              {t}
          : Proper (expr.wf G ==> abstract_domain_R) (@extract' t).
        Proof using ident_extract_Proper. apply expr.wf_interp_Proper_gen1, HG. Qed.

        Lemma extract_gen_Proper G
              (HG : forall t v1 v2, List.In (existT _ t (v1, v2)) G -> @abstract_domain_R t v1 v2)
              {t}
          : Proper (expr.wf G ==> type.and_for_each_lhs_of_arrow (@abstract_domain_R) ==> abstract_domain'_R (type.final_codomain t)) (@extract_gen t).
        Proof using ident_extract_Proper.
          intros ?? Hwf; cbv [extract_gen respectful abstract_domain_R].
          rewrite <- type.related_iff_app_curried.
          eapply extract'_Proper; eassumption.
        Qed.
      End extract.
 *)
      Lemma interp_eval_with_bound'
            {t} (e_st e1 e2 : expr t)
            (Hwf : expr.wf3 nil e_st e1 e2)
            (st : type.for_each_lhs_of_arrow abstract_domain t)
        : (forall arg1 arg2
                  (Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
                  (Harg1 : type.and_for_each_lhs_of_arrow (@abstraction_relation) st arg1),
              type.app_curried (expr.interp ident_interp (eval_with_bound' e1 st)) arg1
              = type.app_curried (expr.interp ident_interp e2) arg2)
          /\ (forall arg1
                     (Harg1 : type.and_for_each_lhs_of_arrow (@abstraction_relation) st arg1)
                     (Harg11 : Proper (type.and_for_each_lhs_of_arrow (@type.eqv)) arg1),
                 abstraction_relation'
                   _
                   (extract_gen e_st st)
                   (type.app_curried (expr.interp ident_interp (eval_with_bound' e1 st)) arg1)).
      Proof using interp_annotate abstraction_relation'_Proper abstract_domain'_R_Reflexive bottom'_related interp_ident_Proper.
        cbv [extract_gen extract' eval_with_bound'].
        split; intros; rewrite UnderLets.interp_to_expr, UnderLets.interp_splice.
        all: eapply interp_reify; eauto.
        all: eapply interp_interp; eauto; wf_t.
      Qed.

      Lemma interp_eta_expand_with_bound'
            {t} (e1 e2 : expr t)
            (Hwf : expr.wf nil e1 e2)
            (b_in : type.for_each_lhs_of_arrow abstract_domain t)
        : forall arg1 arg2
            (Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
            (Harg1 : type.and_for_each_lhs_of_arrow (@abstraction_relation) b_in arg1),
          type.app_curried (expr.interp ident_interp (eta_expand_with_bound' e1 b_in)) arg1 = type.app_curried (expr.interp ident_interp e2) arg2.
      Proof using interp_annotate ident_interp_Proper' bottom'_related abstraction_relation'_Proper abstract_domain'_R_Reflexive.
        cbv [eta_expand_with_bound'].
        intros; rewrite UnderLets.interp_to_expr.
        eapply interp_reify; eauto.
        eapply interp_reflect; eauto using bottom_related.
        eapply @expr.wf_interp_Proper_gen; auto using Hwf.
      Qed.

  (*
      Definition eval_with_bound' {t} (e : @expr value_with_lets t)
                 (st : type.for_each_lhs_of_arrow abstract_domain t)
        : expr t
        := UnderLets.to_expr (e' <-- interp e; reify false e' st).

      Definition eval' {t} (e : @expr value_with_lets t) : expr t
        := eval_with_bound' e bottom_for_each_lhs_of_arrow.

      Definition eta_expand_with_bound' {t} (e : @expr var t)
                 (st : type.for_each_lhs_of_arrow abstract_domain t)
        : expr t
        := UnderLets.to_expr (reify false (reflect e bottom) st).
*)
    End with_type.

    Module ident.
      Import defaults.
      Local Notation UnderLets := (@UnderLets base.type ident).
      Section with_type.
        Context (abstract_domain' : base.type -> Type).
        Local Notation abstract_domain := (@abstract_domain base.type abstract_domain').
        Context (annotate_ident : forall t, abstract_domain' t -> option (ident (t -> t)))
                (bottom' : forall A, abstract_domain' A)
                (abstract_interp_ident : forall t, ident t -> type.interp abstract_domain' t)
                (update_literal_with_state : forall A : base.type.base, abstract_domain' A -> base.interp A -> base.interp A)
                (extract_list_state : forall A, abstract_domain' (base.type.list A) -> option (list (abstract_domain' A)))
                (is_annotated_for : forall t t', ident t -> abstract_domain' t' -> bool)
                (is_annotation : forall t, ident t -> bool)
                (abstraction_relation' : forall t, abstract_domain' t -> base.interp t -> Prop)
                (abstract_domain'_R : forall t, abstract_domain' t -> abstract_domain' t -> Prop)
                (abstraction_relation'_Proper : forall t, Proper (abstract_domain'_R t ==> eq ==> Basics.impl) (abstraction_relation' t))
                (abstract_domain'_R_Reflexive : forall t, Reflexive (abstract_domain'_R t))
                (bottom'_related : forall t v, abstraction_relation' t (bottom' t) v)
                (cast_outside_of_range : zrange -> Z -> Z).
        Local Notation abstraction_relation := (@abstraction_relation base.type abstract_domain' base.interp abstraction_relation').
        Local Notation ident_interp := (@ident.gen_interp cast_outside_of_range).
        Local Notation abstract_domain_R := (@abstract_domain_R base.type abstract_domain' abstract_domain'_R).
        Context {abstract_interp_ident_Proper : forall t, Proper (eq ==> @abstract_domain_R t) (abstract_interp_ident t)}
                (interp_annotate_ident
                 : forall t st idc,
                    annotate_ident t st = Some idc
                    -> forall v, abstraction_relation' _ st v
                           -> ident_interp idc v = v)
                (interp_update_literal_with_state
                 : forall (t : base.type.base) (st : abstract_domain' t) (v : base.interp t),
                    abstraction_relation' t st v -> update_literal_with_state t st v = v)
                (*is_annotation_abstraction_relation_weaken
                 : forall t st idc v,
                    is_annotation _ idc = true
                    -> abstraction_relation' _ st v
                    -> abstraction_relation' _ (abstract_interp_ident (type.base t -> type.base t)%etype idc st) v*)
                (*interp_annotate_ident_commute
                 : forall t st v cst0 cst1,
                    is_annotation (type.base t -> type.base t) cst0 = true ->
                    annotate_ident t (abstract_interp_ident (type.base t -> type.base t) cst0 st) = Some cst1 ->
                    abstraction_relation' t st (ident_interp cst0 v) -> ident_interp cst1 v = ident_interp cst0 v)*)
                (abstract_interp_ident_Proper'
                 : forall t idc, type.related_hetero (@abstraction_relation') (abstract_interp_ident t idc) (ident_interp idc))
                (extract_list_state_related
                 : forall t st ls v st' v',
                    extract_list_state t st = Some ls
                    -> abstraction_relation' _ st v
                    -> List.In (st', v') (List.combine ls v)
                    -> abstraction_relation' t st' v')
                (extract_list_state_length_good
                 : forall t st ls v,
                    extract_list_state t st = Some ls
                    -> abstraction_relation' _ st v
                    -> length ls = length v).

        Local Notation update_annotation := (@ident.update_annotation _ abstract_domain' annotate_ident is_annotated_for).
        Local Notation annotate_with_ident := (@ident.annotate_with_ident _ abstract_domain' annotate_ident is_annotated_for).
        Local Notation annotate_base := (@ident.annotate_base _ abstract_domain' annotate_ident update_literal_with_state is_annotated_for).
        Local Notation annotate := (@ident.annotate _ abstract_domain' annotate_ident abstract_interp_ident update_literal_with_state extract_list_state is_annotated_for).
        Local Notation interp_ident := (@ident.interp_ident _ abstract_domain' annotate_ident bottom' abstract_interp_ident update_literal_with_state extract_list_state is_annotated_for).
        Local Notation related_bounded_value := (@related_bounded_value base.type ident abstract_domain' base.interp (@ident_interp) abstraction_relation' abstract_domain'_R).
        Local Notation reify := (@reify base.type ident _ abstract_domain' annotate bottom').
        Local Notation reflect := (@reflect base.type ident _ abstract_domain' annotate bottom').

        Lemma interp_update_annotation t st e
              (He : abstraction_relation' t st (expr.interp (t:=type.base t) (@ident_interp) e))
          : expr.interp (@ident_interp) (@update_annotation t st e)
            = expr.interp (@ident_interp) e.
        Proof using interp_annotate_ident.
          cbv [update_annotation];
            repeat first [ reflexivity
                         | progress subst
                         | progress eliminate_hprop_eq
                         | progress cbn [expr.interp eq_rect] in *
                         | erewrite interp_annotate_ident by eassumption
                         | progress expr.invert_match
                         | progress type_beq_to_eq
                         | progress rewrite_type_transport_correct
                         | progress break_innermost_match_step ].
        Qed.

        Lemma interp_annotate_with_ident is_let_bound t st e
              (He : abstraction_relation' t st (expr.interp (t:=type.base t) (@ident_interp) e))
          : expr.interp (@ident_interp) (UnderLets.interp (@ident_interp) (@annotate_with_ident is_let_bound t st e))
            = expr.interp (@ident_interp) e.
        Proof using interp_annotate_ident.
          cbv [annotate_with_ident]; break_innermost_match; cbn [expr.interp UnderLets.interp];
            apply interp_update_annotation; assumption.
        Qed.

        Lemma interp_annotate_base is_let_bound (t : base.type.base) st e
              (He : abstraction_relation' t st (expr.interp (t:=type.base (base.type.type_base t)) (@ident_interp) e))
          : expr.interp (@ident_interp) (UnderLets.interp (@ident_interp) (@annotate_base is_let_bound t st e))
            = expr.interp (@ident_interp) e.
        Proof using interp_annotate_ident interp_update_literal_with_state.
          cbv [annotate_base]; break_innermost_match; expr.invert_subst; cbv beta iota in *; subst.
          { cbn [expr.interp UnderLets.interp ident.smart_Literal ident_interp] in *; eauto. }
          { apply interp_annotate_with_ident; assumption. }
        Qed.

        Lemma interp_annotate is_let_bound (t : base.type) st e
              (He : abstraction_relation' t st (expr.interp (t:=type.base t) (@ident_interp) e))
          : expr.interp (@ident_interp) (UnderLets.interp (@ident_interp) (@annotate is_let_bound t st e))
            = expr.interp (@ident_interp) e.
        Proof using interp_update_literal_with_state interp_annotate_ident abstract_interp_ident_Proper' extract_list_state_related extract_list_state_length_good.
          induction t; cbn [annotate]; auto using interp_annotate_base.
          all: repeat first [ reflexivity
                            | progress subst
                            | progress inversion_option
                            | progress inversion_prod
                            | progress destruct_head'_ex
                            | progress destruct_head'_and
                            | progress break_innermost_match
                            | progress break_innermost_match_hyps
                            | progress expr.invert_subst
                            | progress cbn [fst snd UnderLets.interp expr.interp ident_interp Nat.add] in *
                            | rewrite !UnderLets.interp_splice
                            | rewrite !UnderLets.interp_splice_list
                            | rewrite !List.map_map
                            | rewrite expr.interp_reify_list
                            | rewrite nth_error_combine
                            | apply interp_annotate_with_ident; assumption
                            | progress fold (@base.interp) in *
                            | progress intros
                            | pose proof (@extract_list_state_length_good _ _ _ _ ltac:(eassumption) ltac:(eassumption)); clear extract_list_state_length_good
                            | match goal with
                              | [ H : context[expr.interp _ (reify_list _)] |- _ ] => rewrite expr.interp_reify_list in H
                              | [ H : abstraction_relation' (_ * _) _ (_, _) |- _ ]
                                => pose proof (abstract_interp_ident_Proper' _ ident.fst _ _ H);
                                  pose proof (abstract_interp_ident_Proper' _ ident.snd _ _ H);
                                  clear H
                              | [ H : context[_ = _] |- _ = _ ] => rewrite H by assumption
                              | [ |- List.map ?f (List.combine ?l1 ?l2) = List.map ?g ?l2 ]
                                => transitivity (List.map g (List.map (@snd _ _) (List.combine l1 l2)));
                                  [ rewrite List.map_map; apply List.map_ext_in
                                  | rewrite map_snd_combine, List.firstn_all2; [ reflexivity | ] ]
                              | [ Hls : extract_list_state ?t ?st = Some ?ls, He : abstraction_relation' _ ?st ?v |- abstraction_relation' _ _ _ ]
                                => apply (fun st' v' => extract_list_state_related t st ls v st' v' Hls He)
                              | [ H : context[List.nth_error (List.combine _ _) _] |- _ ] => rewrite nth_error_combine in H
                              | [ H : List.In _ (List.combine _ _) |- _ ] => apply List.In_nth_error in H
                              | [ |- List.In _ (List.combine _ _) ] => eapply nth_error_In
                              | [ H : ?x = Some _, H' : context[?x] |- _ ] => rewrite H in H'
                              | [ H : List.nth_error (List.map _ _) _ = Some _ |- _ ] => apply nth_error_map in H
                              | [ H : List.nth_error _ _ = None |- _ ] => rewrite List.nth_error_None in H
                              | [ H : context[length ?ls] |- _ ] => tryif is_var ls then fail else (progress autorewrite with distr_length in H)
                              | [ |- context[length ?ls] ] => tryif is_var ls then fail else (progress autorewrite with distr_length)
                              | [ H : List.nth_error ?ls ?n = Some _, H' : length ?ls <= ?n |- _ ]
                                => apply nth_error_value_length in H; exfalso; clear -H H'; lia
                              | [ H : List.nth_error ?l ?n = _, H' : List.nth_error ?l ?n' = _ |- _ ]
                                => unify n n'; rewrite H in H'
                              | [ Hls : extract_list_state ?t ?st = Some ?ls, He : abstraction_relation' _ ?st ?v |- _ ]
                                => pose proof (fun st' v' => extract_list_state_related t st ls v st' v' Hls He); clear extract_list_state_related
                              | [ IH : forall st e, _ -> expr.interp _ (UnderLets.interp _ (annotate _ _ _)) = _ |- List.map (fun x => expr.interp _ _) (List.combine _ _) = expr.interp _ _ ]
                                => erewrite List.map_ext_in;
                                   [
                                   | intros; eta_expand; rewrite IH; cbn [expr.interp ident_interp ident.smart_Literal]; [ reflexivity | ] ]
                              | [ H : abstraction_relation' _ ?st (List.map (expr.interp _) ?ls), H' : forall st' v', List.In _ (List.combine _ _) -> abstraction_relation' _ _ _, H'' : List.nth_error ?ls _ = Some ?e |- abstraction_relation' _ _ (expr.interp _ ?e) ]
                                => apply H'
                              | [ H : context[List.nth_error (List.seq _ _) _] |- _ ] => rewrite nth_error_seq in H
                              end
                            | apply Nat.eq_le_incl
                            | rewrite <- List.map_map with (f:=fst), map_fst_combine
                            | rewrite Lists.List.firstn_all2 by distr_length
                            | apply map_nth_default_seq
                            | match goal with
                              | [ H : context[expr.interp _ _ = expr.interp _ _] |- expr.interp _ _ = expr.interp _ _ ] => apply H; clear H
                              | [ H : forall st' v', List.In _ (List.combine _ _) -> abstraction_relation' _ _ _ |- abstraction_relation' _ _ _ ]
                                => apply H; clear H; cbv [List.nth_default]
                              | [ |- None = Some _ ] => exfalso; lia
                              end ].
        Qed.

        Lemma interp_ident_Proper_not_nth_default t idc
          : related_bounded_value (abstract_interp_ident t idc) (UnderLets.interp (@ident_interp) (Base (reflect (expr.Ident idc) (abstract_interp_ident _ idc)))) (ident_interp idc).
        Proof using abstract_domain'_R_Reflexive abstract_interp_ident_Proper' abstraction_relation'_Proper bottom'_related extract_list_state_length_good extract_list_state_related interp_annotate_ident interp_update_literal_with_state.
          cbn [UnderLets.interp].
          eapply interp_reflect;
            try first [ apply ident.gen_interp_Proper
                      | apply abstract_interp_ident_Proper'
                      | apply interp_annotate ];
            eauto.
        Qed.

        Lemma interp_ident_Proper_nth_default T (idc:=@ident.List_nth_default T)
          : related_bounded_value (abstract_interp_ident _ idc) (UnderLets.interp (@ident_interp) (interp_ident idc)) (ident_interp idc).
        Proof using abstract_interp_ident_Proper abstract_interp_ident_Proper' abstraction_relation'_Proper extract_list_state_length_good extract_list_state_related interp_annotate_ident interp_update_literal_with_state.
          subst idc; cbn [interp_ident reify reflect fst snd UnderLets.interp ident_interp related_bounded_value abstract_domain value].
          cbv [abstract_domain]; cbn [type.interp bottom_for_each_lhs_of_arrow state_of_value fst snd].
          repeat first [ progress intros
                       | progress cbn [UnderLets.interp fst snd expr.interp ident_interp] in *
                       | progress destruct_head'_prod
                       | progress destruct_head'_and
                       | progress subst
                       | progress eta_expand
                       | rewrite UnderLets.interp_splice
                       | progress expr.invert_subst
                       | break_innermost_match_step
                       | progress cbn [type.interp base.interp base.base_interp] in *
                       | rewrite interp_annotate
                       | solve [ cbv [Proper respectful Basics.impl] in *; eauto ]
                       | split; [ apply (@abstract_interp_ident_Proper _ (@ident.List_nth_default T) _ eq_refl) | ]
                       | split; [ reflexivity | ]
                       | apply (@abstract_interp_ident_Proper' _ (@ident.List_nth_default T))
                       | apply conj
                       | rewrite map_nth_default_always
                       | match goal with
                         | [ H : context[expr.interp _ (UnderLets.interp _ (annotate _ _ _))] |- _ ]
                           => rewrite interp_annotate in H
                         | [ H : context[expr.interp _ (reify_list _)] |- _ ]
                           => rewrite expr.interp_reify_list in H
                         | [ H : _ = reify_list _ |- _ ] => apply (f_equal (expr.interp (@ident_interp))) in H
                         | [ H : expr.interp _ ?x = _ |- context[expr.interp _ ?x] ] => rewrite H
                         end ].
        Qed.

        Lemma interp_ident_Proper t idc
          : related_bounded_value (abstract_interp_ident t idc) (UnderLets.interp (@ident_interp) (interp_ident idc)) (ident_interp idc).
        Proof.
          pose idc as idc'.
          destruct idc; first [ refine (@interp_ident_Proper_not_nth_default _ idc')
                              | refine (@interp_ident_Proper_nth_default _) ].
        Qed.

        (*Context {annotate_ident_Proper : forall t, Proper (abstract_domain'_R t ==> eq) (annotate_ident t)}
                {abstract_interp_ident_Proper : forall t, Proper (eq ==> @abstract_domain_R t) (abstract_interp_ident t)}
                {bottom'_Proper : forall t, Proper (abstract_domain'_R t) (bottom' t)}
                {update_literal_with_state_Proper : forall t, Proper (abstract_domain'_R (base.type.type_base t) ==> eq ==> eq) (update_literal_with_state t)}
                (extract_list_state_length : forall t v1 v2, abstract_domain'_R _ v1 v2 -> option_map (@length _) (extract_list_state t v1) = option_map (@length _) (extract_list_state t v2))
                (extract_list_state_rel : forall t v1 v2, abstract_domain'_R _ v1 v2 -> forall l1 l2, extract_list_state t v1 = Some l1 -> extract_list_state t v2 = Some l2 -> forall vv1 vv2, List.In (vv1, vv2) (List.combine l1 l2) -> @abstract_domain'_R t vv1 vv2).
         *)
        Local Notation eval_with_bound := (@partial.ident.eval_with_bound _ abstract_domain' annotate_ident bottom' abstract_interp_ident update_literal_with_state extract_list_state is_annotated_for).
        Local Notation eta_expand_with_bound := (@partial.ident.eta_expand_with_bound _ abstract_domain' annotate_ident bottom' abstract_interp_ident update_literal_with_state extract_list_state is_annotated_for).
        Local Notation extract := (@ident.extract abstract_domain' abstract_interp_ident).

        Lemma interp_eval_with_bound
              {t} (e_st e1 e2 : expr t)
              (Hwf : expr.wf3 nil e_st e1 e2)
              (st : type.for_each_lhs_of_arrow abstract_domain t)
          : (forall arg1 arg2
                    (Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
                    (Harg1 : type.and_for_each_lhs_of_arrow (@abstraction_relation) st arg1),
                type.app_curried (expr.interp (@ident_interp) (eval_with_bound e1 st)) arg1
                = type.app_curried (expr.interp (@ident_interp) e2) arg2)
            /\ (forall arg1
                       (Harg1 : type.and_for_each_lhs_of_arrow (@abstraction_relation) st arg1)
                       (Harg11 : Proper (type.and_for_each_lhs_of_arrow (@type.eqv)) arg1),
                   abstraction_relation'
                     _
                     (extract e_st st)
                     (type.app_curried (expr.interp (@ident_interp) (eval_with_bound e1 st)) arg1)).
        Proof. cbv [extract eval_with_bound]; apply @interp_eval_with_bound' with (abstract_domain'_R:=abstract_domain'_R); auto using interp_annotate, interp_ident_Proper. Qed.

        Lemma interp_eta_expand_with_bound
              {t} (e1 e2 : expr t)
              (Hwf : expr.wf nil e1 e2)
              (b_in : type.for_each_lhs_of_arrow abstract_domain t)
          : forall arg1 arg2
                   (Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
                   (Harg1 : type.and_for_each_lhs_of_arrow (@abstraction_relation) b_in arg1),
            type.app_curried (expr.interp (@ident_interp) (eta_expand_with_bound e1 b_in)) arg1 = type.app_curried (expr.interp (@ident_interp) e2) arg2.
        Proof. cbv [partial.ident.eta_expand_with_bound]; eapply interp_eta_expand_with_bound'; eauto using interp_annotate, ident.gen_interp_Proper. Qed.

(*
        Definition eval {t} (e : @expr value_with_lets t) : @expr var t
          := @eval' base.type ident var abstract_domain' annotate bottom' (@interp_ident) t e.


*)
        (*
        Section extract.
          Local Notation extract := (@ident.extract abstract_domain' abstract_interp_ident).

          Lemma extract_Proper G
                (HG : forall t v1 v2, List.In (existT _ t (v1, v2)) G -> @abstract_domain_R t v1 v2)
                {t}
            : Proper (expr.wf G ==> type.and_for_each_lhs_of_arrow (@abstract_domain_R) ==> abstract_domain'_R (type.final_codomain t)) (@extract t).
          Proof using abstract_interp_ident_Proper.
            apply @extract_gen_Proper; eauto.
          Qed.
        End extract.*)
      End with_type.
    End ident.

    Section specialized.
      Import defaults.
      Local Notation abstract_domain' := ZRange.type.base.option.interp (only parsing).
      Local Notation abstract_domain := (@partial.abstract_domain base.type abstract_domain').
      Local Notation abstract_domain'_R t := (@eq (abstract_domain' t)) (only parsing).
      Local Notation abstract_domain_R := (@abstract_domain_R base.type abstract_domain' (fun t => abstract_domain'_R t)).

      Definition abstraction_relation' {t} : abstract_domain' t -> base.interp t -> Prop
        := fun st v => @ZRange.type.base.option.is_bounded_by t st v = true.

      Lemma interp_annotate_ident {t} st idc
            (Hst : @annotate_ident t st = Some idc)
        : forall v, abstraction_relation' st v
               -> (forall cast_outside_of_range,
                     ident.gen_interp cast_outside_of_range idc v = v).
      Proof.
        cbv [annotate_ident Option.bind] in Hst; break_innermost_match_hyps; inversion_option; subst;
          cbv [ident.gen_interp ident.cast abstraction_relation' ZRange.type.base.option.is_bounded_by ZRange.type.base.is_bounded_by is_bounded_by_bool];
          intros; destruct_head'_prod; cbn [fst snd] in *;
            break_innermost_match; Bool.split_andb; try congruence; reflexivity.
      Qed.

      Lemma interp_annotate_ident_Proper {t} st1 st2 (Hst : abstract_domain'_R t st1 st2)
        : @annotate_ident t st1 = @annotate_ident t st2.
      Proof. congruence. Qed.

      Lemma bottom'_bottom {t} : forall v, abstraction_relation' (bottom' t) v.
      Proof.
        cbv [abstraction_relation' bottom']; induction t; cbn; intros; break_innermost_match; cbn; try reflexivity.
        rewrite Bool.andb_true_iff; split; auto.
      Qed.

      Lemma invert_is_annotation t idc
        : is_annotation t idc = true
          -> (exists r, existT _ t idc = existT _ (base.type.Z -> base.type.Z)%etype (ident.Z_cast r))
            \/ (exists r, existT _ t idc = existT _ (base.type.Z * base.type.Z -> base.type.Z * base.type.Z)%etype (ident.Z_cast2 r)).
      Proof. destruct idc; cbn [is_annotation]; try discriminate; eauto. Qed.

      Lemma abstract_interp_ident_related cast_outside_of_range {t} (idc : ident t)
        : type.related_hetero (@abstraction_relation') (@abstract_interp_ident t idc) (@ident.gen_interp cast_outside_of_range _ idc).
      Proof. apply ZRange.ident.option.interp_related. Qed.

      Lemma interp_update_literal_with_state {t : base.type.base} st v
        : @abstraction_relation' t st v -> @update_literal_with_state t st v = v.
      Proof.
        cbv [abstraction_relation' update_literal_with_state update_Z_literal_with_state ZRange.type.base.option.is_bounded_by];
          break_innermost_match; try congruence; reflexivity.
      Qed.

      Lemma extract_list_state_related {t} st v ls
        : @abstraction_relation' _ st v
          -> @extract_list_state t st = Some ls
          -> length ls = length v
            /\ forall st' (v' : base.interp t), List.In (st', v') (List.combine ls v) -> @abstraction_relation' t st' v'.
      Proof.
        cbv [abstraction_relation' extract_list_state]; cbn [ZRange.type.base.option.is_bounded_by].
        intros; subst.
        split.
        { eapply FoldBool.fold_andb_map_length; eassumption. }
        { intros *.
          revert dependent v; induction ls, v; cbn; try tauto.
          rewrite Bool.andb_true_iff.
          intros; destruct_head'_and; destruct_head'_or; inversion_prod; subst; eauto. }
      Qed.

      Lemma Extract_FromFlat_ToFlat' {t} (e : Expr t) (Hwf : Wf e) b_in1 b_in2
            (Hb : type.and_for_each_lhs_of_arrow (fun t => type.eqv) b_in1 b_in2)
        : partial.Extract (GeneralizeVar.FromFlat (GeneralizeVar.ToFlat e)) b_in1
          = partial.Extract e b_in2.
      Proof.
        cbv [partial.Extract partial.ident.extract partial.extract_gen partial.extract'].
        revert b_in1 b_in2 Hb.
        rewrite <- (@type.related_iff_app_curried base.type ZRange.type.base.option.interp (fun _ => eq)).
        apply GeneralizeVar.Interp_gen1_FromFlat_ToFlat, Hwf.
      Qed.

      Lemma Extract_FromFlat_ToFlat {t} (e : Expr t) (Hwf : Wf e) b_in
            (Hb : Proper (type.and_for_each_lhs_of_arrow (fun t => type.eqv)) b_in)
        : partial.Extract (GeneralizeVar.FromFlat (GeneralizeVar.ToFlat e)) b_in
          = partial.Extract e b_in.
      Proof. apply Extract_FromFlat_ToFlat'; assumption. Qed.

      (*    Definition eval {var} {t} (e : @expr _ t) : expr t
        := (@partial.ident.eval)
             var abstract_domain' annotate_ident bottom' abstract_interp_ident update_literal_with_state extract_list_state is_annotation t e.
      Definition Eval {t} (e : Expr t) : Expr t
        := fun var => eval (e _).
      Definition Extract {t} (e : Expr t) (bound : type.for_each_lhs_of_arrow abstract_domain t) : abstract_domain' (type.final_codomain t)
        := @partial.ident.extract abstract_domain' abstract_interp_ident t (e _) bound.
       *)

      Local Hint Resolve interp_annotate_ident interp_update_literal_with_state abstract_interp_ident_related.

      Lemma interp_eval_with_bound
            cast_outside_of_range
            {t} (e_st e1 e2 : expr t)
            (Hwf : expr.wf3 nil e_st e1 e2)
            (st : type.for_each_lhs_of_arrow abstract_domain t)
        : (forall arg1 arg2
                  (Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
                  (Harg1 : type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by) st arg1 = true),
              type.app_curried (expr.interp (@ident.gen_interp cast_outside_of_range) (eval_with_bound e1 st)) arg1
              = type.app_curried (expr.interp (@ident.gen_interp cast_outside_of_range) e2) arg2)
          /\ (forall arg1
                     (Harg11 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg1)
                     (Harg1 : type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by) st arg1 = true),
                 abstraction_relation'
                   (extract e_st st)
                   (type.app_curried (expr.interp (@ident.gen_interp cast_outside_of_range) (eval_with_bound e1 st)) arg1)).
      Proof using Type.
        cbv [eval_with_bound]; split;
          [ intros arg1 arg2 Harg12 Harg1
          | intros arg1 Harg11 Harg1 ].
        all: eapply Compilers.type.andb_bool_impl_and_for_each_lhs_of_arrow in Harg1; [ | apply ZRange.type.option.is_bounded_by_impl_related_hetero ].
        all: eapply ident.interp_eval_with_bound with (abstraction_relation':=@abstraction_relation') (abstract_domain'_R:=fun t => abstract_domain'_R t); eauto using bottom'_bottom with typeclass_instances.
        all: intros; eapply extract_list_state_related; eassumption.
      Qed.

      Lemma interp_eta_expand_with_bound
            {t} (e1 e2 : expr t)
            (Hwf : expr.wf nil e1 e2)
            (b_in : type.for_each_lhs_of_arrow ZRange.type.option.interp t)
        : forall arg1 arg2
                 (Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
                 (Harg1 : type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by) b_in arg1 = true),
          type.app_curried (interp (partial.eta_expand_with_bound e1 b_in)) arg1 = type.app_curried (interp e2) arg2.
      Proof.
        cbv [partial.eta_expand_with_bound]; intros arg1 arg2 Harg12 Harg1.
        eapply Compilers.type.andb_bool_impl_and_for_each_lhs_of_arrow in Harg1.
        { apply ident.interp_eta_expand_with_bound with (abstraction_relation':=@abstraction_relation') (abstract_domain'_R:=fun t => abstract_domain'_R t); eauto using bottom'_bottom with typeclass_instances.
          all: intros; eapply extract_list_state_related; eassumption. }
        { apply ZRange.type.option.is_bounded_by_impl_related_hetero. }
      Qed.

      Lemma Interp_EvalWithBound
            cast_outside_of_range
            {t} (e : Expr t)
            (Hwf : expr.Wf3 e)
            (st : type.for_each_lhs_of_arrow abstract_domain t)
        : (forall arg1 arg2
                  (Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
                  (Harg1 : type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by) st arg1 = true),
              type.app_curried (expr.Interp (@ident.gen_interp cast_outside_of_range) (EvalWithBound e st)) arg1
              = type.app_curried (expr.Interp (@ident.gen_interp cast_outside_of_range) e) arg2)
          /\ (forall arg1
                     (Harg11 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg1)
                     (Harg1 : type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by) st arg1 = true),
                 abstraction_relation'
                   (Extract e st)
                   (type.app_curried (expr.Interp (@ident.gen_interp cast_outside_of_range) (EvalWithBound e st)) arg1)).
      Proof using Type. cbv [Extract EvalWithBound]; apply interp_eval_with_bound, Hwf. Qed.

      Lemma Interp_EtaExpandWithBound
            {t} (E : Expr t)
            (Hwf : Wf E)
            (b_in : type.for_each_lhs_of_arrow ZRange.type.option.interp t)
        : forall arg1 arg2
                 (Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
                 (Harg1 : type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by) b_in arg1 = true),
          type.app_curried (Interp (partial.EtaExpandWithBound E b_in)) arg1 = type.app_curried (Interp E) arg2.
      Proof. cbv [partial.EtaExpandWithBound]; apply interp_eta_expand_with_bound, Hwf. Qed.

      Lemma strip_ranges_is_looser t b v
        : @ZRange.type.option.is_bounded_by t b v = true
          -> ZRange.type.option.is_bounded_by (ZRange.type.option.strip_ranges b) v = true.
      Proof.
        induction t as [t|s IHs d IHd]; cbn in *; [ | tauto ].
        induction t; cbn in *; break_innermost_match; cbn in *; rewrite ?Bool.andb_true_iff; try solve [ intuition ]; [].
        repeat match goal with ls : list _ |- _ => revert ls end.
        intros ls1 ls2; revert ls2.
        induction ls1, ls2; cbn in *; rewrite ?Bool.andb_true_iff; solve [ intuition ].
      Qed.

      Lemma andb_strip_ranges_Proper t (b_in : type.for_each_lhs_of_arrow ZRange.type.option.interp t) arg1
        : type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by) b_in arg1 = true ->
          type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by)
                                               (type.map_for_each_lhs_of_arrow (@ZRange.type.option.strip_ranges) b_in) arg1 = true.
      Proof.
        induction t as [t|s IHs d IHd]; cbn [type.andb_bool_for_each_lhs_of_arrow type.map_for_each_lhs_of_arrow type.for_each_lhs_of_arrow] in *;
          rewrite ?Bool.andb_true_iff; [ tauto | ].
        destruct_head'_prod; cbn [fst snd]; intros [? ?].
        erewrite IHd by eauto.
        split; [ | reflexivity ].
        apply strip_ranges_is_looser; assumption.
      Qed.

      Lemma Interp_EtaExpandWithListInfoFromBound
            {t} (E : Expr t)
            (Hwf : Wf E)
            (b_in : type.for_each_lhs_of_arrow ZRange.type.option.interp t)
        : forall arg1 arg2
                 (Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
                 (Harg1 : type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by) b_in arg1 = true),
          type.app_curried (Interp (partial.EtaExpandWithListInfoFromBound E b_in)) arg1 = type.app_curried (Interp E) arg2.
      Proof.
        cbv [partial.EtaExpandWithListInfoFromBound].
        intros; apply Interp_EtaExpandWithBound; trivial.
        apply andb_strip_ranges_Proper; assumption.
      Qed.
    End specialized.
  End partial.
  Import defaults.

  Module Import CheckCasts.
    Module ident.
      Lemma interp_eqv_without_casts t idc
            cast_outside_of_range1 cast_outside_of_range2
            (Hc : partial.is_annotation t idc = false)
      : ident.gen_interp cast_outside_of_range1 idc
        == ident.gen_interp cast_outside_of_range2 idc.
      Proof.
        generalize (@ident.gen_interp_Proper cast_outside_of_range1 t idc idc eq_refl);
          destruct idc; try exact id; cbn in Hc; discriminate.
      Qed.
    End ident.

    Lemma interp_eqv_without_casts
          cast_outside_of_range1 cast_outside_of_range2
          G {t} e1 e2 e3
          (HG : forall t v1 v2 v3, List.In (existT _ t (v1, v2, v3)) G -> v2 == v3)
          (Hwf : expr.wf3 G e1 e2 e3)
          (Hc : @CheckCasts.get_casts t e1 = nil)
    : expr.interp (@ident.gen_interp cast_outside_of_range1) e2
      == expr.interp (@ident.gen_interp cast_outside_of_range2) e3.
    Proof.
      induction Hwf;
        repeat first [ progress cbn [CheckCasts.get_casts] in *
                     | discriminate
                     | match goal with
                       | [ H : (_ ++ _)%list = nil |- _ ] => apply List.app_eq_nil in H
                       end
                     | progress destruct_head'_and
                     | progress break_innermost_match_hyps
                     | progress interp_safe_t
                     | solve [ eauto using ident.interp_eqv_without_casts ] ].
    Qed.

    Lemma Interp_WithoutUnsupportedCasts {t} (e : Expr t)
          (Hc : CheckCasts.GetUnsupportedCasts e = nil)
          (Hwf : expr.Wf3 e)
          cast_outside_of_range1 cast_outside_of_range2
      : expr.Interp (@ident.gen_interp cast_outside_of_range1) e
        == expr.Interp (@ident.gen_interp cast_outside_of_range2) e.
    Proof. eapply interp_eqv_without_casts with (G:=nil); wf_safe_t. Qed.
  End CheckCasts.

  Module RelaxZRange.
    Definition relaxed_cast_outside_of_range
               (relax_zrange : zrange -> option zrange)
               (cast_outside_of_range : zrange -> Z -> Z)
    : zrange -> Z -> Z
      := fun r v
         => match relax_zrange r with
            | Some r' => ident.cast cast_outside_of_range r' v
            | None => cast_outside_of_range r v
            end.

    Module ident.
      Section relax.
        Context (relax_zrange : zrange -> option zrange)
                (cast_outside_of_range : zrange -> Z -> Z)
                (Hrelax : forall r r' z, is_tighter_than_bool z r = true
                                         -> relax_zrange r = Some r'
                                         -> is_tighter_than_bool z r' = true).

        Local Notation relaxed_cast_outside_of_range := (@relaxed_cast_outside_of_range relax_zrange cast_outside_of_range).

        Lemma interp_relax {t} (idc : ident t)
          : ident.gen_interp cast_outside_of_range (@RelaxZRange.ident.relax relax_zrange t idc)
            == ident.gen_interp relaxed_cast_outside_of_range idc.
        Proof.
          pose proof (@ident.gen_interp_Proper cast_outside_of_range t idc idc eq_refl) as Hp.
          destruct idc; cbn [type.related] in *; repeat (let x := fresh "x" in intro x; specialize (Hp x));
            repeat first [ assumption
                         | reflexivity
                         | discriminate
                         | congruence
                         | progress subst
                         | progress cbv [relaxed_cast_outside_of_range RelaxZRange.ident.relax Option.bind ident.cast respectful is_tighter_than_bool id] in *
                         | progress cbn [ident.gen_interp type.related type.interp base.interp upper lower] in *
                         | progress destruct_head'_prod
                         | progress specialize_by (exact eq_refl)
                         | break_match_step ltac:(fun x => let h := head x in constr_eq h relax_zrange)
                         | match goal with
                           | [ H : relax_zrange ?r = Some ?r' |- context[Z.leb (lower ?r) ?v] ]
                             => pose proof (fun pf => Hrelax _ _ (Build_zrange v v) pf H); clear H
                           end
                         | break_innermost_match_step ].
        Qed.
      End relax.
    End ident.

    Module expr.
      Section relax.
        Context (relax_zrange : zrange -> option zrange)
                (Hrelax : forall r r' z, is_tighter_than_bool z r = true
                                         -> relax_zrange r = Some r'
                                         -> is_tighter_than_bool z r' = true)
                (cast_outside_of_range : zrange -> Z -> Z).

        Local Notation relaxed_cast_outside_of_range := (@relaxed_cast_outside_of_range relax_zrange cast_outside_of_range).

        Lemma interp_relax G {t} (e1 e2 : expr t)
              (HG : forall t v1 v2, List.In (existT _ t (v1, v2)) G -> v1 == v2)
              (Hwf : expr.wf G e1 e2)
          : expr.interp (@ident.gen_interp cast_outside_of_range) (RelaxZRange.expr.relax relax_zrange e1)
            == expr.interp (@ident.gen_interp relaxed_cast_outside_of_range) e2.
        Proof.
          induction Hwf; cbn -[RelaxZRange.ident.relax] in *; interp_safe_t; cbv [option_map] in *;
            break_innermost_match; cbn -[RelaxZRange.ident.relax] in *; interp_safe_t;
              eauto using tt, @ident.interp_relax.
        Qed.

        Lemma Interp_Relax {t} (e : Expr t)
              (Hwf : Wf e)
          : expr.Interp (@ident.gen_interp cast_outside_of_range) (RelaxZRange.expr.Relax relax_zrange e)
            == expr.Interp (@ident.gen_interp relaxed_cast_outside_of_range) e.
        Proof. apply interp_relax with (G:=nil); wf_safe_t. Qed.
      End relax.
    End expr.
  End RelaxZRange.
  Hint Resolve RelaxZRange.expr.Wf_Relax : wf.

  Lemma Interp_PartialEvaluateWithBounds
        cast_outside_of_range
        {t} (E : Expr t)
        (Hwf : Wf E)
        (b_in : type.for_each_lhs_of_arrow ZRange.type.option.interp t)
    : forall arg1 arg2
        (Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
        (Harg1 : type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by) b_in arg1 = true),
      type.app_curried (expr.Interp (@ident.gen_interp cast_outside_of_range) (PartialEvaluateWithBounds E b_in)) arg1
      = type.app_curried (expr.Interp (@ident.gen_interp cast_outside_of_range) E) arg2.
  Proof.
    cbv [PartialEvaluateWithBounds].
    intros arg1 arg2 Harg12 Harg1.
    assert (arg1_Proper : Proper (type.and_for_each_lhs_of_arrow (@type.related base.type base.interp (fun _ => eq))) arg1)
      by (hnf; etransitivity; [ eassumption | symmetry; eassumption ]).
    assert (arg2_Proper : Proper (type.and_for_each_lhs_of_arrow (@type.related base.type base.interp (fun _ => eq))) arg2)
      by (hnf; etransitivity; [ symmetry; eassumption | eassumption ]).
    rewrite <- (@GeneralizeVar.Interp_gen1_GeneralizeVar _ _ _ _ _ E) by auto with wf.
    eapply Interp_EvalWithBound; eauto with wf.
  Qed.

  Lemma Interp_PartialEvaluateWithBounds_bounded
        cast_outside_of_range
        {t} (E : Expr t)
        (Hwf : Wf E)
        (b_in : type.for_each_lhs_of_arrow ZRange.type.option.interp t)
        {b_in_Proper : Proper (type.and_for_each_lhs_of_arrow (@abstract_domain_R _ _ (fun _ => eq))) b_in}
    : forall arg1
             (Harg11 : Proper (type.and_for_each_lhs_of_arrow (@type.eqv)) arg1)
             (Harg1 : type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by) b_in arg1 = true),
      ZRange.type.base.option.is_bounded_by
        (partial.Extract E b_in)
        (type.app_curried (expr.Interp (@ident.gen_interp cast_outside_of_range) (PartialEvaluateWithBounds E b_in)) arg1)
      = true.
  Proof.
    cbv [PartialEvaluateWithBounds].
    intros arg1 Harg1.
    rewrite <- Extract_FromFlat_ToFlat by auto with wf.
    eapply Interp_EvalWithBound; eauto with wf.
  Qed.

  Lemma Interp_PartialEvaluateWithListInfoFromBounds
        {t} (E : Expr t)
        (Hwf : Wf E)
        (b_in : type.for_each_lhs_of_arrow ZRange.type.option.interp t)
    : forall arg1 arg2
        (Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
        (Harg1 : type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by) b_in arg1 = true),
      type.app_curried (Interp (PartialEvaluateWithListInfoFromBounds E b_in)) arg1 = type.app_curried (Interp E) arg2.
  Proof.
    cbv [PartialEvaluateWithListInfoFromBounds]; intros arg1 arg2 Harg12 Harg1.
    assert (arg1_Proper : Proper (type.and_for_each_lhs_of_arrow (@type.related base.type base.interp (fun _ => eq))) arg1)
        by (hnf; etransitivity; [ eassumption | symmetry; eassumption ]).
    assert (arg2_Proper : Proper (type.and_for_each_lhs_of_arrow (@type.related base.type base.interp (fun _ => eq))) arg2)
        by (hnf; etransitivity; [ symmetry; eassumption | eassumption ]).
    rewrite <- (@GeneralizeVar.Interp_GeneralizeVar _ E) by auto.
    apply Interp_EtaExpandWithListInfoFromBound; auto with wf.
  Qed.

  Theorem CheckedPartialEvaluateWithBounds_Correct
          (relax_zrange : zrange -> option zrange)
          (Hrelax : forall r r' z, is_tighter_than_bool z r = true
                                   -> relax_zrange r = Some r'
                                   -> is_tighter_than_bool z r' = true)
          {t} (E : Expr t)
          (Hwf : Wf E)
          (b_in : type.for_each_lhs_of_arrow ZRange.type.option.interp t)
          (b_out : ZRange.type.base.option.interp (type.final_codomain t))
          {b_in_Proper : Proper (type.and_for_each_lhs_of_arrow (@abstract_domain_R _ _ (fun _ => eq))) b_in}
          rv (Hrv : CheckedPartialEvaluateWithBounds relax_zrange E b_in b_out = inl rv)
    : (forall arg1 arg2
              (Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
              (Harg1 : type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by) b_in arg1 = true),
          ZRange.type.base.option.is_bounded_by b_out (type.app_curried (Interp rv) arg1) = true
          /\ forall cast_outside_of_range, type.app_curried (expr.Interp (@ident.gen_interp cast_outside_of_range) rv) arg1
                                           = type.app_curried (Interp E) arg2)
      /\ Wf rv.
  Proof.
    cbv [CheckedPartialEvaluateWithBounds Let_In] in *;
      break_innermost_match_hyps; inversion_sum; subst.
    let H := lazymatch goal with H : _ = nil |- _ => H end in
    pose proof (@Interp_WithoutUnsupportedCasts _ _ H ltac:(solve [ auto with wf ])) as H'; clear H;
      assert (forall cast_outside_of_range1 cast_outside_of_range2,
                 expr.Interp (@ident.gen_interp cast_outside_of_range1) E == expr.Interp (@ident.gen_interp cast_outside_of_range2) E)
      by (intros c1 c2; specialize (H' c1 c2);
          rewrite !@GeneralizeVar.Interp_gen1_FromFlat_ToFlat in H' by eauto with wf typeclass_instances;
          assumption).
    clear H'.
    split.
    { intros arg1 arg2 Harg12 Harg1.
      assert (arg1_Proper : Proper (type.and_for_each_lhs_of_arrow (@type.related base.type base.interp (fun _ => eq))) arg1)
        by (hnf; etransitivity; [ eassumption | symmetry; eassumption ]).
      split.
      all: repeat first [ rewrite !@GeneralizeVar.Interp_gen1_FromFlat_ToFlat by eauto with wf typeclass_instances
                        | rewrite <- Extract_FromFlat_ToFlat by auto; apply Interp_PartialEvaluateWithBounds_bounded; auto
                        | rewrite Extract_FromFlat_ToFlat by auto with wf
                        | progress intros
                        | progress cbv [ident.interp]
                        | rewrite RelaxZRange.expr.Interp_Relax; eauto
                        | eapply ZRange.type.base.option.is_tighter_than_is_bounded_by; [ eassumption | ]
                        | solve [ eauto with wf ]
                        | erewrite !Interp_PartialEvaluateWithBounds
                        | apply type.app_curried_Proper
                        | apply expr.Wf_Interp_Proper_gen
                        | progress intros ]. }
    { auto with wf. }
  Qed.
End Compilers.