aboutsummaryrefslogtreecommitdiff
path: root/src/Curves/Weierstrass/Jacobian.v
blob: 06d9a48eca63c024011a8b6021852db2a84446cf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
Require Import Coq.Classes.Morphisms.

Require Import Crypto.Spec.WeierstrassCurve.
Require Import Crypto.Util.Decidable Crypto.Algebra.Field.
Require Import Crypto.Util.Tactics.BreakMatch.
Require Import Crypto.Util.Tactics.DestructHead.
Require Import Crypto.Util.Tactics.SpecializeBy.
Require Import Crypto.Util.Tactics.SetoidSubst.
Require Import Crypto.Util.Notations Crypto.Util.LetIn.
Require Import Crypto.Util.Sum Crypto.Util.Prod Crypto.Util.Sigma.

Module Jacobian.
  Section Jacobian.
    Context {F Feq Fzero Fone Fopp Fadd Fsub Fmul Finv Fdiv} {a b:F}
            {field:@Algebra.Hierarchy.field F Feq Fzero Fone Fopp Fadd Fsub Fmul Finv Fdiv}
            {char_ge_3:@Ring.char_ge F Feq Fzero Fone Fopp Fadd Fsub Fmul (BinNat.N.succ_pos (BinNat.N.two))}
            {Feq_dec:DecidableRel Feq}.
    Local Infix "=" := Feq : type_scope. Local Notation "a <> b" := (not (a = b)) : type_scope.
    Local Notation "0" := Fzero.  Local Notation "1" := Fone.
    Local Infix "+" := Fadd. Local Infix "-" := Fsub.
    Local Infix "*" := Fmul. Local Infix "/" := Fdiv.
    Local Notation "x ^ 2" := (x*x). Local Notation "x ^ 3" := (x^2*x).
    Local Notation Wpoint := (@W.point F Feq Fadd Fmul a b).

    Definition point : Type := { P : F*F*F | let '(X,Y,Z) := P in
                                             if dec (Z=0) then True else Y^2 = X^3 + a*X*(Z^2)^2 + b*(Z^3)^2 }.
    Definition eq (P Q : point) : Prop :=
      match proj1_sig P, proj1_sig Q with
      | (X1, Y1, Z1), (X2, Y2, Z2) =>
        if dec (Z1 = 0) then Z2 = 0
        else Z2 <> 0 /\
             X1*Z2^2 = X2*Z1^2
             /\ Y1*Z2^3 = Y2*Z1^3
      end.

    (* These cases are not needed to solve the goal, but handling them early speeds things up considerably *)
    Ltac prept_step_opt :=
      match goal with
      | [ H : ?T |- ?T ] => exact H
      | [ |- ?x = ?x ] => reflexivity
      | [ H : ?T, H' : ~?T |- _ ] => solve [ exfalso; apply H', H ]
      end.

    Ltac prept_step :=
      match goal with
      | _ => progress prept_step_opt
      | _ => progress intros
      (*| _ => progress specialize_by_assumption*)
      (*| _ => progress specialize_by trivial*)
      | _ => progress cbv [proj1_sig fst snd] in *
      | _ => progress autounfold with points_as_coordinates in *
      | _ => progress destruct_head'_True
      | _ => progress destruct_head'_unit
      | _ => progress destruct_head'_prod
      | _ => progress destruct_head'_sig
      | _ => progress destruct_head'_and
      | _ => progress destruct_head'_sum
      | _ => progress destruct_head'_bool
      | _ => progress destruct_head'_or
      | H: context[@dec ?P ?pf] |- _ => destruct (@dec P pf)
      | |- context[@dec ?P ?pf]      => destruct (@dec P pf)
      | |- ?P => lazymatch type of P with Prop => split end
      end.
    Ltac prept := repeat prept_step.
    Ltac t := prept; trivial; try contradiction; fsatz.

    Create HintDb points_as_coordinates discriminated.
    Hint Unfold Proper respectful Reflexive Symmetric Transitive : points_as_coordinates.
    Hint Unfold point eq W.eq W.point W.coordinates proj1_sig fst snd : points_as_coordinates.

    Global Instance Equivalence_eq : Equivalence eq.
    Proof. t. Qed.

    Program Definition of_affine (P:Wpoint) : point :=
      match W.coordinates P return F*F*F with
      | inl (x, y) => (x, y, 1)
      | inr _ => (0, 0, 0)
      end.
    Next Obligation. Proof. t. Qed.

    Program Definition to_affine (P:point) : Wpoint :=
      match proj1_sig P return F*F+_ with
      | (X, Y, Z) =>
        if dec (Z = 0) then inr tt
        else inl (X/Z^2, Y/Z^3)
      end.
    Next Obligation. Proof. t. Qed.

    Hint Unfold to_affine of_affine : points_as_coordinates.
    Global Instance Proper_of_affine : Proper (W.eq ==> eq) of_affine. Proof. t. Qed.
    Global Instance Proper_to_affine : Proper (eq ==> W.eq) to_affine. Proof. t. Qed.
    Lemma to_affine_of_affine P : W.eq (to_affine (of_affine P)) P. Proof. t. Qed.
    Lemma of_affine_to_affine P : eq (of_affine (to_affine P)) P. Proof. t. Qed.

    Program Definition opp (P:point) : point :=
      match proj1_sig P return F*F*F with
      | (X, Y, Z) => (X, Fopp Y, Z)
      end.
    Next Obligation. Proof. t. Qed.

    Section AEqMinus3.
      Context (a_eq_minus3 : a = Fopp (1+1+1)).

      Program Definition double (P : point) : point :=
        match proj1_sig P return F*F*F with
        | (x_in, y_in, z_in) =>
          let delta := z_in^2 in
          let gamma := y_in^2 in
          let beta := x_in * gamma in
          let ftmp := x_in - delta in
          let ftmp2 := x_in + delta in
          let tmptmp := ftmp2 + ftmp2 in
          let ftmp2 := ftmp2 + tmptmp in
          let alpha := ftmp * ftmp2 in
          let x_out := alpha^2 in
          let fourbeta := beta + beta in
          let fourbeta := fourbeta + fourbeta in
          let tmptmp := fourbeta + fourbeta in
          let x_out := x_out - tmptmp in
          let delta := gamma + delta in
          let ftmp := y_in + z_in in
          let z_out := ftmp^2 in
          let z_out := z_out - delta in
          let y_out := fourbeta - x_out in
          let gamma := gamma + gamma in
          let gamma := gamma^2 in
          let y_out := alpha * y_out in
          let gamma := gamma + gamma in
          let y_out := y_out - gamma in
          (x_out, y_out, z_out)
        end.
      Next Obligation. Proof. t. Qed.

      Definition z_is_zero_or_one (Q : point) : Prop :=
        match proj1_sig Q with
        | (_, _, z) => z = 0 \/ z = 1
        end.

      Definition add_precondition (Q : point) (mixed : bool) : Prop :=
        match mixed with
        | false => True
        | true => z_is_zero_or_one Q
        end.

      Local Ltac clear_neq :=
        repeat match goal with
               | [ H : _ <> _ |- _ ] => clear H
               end.
      Local Ltac clear_eq :=
        repeat match goal with
               | [ H : _ = _ |- _ ] => clear H
               end.
      Local Ltac clear_eq_and_neq :=
        repeat (clear_eq || clear_neq).
      Local Ltac clean_up_speed_up_fsatz :=
        repeat match goal with
               | [ H : forall a : F, _ = _ -> _ = _ |- _ ] => clear H
               | [ H : forall a : F, _ <> _ -> _ = _ |- _ ] => clear H
               | [ H : forall a : F, _ <> _ -> _ <> _ |- _ ] => clear H
               | [ H : forall a b : F, _ = _ |- _ ] => clear H
               | [ H : forall a b : F, _ = _ -> _ = _ |- _ ] => clear H
               | [ H : forall a b : F, _ <> _ -> _ = _ |- _ ] => clear H
               | [ H : forall a b : F, _ <> _ -> _ <> _ |- _ ] => clear H
               | [ H : forall a b : F, _ = _ -> _ <> _ -> _ = _ |- _ ] => clear H
               | [ H : forall a b : F, _ <> _ -> _ <> _ -> _ = _ |- _ ] => clear H
               | [ H : forall a b : F, _ <> _ -> _ <> _ -> _ <> _ |- _ ] => clear H
               | [ H : forall a b c : F, _ |- _ ] => clear H
               | [ H : ?T, H' : ?T |- _ ] => clear H'
               | [ H : ?x = ?x |- _ ] => clear H
               | [ H : ?x <> 0, H' : ?x = 1 |- _ ] => clear H
               | [ H : ?x = 0 |- _ ] => is_var x; clear H x
               | [ H : ?x = 1 |- _ ] => is_var x; clear H x
               | [ H : Finv (?x^3) <> 0, H' : ?x <> 0 |- _ ] => clear H
               end.
      Local Ltac find_and_do_or_prove_by ty by_tac tac :=
        lazymatch goal with
        | [ H' : ty |- _ ]
          => tac H'
        | _
          => assert ty by by_tac
        end.
      Local Ltac find_and_do_or_prove_by_fsatz ty tac :=
        find_and_do_or_prove_by ty ltac:(clear_eq_and_neq; intros; fsatz) tac.
      Local Ltac find_and_do_or_prove_by_fsatz_with_neq ty tac :=
        find_and_do_or_prove_by ty ltac:(clear_neq; intros; fsatz) tac.
      Local Ltac find_and_goal_apply_or_prove_by_fsatz ty :=
        find_and_do_or_prove_by_fsatz ty ltac:(fun H' => apply H').
      Local Ltac find_and_apply_or_prove_by_fsatz H ty :=
        find_and_do_or_prove_by_fsatz ty ltac:(fun H' => apply H' in H).
      Local Ltac find_and_apply_or_prove_by_fsatz2 H0 H1 ty :=
        find_and_do_or_prove_by_fsatz ty ltac:(fun H' => apply H' in H0; [ | exact H1 ]).
      Local Ltac find_and_apply_or_prove_by_fsatz' H ty preapp :=
        find_and_do_or_prove_by_fsatz ty ltac:(fun H' => let H' := preapp H' in apply H' in H).
      Local Ltac speed_up_fsatz :=
        let fld := guess_field in
        divisions_to_inverses fld;
        repeat match goal with
               | [ H : False |- _ ] => solve [ exfalso; exact H ]
               | [ H : ?T |- ?T ] => exact H
               | [ H : ?x <> ?x |- _ ] => solve [ exfalso; apply H; reflexivity ]
               | [ H : ?x = ?y, H' : ?x <> ?y |- _ ] => solve [ exfalso; apply H', H ]
               | [ H : ?x = 0 |- ?x * ?y <> 0 ] => exfalso
               | [ H : ?y = 0 |- ?x * ?y <> 0 ] => exfalso
               | [ H : ~?T |- ?T ] => exfalso
               | [ H : ?T |- ~?T ] => exfalso
               | [ H : ?x - ?x = 0 |- _ ] => clear H
               | [ H : ?x * ?y = 0, H' : ?x = 0 |- _ ] => clear H
               | [ H : ?x * ?y = 0, H' : ?y = 0 |- _ ] => clear H
               | [ H : ?x = Fopp ?x |- _ ]
                 => find_and_apply_or_prove_by_fsatz H (forall a, a = Fopp a -> a = 0)
               | [ H : ?x <> Fopp ?x |- _ ]
                 => find_and_apply_or_prove_by_fsatz H (forall a, a <> Fopp a -> a <> 0)
               | [ H : ?x + ?x = 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz H (forall y, y + y = 0 -> y = 0)
               | [ H : Finv (?x^3) = 0, H' : ?x <> 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz2 H H' (forall a, Finv (a^3) = 0 -> a <> 0 -> False)
               | [ H : ?x - ?y = 0, H' : ?y <> ?x |- _ ]
                 => find_and_apply_or_prove_by_fsatz H (forall a b, a - b = 0 -> b = a)
               | [ H : ?x - ?y = 0, H' : ?x <> ?y |- _ ]
                 => find_and_apply_or_prove_by_fsatz H (forall a b, a - b = 0 -> a = b)
               | [ H : ?x * ?y * ?z <> 0, H' : ?y <> 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz H (forall a b c, a * b * c <> 0 -> a * c <> 0)
               | [ H : ?x * ?y^3 <> 0, H' : ?y <> 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz H (forall a b, a * b <> 0 -> a <> 0)
               | [ H : ?x * ?y^2 <> 0, H' : ?y <> 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz H (forall a b, a * b <> 0 -> a <> 0)
               | [ H : ?x^2 - ?y^2 = 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz H (forall a b, a^2 - b^2 = 0 -> (a - b) * (a + b) = 0)
               | [ H : ?x + ?y * ?z = 0, H' : ?x <> Fopp (?z * ?y) |- _ ]
                 => find_and_apply_or_prove_by_fsatz2 H H' (forall a b c, a + b * c = 0 -> a <> Fopp (c * b) -> False)
               | [ H : ?x + ?x <> 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz H (forall a, a + a <> 0 -> a <> 0)
               | [ H : ?x - ?y <> 0, H' : ?y = ?x |- _ ]
                 => find_and_apply_or_prove_by_fsatz H (forall a b, a - b <> 0 -> b <> a)
               | [ H : ?x - ?y <> 0, H' : ?x = ?y |- _ ]
                 => find_and_apply_or_prove_by_fsatz H (forall a b, a - b <> 0 -> a <> b)
               | [ H : (?x + ?y)^2 - (?x^2 + ?y^2) = 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz H (forall a b, (a + b)^2 - (a^2 + b^2) = 0 -> a * b = 0)
               | [ H : (?x + ?y)^2 - (?x^2 + ?y^2) <> 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz H (forall a b, (a + b)^2 - (a^2 + b^2) <> 0 -> a * b <> 0)
               | [ H : ?x * ?y = 0, H' : ?x <> 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz2 H H' (forall a b, a * b = 0 -> a <> 0 -> b = 0)
               | [ H : ?x * ?y = 0, H' : ?y <> 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz2 H H' (forall a b, a * b = 0 -> b <> 0 -> a = 0)
               | [ H : ?x * ?y <> 0, H' : ?x <> 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz H (forall a b, a * b <> 0 -> b <> 0)
               | [ H : ?x * ?y <> 0, H' : ?y <> 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz H (forall a b, a * b <> 0 -> a <> 0)
               | [ H : ?x * ?y <> 0, H' : ?x = 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz2 H H' (forall a b, a * b <> 0 -> a = 0 -> False)
               | [ H : ?x * ?y <> 0, H' : ?y = 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz2 H H' (forall a b, a * b <> 0 -> b = 0 -> False)
               | [ |- (?x + ?y)^2 - (?x^2 + ?y^2) = 0 ]
                 => find_and_goal_apply_or_prove_by_fsatz (forall a b, a * b = 0 -> (a + b)^2 - (a^2 + b^2) = 0)
               | [ |- (?x + ?y)^2 - (?x^2 + ?y^2) <> 0 ]
                 => find_and_goal_apply_or_prove_by_fsatz (forall a b, a * b <> 0 -> (a + b)^2 - (a^2 + b^2) <> 0)
               | [ |- (?x + ?y)^2 - ?x^2 - ?y^2 = 0 ]
                 => find_and_goal_apply_or_prove_by_fsatz (forall a b, a * b = 0 -> (a + b)^2 - a^2 - b^2 = 0)
               | [ |- (?x + ?y)^2 - ?x^2 - ?y^2 <> 0 ]
                 => find_and_goal_apply_or_prove_by_fsatz (forall a b, a * b <> 0 -> (a + b)^2 - a^2 - b^2 <> 0)
               | [ H : (?x + ?y)^2 - (?x^2 + ?y^2) = 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz H (forall a b, (a + b)^2 - (a^2 + b^2) = 0 -> a * b = 0)
               | [ H : (?x + ?y)^2 - (?x^2 + ?y^2) <> 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz H (forall a b, (a + b)^2 - (a^2 + b^2) <> 0 -> a * b <> 0)
               | [ H : (?x + ?y)^2 - ?x^2 - ?y^2 = 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz H (forall a b, (a + b)^2 - a^2 - b^2 = 0 -> a * b = 0)
               | [ H : (?x + ?y)^2 - ?x^2 - ?y^2 <> 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz H (forall a b, (a + b)^2 - a^2 - b^2 <> 0 -> a * b <> 0)
               | [ H : ?x = 0 |- ?x * ?y = 0 ]
                 => find_and_goal_apply_or_prove_by_fsatz (forall a b, a = 0 -> a * b = 0)
               | [ H : ?y = 0 |- ?x * ?y = 0 ]
                 => find_and_goal_apply_or_prove_by_fsatz (forall a b, b = 0 -> a * b = 0)
               | [ H : ?x <> 0 |- ?x * ?y <> 0 ]
                 => find_and_goal_apply_or_prove_by_fsatz (forall a b, a <> 0 -> b <> 0 -> a * b <> 0)
               | [ H : ?y <> 0 |- ?x * ?y <> 0 ]
                 => find_and_goal_apply_or_prove_by_fsatz (forall a b, a <> 0 -> b <> 0 -> a * b <> 0)
               | [ H : ?x <> 0 |- ?x * ?y = 0 ]
                 => find_and_goal_apply_or_prove_by_fsatz (forall a b, b = 0 -> a * b = 0)
               | [ H : ?y <> 0 |- ?x * ?y = 0 ]
                 => find_and_goal_apply_or_prove_by_fsatz (forall a b, a = 0 -> a * b = 0)

               | [ H : ?x - ?y * ?z <> ?w, H' : ?y = 1 |- _ ]
                 => find_and_apply_or_prove_by_fsatz' H (forall a b c d, a - b * c <> d -> b = 1 -> a - c <> d) ltac:(fun H'' => constr:(fun Hv => H'' x y z w Hv H'))
               | [ H : ?x - ?y * ?z = ?w, H' : ?y = 1 |- _ ]
                 => find_and_apply_or_prove_by_fsatz' H (forall a b c d, a - b * c = d -> b = 1 -> a - c = d) ltac:(fun H'' => constr:(fun Hv => H'' x y z w Hv H'))
               | [ H : ?x - ?y * ?z * ?w <> ?v, H' : ?y = 1 |- _ ]
                 => find_and_apply_or_prove_by_fsatz' H (forall a b c d e, a - b * c * d <> e -> b = 1 -> a - c * d <> e) ltac:(fun H'' => constr:(fun Hv => H'' x y z w v Hv H'))
               | [ H : ?x - ?y * ?z * ?w = ?v, H' : ?y = 1 |- _ ]
                 => find_and_apply_or_prove_by_fsatz' H (forall a b c d e, a - b * c * d = e -> b = 1 -> a - c * d = e) ltac:(fun H'' => constr:(fun Hv => H'' x y z w v Hv H'))
               | [ H : ?x - ?y * ?z^2 <> ?w, H' : ?z = 1 |- _ ]
                 => find_and_apply_or_prove_by_fsatz' H (forall a b c d, a - b * c^2 <> d -> c = 1 -> a - b <> d) ltac:(fun H'' => constr:(fun Hv => H'' x y z w Hv H'))
               | [ H : ?x - ?y * ?z^2 = ?w, H' : ?z = 1 |- _ ]
                 => find_and_apply_or_prove_by_fsatz' H (forall a b c d, a - b * c^2 = d -> c = 1 -> a - b = d) ltac:(fun H'' => constr:(fun Hv => H'' x y z w Hv H'))

               | [ H : ?x - ?y + ?z <> ?w, H' : ?y = 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz' H (forall a b c d, a - b + c <> d -> b = 0 -> a + c <> d) ltac:(fun H'' => constr:(fun Hv => H'' x y z w Hv H'))
               | [ H : ?x - ?y <> ?z, H' : ?y = 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz' H (forall a b c, a - b <> c -> b = 0 -> a <> c) ltac:(fun H'' => constr:(fun Hv => H'' x y z Hv H'))
               | [ H : ?x * ?y + ?z <> ?w, H' : ?x = 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz' H (forall a b c d, a * b + c <> d -> a = 0 -> c <> d) ltac:(fun H'' => constr:(fun Hv => H'' x y z w Hv H'))
               | [ H : ?x * ?y + ?z <> ?w, H' : ?y = 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz' H (forall a b c d, a * b + c <> d -> b = 0 -> c <> d) ltac:(fun H'' => constr:(fun Hv => H'' x y z w Hv H'))
               | [ H : ?x * ?y <> ?z, H' : ?x = 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz' H (forall a b c, a * b <> c -> a = 0 -> c <> 0) ltac:(fun H'' => constr:(fun Hv => H'' x y z Hv H'))
               | [ H : ?x * ?y <> ?z, H' : ?y = 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz' H (forall a b c, a * b <> c -> b = 0 -> c <> 0) ltac:(fun H'' => constr:(fun Hv => H'' x y z Hv H'))
               | [ H : Fopp (?x * ?y) <> ?z, H' : ?x = 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz' H (forall a b c, Fopp (a * b) <> c -> a = 0 -> c <> 0) ltac:(fun H'' => constr:(fun Hv => H'' x y z Hv H'))
               | [ H : Fopp (?x * ?y) <> ?z, H' : ?y = 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz' H (forall a b c, Fopp (a * b) <> c -> b = 0 -> c <> 0) ltac:(fun H'' => constr:(fun Hv => H'' x y z Hv H'))
               | [ H : ?x * ?y^3 = ?z, H' : ?y = 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz2 H H' (forall a b c, a * b^3 = c -> b = 0 -> c = 0)
               | [ H : ?x * ?y = ?z, H' : ?x = 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz2 H H' (forall a b c, a * b = c -> a = 0 -> c = 0)
               | [ H : ?x * ?y - ?z <> 0, H' : ?x = 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz' H (forall a b c, a * b - c <> 0 -> a = 0 -> c <> 0) ltac:(fun H'' => constr:(fun Hv => H'' x y z Hv H'))
               | [ H : ?x * ?y - ?z <> 0, H' : ?y = 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz' H (forall a b c, a * b - c <> 0 -> b = 0 -> c <> 0) ltac:(fun H'' => constr:(fun Hv => H'' x y z Hv H'))
               | [ H : ?x * ?y - ?z = 0, H' : ?x = 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz' H (forall a b c, a * b - c = 0 -> a = 0 -> c = 0) ltac:(fun H'' => constr:(fun Hv => H'' x y z Hv H'))
               | [ H : ?x * ?y - ?z = 0, H' : ?y = 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz' H (forall a b c, a * b - c = 0 -> b = 0 -> c = 0) ltac:(fun H'' => constr:(fun Hv => H'' x y z Hv H'))
               | [ H : ?x - ?y * ?z = 0, H' : ?z = 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz' H (forall a b c, a - b * c = 0 -> c = 0 -> a = 0) ltac:(fun H'' => constr:(fun Hv => H'' x y z Hv H'))
               | [ H : ?x * (?y * ?y^2) - ?z <> ?w |- _ ]
                 => find_and_apply_or_prove_by_fsatz H (forall a b c d, a * (b * b^2) - c <> d -> a * (b^3) - c <> d)
               | [ H : ?x * (?y * ?y^2) - ?z = ?w |- _ ]
                 => find_and_apply_or_prove_by_fsatz H (forall a b c d, a * (b * b^2) - c = d -> a * (b^3) - c = d)
               | [ H : ?x - (?y * ?y^2) * ?z <> ?w |- _ ]
                 => find_and_apply_or_prove_by_fsatz H (forall a b c d, a - (b * b^2) * c <> d -> a - (b^3) * c <> d)
               | [ H : ?x - (?y * ?y^2) * ?z = ?w |- _ ]
                 => find_and_apply_or_prove_by_fsatz H (forall a b c d, a - (b * b^2) * c = d -> a - (b^3) * c = d)
               | [ H : ?x * (?y * ?y^2) = 0, H' : ?y <> 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz2 H H' (forall a b, a * (b * b^2) = 0 -> b <> 0 -> a = 0)
               | [ H : ?x * (?y * ?z) = 0, H' : ?z <> 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz' H (forall a b c, c <> 0 -> a * (b * c) = 0 -> a * b = 0) ltac:(fun lem => constr:(lem x y z H'))
               | [ H : ?x * ?y + ?z = 0, H' : ?x = 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz' H (forall a b c, a = 0 -> a * b + c = 0 -> c = 0) ltac:(fun lem => constr:(lem x y z H'))
               | [ H : ?x / ?y^3 = Fopp (?z / ?w^3), H' : ?y <> 0, H'' : ?w <> 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz' H (forall a b c d, c <> 0 -> d <> 0 -> a / c^3 = Fopp (b / d^3) -> a * d^3 + b * c^3 = 0) ltac:(fun lem => constr:(lem x z y w H' H''))
               | [ H : ?x / ?y^3 <> Fopp (?z / ?w^3), H' : ?y <> 0, H'' : ?w <> 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz' H (forall a b c d, c <> 0 -> d <> 0 -> a / c^3 <> Fopp (b / d^3) -> a * d^3 + b * c^3 <> 0) ltac:(fun lem => constr:(lem x z y w H' H''))
               | [ H : ?x / ?y^2 = ?z / ?w^2, H' : ?y <> 0, H'' : ?w <> 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz' H (forall a b c d, c <> 0 -> d <> 0 -> a / c^2 = b / d^2 -> a * d^2 - b * c^2 = 0) ltac:(fun lem => constr:(lem x z y w H' H''))
               | [ H : ?x / ?y^2 <> ?z / ?w^2, H' : ?y <> 0, H'' : ?w <> 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz' H (forall a b c d, c <> 0 -> d <> 0 -> a / c^2 <> b / d^2 -> a * d^2 - b * c^2 <> 0) ltac:(fun lem => constr:(lem x z y w H' H''))
               | [ H : ?x * (?y * ?y^2) - ?z * ?z^2 * ?w = 0, H' : ?x * ?y^3 + ?w * ?z^3 = 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz' H (forall a b c d, a * b^3 + d * c^3 = 0 -> a * (b * b^2) - c * c^2 * d = 0 -> a * b^3 = 0) ltac:(fun lem => constr:(lem x y z w H'))
               | [ H : ?x * Finv (?y^2) <> ?z * Finv (?w^2), Hy : ?y <> 0, Hw : ?w <> 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz' H (forall a b c d, a * Finv (b^2) <> c * Finv (d^2) -> b <> 0 -> d <> 0 -> a * (d^2) <> c * (b^2)) ltac:(fun Hv => constr:(fun H => Hv x y z w H Hy Hw))
               | [ H : ?x * Finv (?y^2) = ?z * Finv (?w^2), Hy : ?y <> 0, Hw : ?w <> 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz' H (forall a b c d, a * Finv (b^2) = c * Finv (d^2) -> b <> 0 -> d <> 0 -> a * (d^2) = c * (b^2)) ltac:(fun Hv => constr:(fun H => Hv x y z w H Hy Hw))
               | [ H : ?x * Finv (?y^3) = Fopp (?z * Finv (?w^3)), Hy : ?y <> 0, Hw : ?w <> 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz' H (forall a b c d, a * Finv (b^3) = Fopp (c * Finv (d^3)) -> b <> 0 -> d <> 0 -> a * (d^3) = Fopp (c * (b^3))) ltac:(fun Hv => constr:(fun H => Hv x y z w H Hy Hw))
               | [ H : ?x * Finv (?y^3) <> Fopp (?z * Finv (?w^3)), Hy : ?y <> 0, Hw : ?w <> 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz' H (forall a b c d, a * Finv (b^3) <> Fopp (c * Finv (d^3)) -> b <> 0 -> d <> 0 -> a * (d^3) <> Fopp (c * (b^3))) ltac:(fun Hv => constr:(fun H => Hv x y z w H Hy Hw))
               | [ H : ?x = Fopp (?y * ?z), H' : ?x - ?z * ?y = 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz2 H H' (forall a b c, a = Fopp (b * c) -> a - c * b = 0 -> a = 0)
               | [ H : ?x = Fopp (?y * ?z), H' : ?x - ?z * ?y = 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz2 H H' (forall a b c, a = Fopp (b * c) -> a - c * b = 0 -> a = 0)
               | [ H : ?x <> Fopp (?y * ?z), H' : ?x - ?z * ?y = 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz2 H H' (forall a b c, a <> Fopp (b * c) -> a - c * b = 0 -> a * b * c <> 0)
               | [ H : ?x <> Fopp (?y * ?z), H' : ?x - ?z * ?y = 0 |- _ ]
                 => find_and_apply_or_prove_by_fsatz2 H H' (forall a b c, a <> Fopp (b * c) -> a - c * b = 0 -> a * b * c <> 0)
               | [ H : ?y^2 = ?c^3 + ?a * ?c * (?x^2)^2 + ?b * (?x^3)^2,
                       H' : ?y'^2 = ?c'^3 + ?a * ?c' * (?x'^2)^2 + ?b * (?x'^3)^2,
                            H0 : ?c' * ?x^2 - ?c * ?x'^2 = 0
                   |- _ ]
                 => find_and_apply_or_prove_by_fsatz' H (forall X Y X' Y' A B C C', Y^2 = C^3 + A * C * (X^2)^2 + B * (X^3)^2 -> Y'^2 = C'^3 + A * C' * (X'^2)^2 + B * (X'^3)^2 -> C' * X^2 - C * X'^2 = 0 -> (Y' * (X^3))^2 - ((X'^3) * Y)^2 = 0) ltac:(fun Hv => constr:(fun H => Hv x y x' y' a b c c' H H' H0))
               | [ H : ?y^2 = ?c^3 + ?a * ?c * (?x^2)^2 + ?b * (?x^3)^2,
                       H' : ?y'^2 = ?c'^3 + ?a * ?c' * (?x'^2)^2 + ?b * (?x'^3)^2,
                            H0 : ?c' * ?x^2 = ?c * ?x'^2
                   |- _ ]
                 => find_and_apply_or_prove_by_fsatz' H (forall X Y X' Y' A B C C', Y^2 = C^3 + A * C * (X^2)^2 + B * (X^3)^2 -> Y'^2 = C'^3 + A * C' * (X'^2)^2 + B * (X'^3)^2 -> C' * X^2 = C * X'^2 -> (Y' * (X^3))^2 - ((X'^3) * Y)^2 = 0) ltac:(fun Hv => constr:(fun H => Hv x y x' y' a b c c' H H' H0))

               | [ H0 : ?n0 = 0, H1 : ?n1 = 0, H2 : ?d0 <> 0, H3 : ?d1 <> 0, H : ?n0 / ?d0^3 <> Fopp (?n1 / ?d1^3) |- _ ]
                 => revert H0 H1 H2 H3 H; progress clear_eq_and_neq; generalize n0 n1 d0 d1; intros
               | [ H0 : ?x * ?y^3 = ?A * ?B^3,
                        H1 : ?x * ?z^3 - ?B^3 * ?D = 0,
                             H2 : ?D * ?C^3 = ?w * ?z^3,
                                  H3 : ?A * ?C^3 - ?y^3 * ?w <> 0,
                                       Hz : ?z <> 0,
                                            HB : ?B <> 0
                   |- _ ]
                 => solve [
                        exfalso; revert H0 H1 H2 H3 Hz HB; clear_eq_and_neq;
                        generalize x, y, z, w, A, B, C, D; intros;
                        fsatz ]
               | [ H0 : ?x * ?y^3 = ?A * ?B^3,
                        H1 : ?x * ?z^3 - ?B^3 * ?D <> 0,
                             H2 : ?D * ?C^3 = ?w * ?z^3,
                                  H3 : ?A * ?C^3 - ?y^3 * ?w = 0,
                                       Hy : ?y <> 0,
                                            HC : ?C <> 0
                   |- _ ]
                 => solve [
                        exfalso; revert H0 H1 H2 H3 Hy HC; clear_eq_and_neq;
                        generalize x, y, z, w, A, B, C, D; intros;
                        fsatz ]
               | [ H0 : ?x * ?y^2 = ?A * ?B^2,
                        H1 : ?x * ?z^2 - ?D * ?B^2 = 0,
                             H2 : ?D * ?C^2 = ?w * ?z^2,
                                  H3 : ?A * ?C^2 - ?w * ?y^2 <> 0,
                                       Hz : ?z <> 0,
                                            HB : ?B <> 0
                   |- _ ]
                 => solve [
                        exfalso; revert H0 H1 H2 H3 Hz HB; clear_eq_and_neq;
                        generalize x, y, z, w, A, B, C, D; intros;
                        fsatz ]
               | [ H0 : ?A * ?B^2 = ?x * ?y^2,
                        H1 : ?x * ?z^2 - ?D * ?B^2 = 0,
                             H2 : ?w * ?z^2 = ?D * ?C^2,
                                  H3 : ?A * ?C^2 - ?w * ?y^2 <> 0,
                                       Hz : ?z <> 0,
                                            HB : ?B <> 0
                   |- _ ]
                 => solve [
                        exfalso; revert H0 H1 H2 H3 Hz HB; clear_eq_and_neq;
                        generalize x, y, z, w, A, B, C, D; intros;
                        fsatz ]
               | [ H : ?x <> 0 |- context[Finv (?x^2)] ]
                 => find_and_do_or_prove_by_fsatz (forall a, a <> 0 -> Finv (a^2) = (Finv a)^2) ltac:(fun H' => rewrite !(H' x H))
               | [ H : ?x <> 0 |- context[Finv (?x^3)] ]
                 => find_and_do_or_prove_by_fsatz (forall a, a <> 0 -> Finv (a^3) = (Finv a)^3) ltac:(fun H' => rewrite !(H' x H))
               | [ H : ?x <> 0 |- context[Finv (Finv ?x)] ]
                 => find_and_do_or_prove_by_fsatz (forall a, a <> 0 -> Finv (Finv a) = a) ltac:(fun H' => rewrite !(H' x H))
               | [ |- context[Finv ((?x + ?y)^2 - ?x^2 - ?y^2)] ]
                 => find_and_do_or_prove_by_fsatz (forall a b, (a + b)^2 - a^2 - b^2 = (1+1) * a * b) ltac:(fun H' => rewrite !(H' x y))
               | [ |- context[Finv (?x * ?y)] ]
                 => find_and_do_or_prove_by_fsatz
                      (forall a b, a * b <> 0 -> Finv (a * b) = Finv a * Finv b)
                      ltac:(fun H' => rewrite !(H' x y) by (clear_eq; fsatz))
               end.

      (* Everything this can solve, [t] can also solve, but this does some extra work to go faster *)
      Local Ltac faster_t_noclear :=
        prept; try contradiction; speed_up_fsatz; clean_up_speed_up_fsatz;
        fsatz.
      Local Ltac faster_t :=
        prept; try contradiction; speed_up_fsatz; clean_up_speed_up_fsatz;
        try solve [ lazymatch goal with
                    | [ |- _ = _ ] => clear_neq
                    | _ => idtac
                    end;
                    fsatz ].

      Hint Unfold double negb andb add_precondition z_is_zero_or_one : points_as_coordinates.
      Program Definition add_impl (mixed : bool) (P Q : point)
              (H : add_precondition Q mixed) : point :=
        match proj1_sig P, proj1_sig Q return F*F*F with
        | (x1, y1, z1), (x2, y2, z2) =>
          let z1nz := if dec (z1 = 0) then false else true in
          let z2nz := if dec (z2 = 0) then false else true in
          let z1z1 := z1^2 in
          let '(u1, s1, two_z1z2) := if negb mixed
          then
            let z2z2 := z2^2 in
            let u1 := x1 * z2z2 in
            let two_z1z2 := z1 + z2 in
            let two_z1z2 := two_z1z2^2 in
            let two_z1z2 := two_z1z2 - z1z1 in
            let two_z1z2 := two_z1z2 - z2z2 in
            let s1 := z2 * z2z2 in
            let s1 := s1 * y1 in
            (u1, s1, two_z1z2)
          else
            let u1 := x1 in
            let two_z1z2 := z1 + z1 in
            let s1 := y1 in
            (u1, s1, two_z1z2)
          in
          let u2 := x2 * z1z1 in
          let h := u2 - u1 in
          let xneq := if dec (h = 0) then false else true in
          let z_out := h * two_z1z2 in
          let z1z1z1 := z1 * z1z1 in
          let s2 := y2 * z1z1z1 in
          let r := s2 - s1 in
          let r := r + r in
          let yneq := if dec (r = 0) then false else true in
          if (negb xneq && negb yneq && z1nz && z2nz)%bool
          then proj1_sig (double P)
          else
            let i := h + h in
            let i := i^2 in
            let j := h * i in
            let v := u1 * i in
            let x_out := r^2 in
            let x_out := x_out - j in
            let x_out := x_out - v in
            let x_out := x_out - v in
            let y_out := v - x_out in
            let y_out := y_out * r in
            let s1j := s1 * j in
            let y_out := y_out - s1j in
            let y_out := y_out - s1j in
            let x_out := if z1nz then x_out else x2 in
            let x3 := if z2nz then x_out else x1 in
            let y_out := if z1nz then y_out else y2 in
            let y3 := if z2nz then y_out else y1 in
            let z_out := if z1nz then z_out else z2 in
            let z3 := if z2nz then z_out else z1 in
            (x3, y3, z3)
        end.
      Next Obligation. Proof. faster_t_noclear. Qed.

      Definition add (P Q : point) : point :=
        add_impl false P Q I.
      Definition add_mixed (P : point) (Q : point) (H : z_is_zero_or_one Q) :=
        add_impl true P Q H.

      Hint Unfold W.eq W.add to_affine add add_mixed add_impl : points_as_coordinates.

      Lemma Proper_double : Proper (eq ==> eq) double. Proof. faster_t_noclear. Qed.
      Lemma to_affine_double P :
        W.eq (to_affine (double P)) (W.add (to_affine P) (to_affine P)).
      Proof. faster_t_noclear. Qed.

      Lemma add_mixed_eq_add (P : point) (Q : point) (H : z_is_zero_or_one Q) :
        eq (add P Q) (add_mixed P Q H).
      Proof. faster_t. Qed.

      Lemma Proper_add : Proper (eq ==> eq ==> eq) add. Proof. faster_t_noclear. Qed.
      Import BinPos.
      Lemma to_affine_add P Q
        : W.eq (to_affine (add P Q)) (W.add (to_affine P) (to_affine Q)).
      Proof.
        Time prept; try contradiction; speed_up_fsatz; clean_up_speed_up_fsatz. (* 28.713 secs (17.591u,0.032s) *)
        Time all: fsatz. (* 6.335 secs (6.172u,0.163s) *)
      Time Qed. (* 1.924 secs (1.928u,0.s) *)
    End AEqMinus3.
  End Jacobian.
End Jacobian.