1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
|
Require Import Crypto.Util.FixCoqMistakes.
Require Import Crypto.Spec.EdDSA Bedrock.Word.
Require Import Coq.Classes.Morphisms Coq.Relations.Relation_Definitions.
Require Import Crypto.Algebra. Import Monoid Group ScalarMult.
Require Import Crypto.Util.Decidable Crypto.Util.Option Crypto.Util.Tactics.
Require Import Coq.omega.Omega.
Require Import Crypto.Util.Notations.
Require Import Crypto.Util.Option Crypto.Util.Logic Crypto.Util.Relations Crypto.Util.WordUtil Util.LetIn Util.NatUtil.
Require Import Crypto.Spec.ModularArithmetic Crypto.ModularArithmetic.PrimeFieldTheorems.
Import NPeano.
Import Notations.
Module F.
Lemma to_nat_mod {m} (x:F m) : F.to_nat x mod (Z.to_nat m) = F.to_nat x.
Admitted.
End F.
Section EdDSA.
Context `{prm:EdDSA}.
Local Infix "==" := Eeq. Local Infix "+" := Eadd. Local Infix "*" := EscalarMult.
Local Notation valid := (@valid E Eeq Eadd EscalarMult b H l B Eenc Senc).
Lemma sign_valid : forall A_ sk {n} (M:word n), A_ = public sk -> valid M A_ (sign A_ sk M).
Proof.
cbv [sign public Spec.EdDSA.valid]; intros; subst;
repeat match goal with
| |- exists _, _ => eexists
| |- _ /\ _ => eapply conj
| |- _ => reflexivity
end.
rewrite F.to_nat_of_nat, scalarmult_mod_order, scalarmult_add_l, cancel_left, scalarmult_mod_order, NPeano.Nat.mul_comm, scalarmult_assoc;
try solve [ reflexivity
| setoid_rewrite (*unify 0*) (Z2Nat.inj_iff _ 0); pose proof EdDSA_l_odd; omega
| pose proof EdDSA_l_odd; omega
| apply EdDSA_l_order_B
| rewrite scalarmult_assoc, mult_comm, <-scalarmult_assoc,
EdDSA_l_order_B, scalarmult_zero_r; reflexivity ].
Qed.
Lemma solve_for_R_sig : forall s B R n A, { solution | s * B == R + n * A <-> R == solution }.
Proof.
eexists.
set_evars.
setoid_rewrite <-(symmetry_iff(R:=Eeq)) at 1.
setoid_rewrite <-eq_r_opp_r_inv.
setoid_rewrite opp_mul.
subst_evars.
reflexivity.
Defined.
Definition solve_for_R := Eval cbv [proj2_sig solve_for_R_sig] in (fun s B R n A => proj2_sig (solve_for_R_sig s B R n A)).
Context {Proper_Eenc : Proper (Eeq==>Logic.eq) Eenc}.
Global Instance Proper_eq_Eenc ref : Proper (Eeq ==> iff) (fun P => Eenc P = ref).
Proof. intros ? ? Hx; rewrite Hx; reflexivity. Qed.
Context {Edec:word b-> option E} {eq_enc_E_iff: forall P_ P, Eenc P = P_ <-> option_eq Eeq (Edec P_) (Some P)}.
Context {Sdec:word b-> option (F l)} {eq_enc_S_iff: forall n_ n, Senc n = n_ <-> Sdec n_ = Some n}.
Local Infix "++" := combine.
Definition verify'_sig : { verify | forall mlen (message:word mlen) (pk:word b) (sig:word (b+b)),
verify mlen message pk sig = true <-> valid message pk sig }.
Proof.
eexists; intros; set_evars.
unfold Spec.EdDSA.valid.
setoid_rewrite solve_for_R.
setoid_rewrite combine_eq_iff.
setoid_rewrite and_comm at 4. setoid_rewrite and_assoc. repeat setoid_rewrite exists_and_indep_l.
setoid_rewrite (and_rewrite_l Eenc (split1 b b sig)
(fun x y => x == _ * B + wordToNat (H _ (y ++ Eenc _ ++ message)) mod _ * Eopp _)); setoid_rewrite eq_enc_S_iff.
setoid_rewrite (@exists_and_equiv_r _ _ _ _ _ _).
setoid_rewrite <- (fun A => and_rewriteleft_l (fun x => x) (Eenc A) (fun pk EencA => exists a,
Sdec (split2 b b sig) = Some a /\
Eenc (_ * B + wordToNat (H (b + (b + mlen)) (split1 b b sig ++ EencA ++ message)) mod _ * Eopp A)
= split1 b b sig)). setoid_rewrite (eq_enc_E_iff pk).
setoid_rewrite <-weqb_true_iff.
setoid_rewrite <-option_rect_false_returns_true_iff_eq.
rewrite <-option_rect_false_returns_true_iff by
(intros ? ? Hxy; unfold option_rect; break_match; rewrite <-?Hxy; reflexivity).
subst_evars.
(* TODO: generalize this higher order reflexivity *)
match goal with
|- ?f ?mlen ?msg ?pk ?sig = true <-> ?term = true
=> let term := eval pattern sig in term in
let term := eval pattern pk in term in
let term := eval pattern msg in term in
let term := match term with
(fun msg => (fun pk => (fun sig => @?body msg pk sig) sig) pk) msg =>
body
end in
let term := eval pattern mlen in term in
let term := match term with
(fun mlen => @?body mlen) mlen => body
end in
unify f term; reflexivity
end.
Defined.
Definition verify' {mlen} (message:word mlen) (pk:word b) (sig:word (b+b)) : bool :=
Eval cbv [proj1_sig verify'_sig] in proj1_sig verify'_sig mlen message pk sig.
Lemma verify'_correct : forall {mlen} (message:word mlen) pk sig,
verify' message pk sig = true <-> valid message pk sig.
Proof. exact (proj2_sig verify'_sig). Qed.
Section ChangeRep.
Context {Erep ErepEq ErepAdd ErepId ErepOpp} {Agroup:@group Erep ErepEq ErepAdd ErepId ErepOpp}.
Context {EToRep} {Ahomom:@is_homomorphism E Eeq Eadd Erep ErepEq ErepAdd EToRep}.
Context {ERepEnc : Erep -> word b}
{ERepEnc_correct : forall P:E, Eenc P = ERepEnc (EToRep P)}
{Proper_ERepEnc:Proper (ErepEq==>Logic.eq) ERepEnc}.
Context {ERepDec : word b -> option Erep}
{ERepDec_correct : forall w, ERepDec w = option_map EToRep (Edec w) }.
Context {SRep SRepEq} `{@Equivalence SRep SRepEq} {S2Rep:F l->SRep}.
Context {SRepDecModL} {SRepDecModL_correct: forall (w:word (b+b)), SRepEq (S2Rep (F.of_nat _ (wordToNat w))) (SRepDecModL w)}.
Context {SRepERepMul:SRep->Erep->Erep}
{SRepERepMul_correct:forall n P, ErepEq (EToRep ((n mod Z.to_nat l)*P)) (SRepERepMul (S2Rep (F.of_nat _ n)) (EToRep P))}
{Proper_SRepERepMul: Proper (SRepEq==>ErepEq==>ErepEq) SRepERepMul}.
Context {SRepDec: word b -> option SRep}
{SRepDec_correct : forall w, option_eq SRepEq (option_map S2Rep (Sdec w)) (SRepDec w)}.
Definition verify_using_representation
{mlen} (message:word mlen) (pk:word b) (sig:word (b+b))
: { answer | answer = verify' message pk sig }.
Proof.
eexists.
pose proof EdDSA_l_odd.
assert (l_pos:(0 < l)%Z) by omega.
cbv [verify'].
etransitivity. Focus 2. {
eapply Proper_option_rect_nd_changebody; [intro|reflexivity].
eapply Proper_option_rect_nd_changebody; [intro|reflexivity].
rewrite <-F.to_nat_mod.
repeat (
rewrite ERepEnc_correct
|| rewrite homomorphism
|| rewrite homomorphism_id
|| rewrite (homomorphism_inv(INV:=Eopp)(inv:=ErepOpp)(eq:=ErepEq)(phi:=EToRep))
|| rewrite SRepERepMul_correct
|| rewrite SdecS_correct
|| rewrite SRepDecModL_correct
|| rewrite (@F.of_nat_to_nat _ l_pos _)
|| rewrite (@F.of_nat_mod _ l_pos _)
).
reflexivity.
} Unfocus.
(* lazymatch goal with |- _ _ (option_rect _ ?some _ _) => idtac some end. *)
setoid_rewrite (option_rect_option_map EToRep
(fun s =>
option_rect (fun _ : option _ => bool)
(fun s0 =>
weqb
(ERepEnc
(ErepAdd (SRepERepMul (_ s0) (EToRep B))
(SRepERepMul
(SRepDecModL
(H _ (split1 b b sig ++ pk ++ message)))
(ErepOpp (s))))) (split1 b b sig)) false
(Sdec (split2 b b sig)))
false); rewrite <-(ERepDec_correct pk).
etransitivity. Focus 2. {
eapply Proper_option_rect_nd_changebody; [intro|reflexivity].
set_evars.
setoid_rewrite (option_rect_option_map S2Rep
(fun s0 =>
weqb
(ERepEnc
(ErepAdd (SRepERepMul (s0) (EToRep B))
(SRepERepMul
(SRepDecModL (H _ (split1 b b sig ++ pk ++ message)))
(ErepOpp _)))) (split1 b b sig))
false).
subst_evars.
eapply Proper_option_rect_nd_changevalue;
[repeat intro; repeat f_equiv; eassumption|reflexivity|..].
symmetry.
eapply SRepDec_correct.
} Unfocus.
reflexivity.
Defined.
Definition verify {mlen} (msg:word mlen) pk sig :=
Eval cbv beta iota delta [proj1_sig verify_using_representation] in
proj1_sig (verify_using_representation msg pk sig).
Lemma verify_correct {mlen} (msg:word mlen) pk sig : verify msg pk sig = true <-> valid msg pk sig.
Proof.
etransitivity; [|eapply (verify'_correct msg pk sig)].
eapply iff_R_R_same_r, (proj2_sig (verify_using_representation _ _ _)).
Qed.
Context {SRepEnc : SRep -> word b}
{SRepEnc_correct : forall x, Senc x = SRepEnc (S2Rep x)}
{Proper_SRepEnc:Proper (SRepEq==>Logic.eq) SRepEnc}.
Context {SRepAdd : SRep -> SRep -> SRep}
{SRepAdd_correct : forall x y, SRepEq (S2Rep (x+y)%F) (SRepAdd (S2Rep x) (S2Rep y)) }
{Proper_SRepAdd:Proper (SRepEq==>SRepEq==>SRepEq) SRepAdd}.
Context {SRepMul : SRep -> SRep -> SRep}
{SRepMul_correct : forall x y, SRepEq (S2Rep (x*y)%F) (SRepMul (S2Rep x) (S2Rep y)) }
{Proper_SRepMul:Proper (SRepEq==>SRepEq==>SRepEq) SRepMul}.
Context {ErepB:Erep} {ErepB_correct:ErepEq ErepB (EToRep B)}.
Context {SRepDecModLShort} {SRepDecModLShort_correct: forall (w:word (n+1)), SRepEq (S2Rep (F.of_nat _ (wordToNat w))) (SRepDecModLShort w)}.
(* We would ideally derive the optimized implementations from
specifications using `setoid_rewrite`, but doing this without
inlining let-bound subexpressions turned out to be quite messy in
the current state of Coq: <https://github.com/mit-plv/fiat-crypto/issues/64> *)
Let n_le_bpb : (n <= b+b)%nat. destruct prm. omega. Qed.
Definition splitSecretPrngCurve (sk:word b) : SRep * word b :=
dlet hsk := H _ sk in
dlet curveKey := SRepDecModLShort (clearlow c (@wfirstn n _ hsk n_le_bpb) ++ wones 1) in
dlet prngKey := split2 b b hsk in
(curveKey, prngKey).
Lemma splitSecretPrngCurve_correct sk :
let (s, r) := splitSecretPrngCurve sk in
SRepEq s (S2Rep (F.of_nat l (curveKey sk))) /\ r = prngKey (H:=H) sk.
Proof.
cbv [splitSecretPrngCurve EdDSA.curveKey EdDSA.prngKey Let_In]; split;
repeat (
reflexivity
|| rewrite <-SRepDecModLShort_correct
|| rewrite wordToNat_split1
|| rewrite wordToNat_wfirstn
|| rewrite wordToNat_combine
|| rewrite wordToNat_clearlow
|| rewrite (eq_refl:wordToNat (wones 1) = 1)
|| rewrite mult_1_r
|| rewrite setbit_high by
( pose proof (Nat.pow_nonzero 2 n); specialize_by discriminate;
set (x := wordToNat (H b sk));
assert (x mod 2 ^ n < 2^n)%nat by (apply Nat.mod_bound_pos; omega); omega)
).
Qed.
Definition sign (pk sk : word b) {mlen} (msg:word mlen) :=
dlet sp := splitSecretPrngCurve sk in
dlet s := fst sp in
dlet p := snd sp in
dlet r := SRepDecModL (H _ (p ++ msg)) in
dlet R := SRepERepMul r ErepB in
dlet S := SRepAdd r (SRepMul (SRepDecModL (H _ (ERepEnc R ++ pk ++ msg))) s) in
ERepEnc R ++ SRepEnc S.
Lemma to_nat_l_nonzero : Z.to_nat l <> 0.
intro Hx; change 0 with (Z.to_nat 0) in Hx.
destruct prm; rewrite Z2Nat.inj_iff in Hx; omega.
Qed.
Lemma sign_correct (pk sk : word b) {mlen} (msg:word mlen)
: sign pk sk msg = EdDSA.sign pk sk msg.
Proof.
cbv [sign EdDSA.sign Let_In].
let H := fresh "H" in
pose proof (splitSecretPrngCurve_correct sk) as H;
destruct (splitSecretPrngCurve sk);
destruct H as [curveKey_correct prngKey_correct].
repeat (
reflexivity
|| rewrite ERepEnc_correct
|| rewrite SRepEnc_correct
|| rewrite SRepDecModL_correct
|| rewrite SRepERepMul_correct
|| rewrite (F.of_nat_add (m:=l))
|| rewrite (F.of_nat_mul (m:=l))
|| rewrite SRepAdd_correct
|| rewrite SRepMul_correct
|| rewrite ErepB_correct
|| rewrite <-prngKey_correct
|| rewrite <-curveKey_correct
|| eapply (f_equal2 (fun a b => a ++ b))
|| f_equiv
|| rewrite <-(@scalarmult_mod_order _ _ _ _ _ _ _ _ B to_nat_l_nonzero EdDSA_l_order_B)
).
Qed.
End ChangeRep.
End EdDSA.
|