aboutsummaryrefslogtreecommitdiff
path: root/src/Curves/PointFormats.v
blob: 7af310257fd4ba5b33eed9db6a7aee75784e9bcb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477

Require Import Crypto.Galois.Galois Crypto.Galois.GaloisTheory Crypto.Galois.ComputationalGaloisField.
Require Import Tactics.VerdiTactics.

(* FIXME: remove after [field] with modulus as a parameter (34d9f8a6e6a4be439d1c56a8b999d2c21ee12a46) is fixed *)
Require Import Zpower ZArith Znumtheory.
Definition two_255_19 := (two_p 255) - 19.
Lemma two_255_19_prime : prime two_255_19. Admitted.
Definition prime25519 := exist _ two_255_19 two_255_19_prime.
Module M <: Modulus.
  Definition modulus := prime25519.
End M.


(** Theory of elliptic curves over prime fields for cryptographic applications,
with focus on the curves in <https://tools.ietf.org/html/draft-ladd-safecurves-04> *)
Module PointFormats.
  Module F := ComputationalGaloisField M.
  Export M F F.T.
  Local Open Scope GF_scope.
  Local Notation "2" := (1+1).
  Local Notation "3" := (1+1+1).
  Local Notation "4" := (1+1+1+1).
  Local Notation "27" := (3*3*3).

  Module Type TwistedA.
    Parameter a : GF.
    Axiom a_nonzero : a <> 0.
    Axiom a_square : exists sqrt_a, sqrt_a^2 = a.
  End TwistedA.

  Module Type TwistedD.
    Parameter d : GF.
    Axiom d_nonsquare : forall not_sqrt_d, not_sqrt_d^2 <> d.
  End TwistedD.

  Module CompleteTwistedEdwardsSpec (Import ta:TwistedA) (Import td:TwistedD).
    (** Twisted Ewdwards curves with complete addition laws. References:
    * <https://eprint.iacr.org/2008/013.pdf>
    * <http://ed25519.cr.yp.to/ed25519-20110926.pdf>
    * <https://eprint.iacr.org/2015/677.pdf>
    *)
    Record point := mkPoint {projX : GF; projY : GF}.

    Definition unifiedAdd (P1 P2 : point) : point :=
      let x1 := projX P1 in
      let y1 := projY P1 in
      let x2 := projX P2 in
      let y2 := projY P2 in
      mkPoint
        ((x1*y2  +  y1*x2)/(1 + d*x1*x2*y1*y2))
        ((y1*y2 - a*x1*x2)/(1 - d*x1*x2*y1*y2))
      .

    Definition onCurve : point -> Prop := fun P =>
      let x := projX P in
      let y := projY P in
      a*x^2 + y^2 = 1 + d*x^2*y^2.
  End CompleteTwistedEdwardsSpec.

  Module Type CompleteTwistedEdwardsPointFormat (ta:TwistedA) (td:TwistedD).
    Module Spec := CompleteTwistedEdwardsSpec ta td.
    Parameter point : Type.
    Parameter mkPoint : forall (x y:GF), point.
    Parameter projX : point -> GF.
    Parameter projY : point -> GF.
    Parameter unifiedAdd : point -> point -> point.

    (* TODO: split module here? *)

    Parameter rep : point -> Spec.point -> Prop.
    Local Notation "P '~=' rP" := (rep P rP) (at level 70).
    Axiom mkPoint_rep: forall x y, mkPoint x y ~= Spec.mkPoint x y.
    Axiom unifiedAdd_rep: forall P Q rP rQ, Spec.onCurve rP -> Spec.onCurve rQ ->
      P ~= rP -> Q ~= rQ -> (unifiedAdd P Q) ~= (Spec.unifiedAdd rP rQ).
    Axiom projX_rep : forall P rP, P ~= rP -> projX P = Spec.projX rP.
    Axiom projY_rep : forall P rP, P ~= rP -> projY P = Spec.projY rP.
  End CompleteTwistedEdwardsPointFormat.

  Module CompleteTwistedEdwardsFacts (Import ta:TwistedA) (Import td:TwistedD).
    Module M := CompleteTwistedEdwardsSpec ta td.
    Import M.
    Lemma twistedAddCompletePlus : forall (P1 P2:point)
      (oc1:onCurve P1) (oc2:onCurve P2),
      let x1 := projX P1 in
      let y1 := projY P1 in
      let x2 := projX P2 in
      let y2 := projY P2 in
      (1 + d*x1*x2*y1*y2) <> 0.
      (* "Twisted Edwards Curves" <http://eprint.iacr.org/2008/013.pdf> section 6 *)
    Admitted.
    Lemma twistedAddCompleteMinus : forall (P1 P2:point)
      (oc1:onCurve P1) (oc2:onCurve P2),
      let x1 := projX P1 in
      let y1 := projY P1 in
      let x2 := projX P2 in
      let y2 := projY P2 in
      (1 - d*x1*x2*y1*y2) <> 0.
      (* "Twisted Edwards Curves" <http://eprint.iacr.org/2008/013.pdf> section 6 *)
    Admitted.

    Hint Unfold unifiedAdd onCurve.
    Ltac twisted := autounfold; intros;
                    repeat match goal with
                               | [ x : point |- _ ] => destruct x
                           end; simpl; repeat (ring || f_equal); field.
    Local Infix "+" := unifiedAdd.
    Lemma twistedAddComm : forall A B, (A+B = B+A).
    Proof.
      twisted.
    Qed.

    Lemma twistedAddAssoc : forall A B C
      (ocA:onCurve A) (ocB:onCurve B) (ocC:onCurve C),
      (A+(B+C) = (A+B)+C).
    Proof.
      (* uh... I don't actually know where this is proven... *)
    Admitted.

    Local Notation "'(' x ',' y ')'" := (mkPoint x y).
    Definition zero := (0, 1).
    Lemma zeroOnCurve : onCurve (0, 1).
    Proof.
      twisted.
    Qed.
    Lemma zeroIsIdentity : forall P, P + zero = P.
    Proof.
      twisted.
    Qed.
  End CompleteTwistedEdwardsFacts.


  Module CompleteTwistedEdwardsSpecPointFormat (ta:TwistedA) (td:TwistedD)
      <: (CompleteTwistedEdwardsPointFormat ta td).
    Module Spec := CompleteTwistedEdwardsSpec ta td.
    Definition point := Spec.point.
    Definition mkPoint := Spec.mkPoint.
    Definition projX := Spec.projX.
    Definition projY := Spec.projY.
    Definition unifiedAdd := Spec.unifiedAdd.

    Definition rep : point -> point -> Prop := eq.
    Local Hint Unfold rep.
    Local Notation "P '~=' rP" := (rep P rP) (at level 70).
    Local Ltac trivialRep := autounfold; intros; subst; auto.
    Lemma mkPoint_rep: forall x y, mkPoint x y ~= Spec.mkPoint x y.
      trivialRep.
    Qed.
    Lemma unifiedAdd_rep: forall P Q rP rQ, Spec.onCurve rP -> Spec.onCurve rQ ->
      P ~= rP -> Q ~= rQ -> (unifiedAdd P Q) ~= (Spec.unifiedAdd rP rQ).
      trivialRep.
    Qed.
    Lemma projX_rep : forall P rP, P ~= rP -> projX P = Spec.projX rP.
      trivialRep.
    Qed.
    Lemma projY_rep : forall P rP, P ~= rP -> projY P = Spec.projY rP.
      trivialRep.
    Qed.
  End CompleteTwistedEdwardsSpecPointFormat.

  Module Type Minus1IsSquare.
    Axiom minusOneIsSquare : exists sqrt_a, sqrt_a^2 = 0 - 1.
  End Minus1IsSquare.

  Module Minus1Twisted (m1s:Minus1IsSquare) (Import td:TwistedD).
    Module ta <: TwistedA.
      Definition a : GF := 0 - 1.
      Lemma a_square : exists sqrt_a, sqrt_a^2 = a.
      Proof.
        apply m1s.minusOneIsSquare.
      Qed.
      Lemma a_nonzero : a <> 0.
      Proof.
        discriminate.
        (* This result happens to be trivial in the concrete modulus!
         * We probably want a generic [0 <> 1] fact to use when we parameterize more. *)
      Qed.
    End ta.
    Import ta.

    Module M := CompleteTwistedEdwardsSpec ta td.

    Module Format <: CompleteTwistedEdwardsPointFormat ta td.
      Module Spec := CompleteTwistedEdwardsSpec ta td.
      (** [projective] represents a point on an elliptic curve using projective
      * Edwards coordinates for twisted edwards curves with a=-1 (see
      * <https://hyperelliptic.org/EFD/g1p/auto-edwards-projective.html>
      * <https://en.wikipedia.org/wiki/Edwards_curve#Projective_homogeneous_coordinates>) *)
      Record projective := mkProjective {projectiveX : GF; projectiveY : GF; projectiveZ : GF}.
      Local Notation "'(' X ',' Y ',' Z ')'" := (mkProjective X Y Z).
      Definition twistedToProjective (P : Spec.point) : projective :=
        let x := Spec.projX P in
        let y := Spec.projY P in
        (x, y, 1).

      Local Notation "'(' X ',' Y ')'" := (Spec.mkPoint X Y).
      Definition projectiveToTwisted (P : projective) : Spec.point :=
        let X := projectiveX P in
        let Y := projectiveY P in
        let Z := projectiveZ P in
        (X/Z, Y/Z).

      Hint Unfold projectiveToTwisted twistedToProjective.

      Lemma twistedProjectiveInv : forall P,
        projectiveToTwisted (twistedToProjective P) = P.
      Proof.
    (* FIXME: this is copied from CompleteTwistedEdwardsFacts because I don't know how to get it to be in scope here *)
    Ltac twisted := autounfold; intros;
                    repeat match goal with
                               | [ x : Spec.point |- _ ] => destruct x
                           end; simpl; repeat (ring || f_equal); field.
        twisted.
      Qed.

      (** [extended] represents a point on an elliptic curve using extended projective
      * Edwards coordinates with twist a=-1 (see <https://eprint.iacr.org/2008/522.pdf>). *)
      Record extended := mkExtended {extendedToProjective : projective; extendedT : GF}.
      (*Error: The kernel does not recognize yet that a parameter can be instantiated by an inductive type. Hint: you can rename the inductive type and give a definition to map the old name to the new name.*)

      Definition point := extended.
      Local Notation "'(' X ',' Y ',' Z ',' T ')'" := (mkExtended (X, Y, Z) T).
      Definition extendedValid (P : point) : Prop :=
        let pP := extendedToProjective P in
        let X := projectiveX pP in
        let Y := projectiveY pP in
        let Z := projectiveZ pP in
        let T := extendedT P in
        T = X*Y/Z.


      Definition twistedToExtended (P : Spec.point) : point :=
        let x := Spec.projX P in
        let y := Spec.projY P in
        (x, y, 1, x*y).
      Definition mkPoint x y := twistedToExtended (x, y).

      Definition extendedToTwisted (P : point) : Spec.point :=
        projectiveToTwisted (extendedToProjective P).
      Local Hint Unfold extendedValid twistedToExtended extendedToTwisted projectiveToTwisted Spec.unifiedAdd mkPoint.

      Lemma twistedExtendedInv : forall P,
        extendedToTwisted (twistedToExtended P) = P.
      Proof.
        apply twistedProjectiveInv.
      Qed.

      Lemma twistedToExtendedValid : forall (P : Spec.point), extendedValid (twistedToExtended P).
        autounfold.
        destruct P.
        simpl.
        field.
      Qed.
        
      Definition rep (P:point) (rP:Spec.point) : Prop :=
        extendedToTwisted P = rP /\ extendedValid P.
      Lemma mkPoint_rep : forall x y, rep (mkPoint x y) (Spec.mkPoint x y).
        split.
        apply twistedExtendedInv.
        apply twistedToExtendedValid.
      Qed.
      Local Notation "P '~=' rP" := (rep P rP) (at level 70).

      Definition projX P := Spec.projX (extendedToTwisted P).
      Definition projY P := Spec.projY (extendedToTwisted P).

      Ltac rep := repeat progress (intros; autounfold; subst; auto; match goal with
                               | [ x : rep ?a ?b |- _ ] => destruct x
                               end).
      Lemma projX_rep : forall P rP, P ~= rP -> projX P = Spec.projX rP.
        rep.
      Qed.
      Lemma projY_rep : forall P rP, P ~= rP -> projY P = Spec.projY rP.
        rep.
      Qed.

      (** Second equation from <http://eprint.iacr.org/2008/522.pdf> section 3.1, also <https://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html#addition-add-2008-hwcd-3> and <https://tools.ietf.org/html/draft-josefsson-eddsa-ed25519-03> *)
      Definition unifiedAdd (P1 P2 : point) : point :=
        let k := 2 * d in
        let pP1 := extendedToProjective P1 in
        let X1 := projectiveX pP1 in
        let Y1 := projectiveY pP1 in
        let Z1 := projectiveZ pP1 in
        let T1 := extendedT P1 in
        let pP2 := extendedToProjective P2 in
        let X2 := projectiveX pP2 in
        let Y2 := projectiveY pP2 in
        let Z2 := projectiveZ pP2 in
        let T2 := extendedT P2 in
        let  A := (Y1-X1)*(Y2-X2) in
        let  B := (Y1+X1)*(Y2+X2) in
        let  C := T1*k*T2 in
        let  D := Z1*2*Z2 in
        let  E := B-A in
        let  F := D-C in
        let  G := D+C in
        let  H := B+A in
        let X3 := E*F in
        let Y3 := G*H in
        let T3 := E*H in
        let Z3 := F*G in
        mkExtended (mkProjective X3 Y3 Z3) T3.

      Delimit Scope extendedM1_scope with extendedM1.
      Infix "+" := unifiedAdd : extendedM1_scope.

      Lemma unifiedAddCon : forall (P1 P2:point)
        (hv1:extendedValid P1) (hv2:extendedValid P2),
        extendedValid (P1 + P2)%extendedM1.
      Proof.
        intros.
        remember ((P1+P2)%extendedM1) as P3.
        destruct P1 as [[X1 Y1 Z1] T1].
        destruct P2 as [[X2 Y2 Z2] T2].
        destruct P3 as [[X3 Y3 Z3] T3].
        unfold extendedValid, extendedToProjective, projectiveToTwisted, Spec.projX, Spec.projY in *.
        invcs HeqP3.
        subst.
        (* field. -- fails. but it works in sage:
  sage -c 'var("d X1 X2 Y1 Y2 Z1 Z2");
  print(bool((((Y1 + X1) * (Y2 + X2) - (Y1 - X1) * (Y2 - X2)) *
  ((Y1 + X1) * (Y2 + X2) - (Y1 - X1) * (Y2 - X2)) ==
  ((Y1 + X1) * (Y2 + X2) - (Y1 - X1) * (Y2 - X2)) *
  (2 * Z1 * Z2 - 2 * ((0 - d) / a) * (X1 * Y1 / Z1) * (X2 * Y2 / Z2)) *
  ((2 * Z1 * Z2 + 2 * ((0 - d) / a) * (X1 * Y1 / Z1) * (X2 * Y2 / Z2)) *
   ((Y1 + X1) * (Y2 + X2) - (Y1 - X1) * (Y2 - X2))) /
   ((2 * Z1 * Z2 - 2 * ((0 - d) / a) * (X1 * Y1 / Z1) * (X2 * Y2 / Z2)) *
    (2 * Z1 * Z2 + 2 * ((0 - d) / a) * (X1 * Y1 / Z1) * (X2 * Y2 / Z2))))))'
          Outputs:
            True
        *)
      Admitted.

      Ltac extended0 := repeat progress (autounfold; simpl); intros;
                        repeat match goal with
                               | [ x : Spec.point |- _ ] => destruct x
                               | [ x : point |- _ ] => destruct x
                               | [ x : projective |- _ ] => destruct x
                               end; simpl in *; subst.

      Ltac extended := extended0; repeat (ring || f_equal)(*; field*).

      Lemma unifiedAddToTwisted : forall (P1 P2 : point) (tP1 tP2 : Spec.point)
        (P1con : extendedValid P1) (P1on : Spec.onCurve tP1) (P1rep : extendedToTwisted P1 = tP1)
        (P2con : extendedValid P2) (P2on : Spec.onCurve tP2) (P2rep : extendedToTwisted P2 = tP2),
        extendedToTwisted (P1 + P2)%extendedM1 = Spec.unifiedAdd tP1 tP2.
      Proof.
        extended0.
        apply f_equal2.
        (* case 1 verified by hand: follows from field and completeness of edwards addition *)
        (* field should work here *)
      Admitted.

      Lemma unifiedAdd_rep: forall P Q rP rQ, Spec.onCurve rP -> Spec.onCurve rQ ->
        P ~= rP -> Q ~= rQ -> (unifiedAdd P Q) ~= (Spec.unifiedAdd rP rQ).
        split; rep.
        apply unifiedAddToTwisted; auto.
        apply unifiedAddCon; auto.
      Qed.
    End Format.
  End Minus1Twisted.


  (*
  (** [precomputed] represents a point on an elliptic curve using "precomputed"
  * Edwards coordinates, as used for fixed-base scalar multiplication
  * (see <http://ed25519.cr.yp.to/ed25519-20110926.pdf> section 4: addition). *)
  Record precomputed := mkPrecomputed {precomputedSum : GF;
                                       precomputedDifference : GF;
                                       precomputed2dxy : GF}.
  Definition twistedToPrecomputed (d:GF) (P : twisted) : precomputed :=
    let x := twistedX P in
    let y := twistedY P in
    mkPrecomputed (y+x) (y-x) (2*d*x*y).
  *)


  (** [weierstrass] represents a point on an elliptic curve using Weierstrass
  * coordinates (<http://cs.ucsb.edu/~koc/ccs130h/2013/EllipticHyperelliptic-CohenFrey.pdf>) definition 13.1*)
  Record weierstrass := mkWeierstrass {weierstrassX : GF; weierstrassY : GF}.
  Definition weierstrassOnCurve (a1 a2 a3 a4 a5 a6:GF) (P : weierstrass) : Prop :=
    let x := weierstrassX P in
    let y := weierstrassY P in
    y^2 + a1*x*y + a3*y = x^3 + a2*x^2 + a4*x + a6.

  (** [montgomery] represents a point on an elliptic curve using Montgomery
  * coordinates (see <https://en.wikipedia.org/wiki/Montgomery_curve>) *)
  Record montgomery := mkMontgomery {montgomeryX : GF; montgomeryY : GF}.
  Definition montgomeryOnCurve (B A:GF) (P : montgomery) : Prop :=
    let x := montgomeryX P in
    let y := montgomeryY P in
    B*y^2 = x^3 + A*x^2 + x.

  (** see <http://cs.ucsb.edu/~koc/ccs130h/2013/EllipticHyperelliptic-CohenFrey.pdf> section 13.2.3.c and <https://en.wikipedia.org/wiki/Montgomery_curve#Equivalence_with_Weierstrass_curves> *)
  Definition montgomeryToWeierstrass (B A:GF) (P : montgomery) : weierstrass :=
    let x := montgomeryX P in
    let y := montgomeryY P in
    mkWeierstrass (x/B + A/(3*B)) (y/B).

  Lemma montgomeryToWeierstrassOnCurve : forall (B A:GF) (P:montgomery), 
    let a4 := 1/B^2 - A^2/(3*B^2) in
    let a6 := 0- A^3/(27*B^3) - a4*A/(3*B) in
    let P' := montgomeryToWeierstrass B A P in
    montgomeryOnCurve B A P -> weierstrassOnCurve 0 0 0 a4 0 a6 P'.
  Proof.
    intros.
    unfold montgomeryToWeierstrass, montgomeryOnCurve, weierstrassOnCurve in *.
    remember (weierstrassY P') as y in *.
    remember (weierstrassX P') as x in *.
    remember (montgomeryX P) as u in *.
    remember (montgomeryY P) as v in *.
    clear Hequ Heqv Heqy Heqx P'.
    (* This is not currently important and makes field run out of memory. Maybe
    * because I transcribed it incorrectly... *)
  Abort.


  (* from <http://www.hyperelliptic.org/EFD/g1p/auto-montgom.html> *)
  Definition montgomeryAddDistinct (B A:GF) (P1 P2:montgomery) : montgomery := 
    let x1 := montgomeryX P1 in
    let y1 := montgomeryY P1 in
    let x2 := montgomeryX P2 in
    let y2 := montgomeryY P2 in
    mkMontgomery
    (B*(y2-y1)^2/(x2-x1)^2-A-x1-x2)
    ((2*x1+x2+A)*(y2-y1)/(x2-x1)-B*(y2-y1)^3/(x2-x1)^3-y1).
  Definition montgomeryDouble (B A:GF) (P1:montgomery) : montgomery :=
    let x1 := montgomeryX P1 in
    let y1 := montgomeryY P1 in
    mkMontgomery
    (B*(3*x1^2+2*A*x1+1)^2/(2*B*y1)^2-A-x1-x1)
    ((2*x1+x1+A)*(3*x1^2+2*A*x1+1)/(2*B*y1)-B*(3*x1^2+2*A*x1+1)^3/(2*B*y1)^3-y1).
  Definition montgomeryNegate P := mkMontgomery (montgomeryX P) (0-montgomeryY P).

  (** [montgomeryXFrac] represents a point on an elliptic curve using Montgomery x
  * coordinate stored as fraction as in
  * <http://cr.yp.to/ecdh/curve25519-20060209.pdf> appendix B. *)
  Record montgomeryXFrac := mkMontgomeryXFrac {montgomeryXFracX : GF; montgomeryXFracZ : GF}.
  Definition montgomeryToMontgomeryXFrac P := mkMontgomeryXFrac (montgomeryX P) 1.
  Definition montgomeryXFracToMontgomeryX P : GF := (montgomeryXFracX P) / (montgomeryXFracZ P).

  (* from <http://www.hyperelliptic.org/EFD/g1p/auto-montgom-xz.html#ladder-mladd-1987-m>,
   * also appears in <https://tools.ietf.org/html/draft-josefsson-tls-curve25519-06#appendix-A.1.3> *)
  Definition montgomeryDifferentialDoubleAndAdd (a : GF)
    (X1 : GF) (P2 P3 : montgomeryXFrac) : (montgomeryXFrac * montgomeryXFrac) :=
      let X2 := montgomeryXFracX P2 in
      let Z2 := montgomeryXFracZ P2 in
      let X3 := montgomeryXFracX P3 in
      let Z3 := montgomeryXFracZ P3 in
      let A  := X2 + Z2 in
      let AA := A^2 in
      let B  := X2 - Z2 in
      let BB := B^2 in
      let E  := AA - BB in
      let C  := X3 + Z3 in
      let D  := X3 - Z3 in
      let DA := D * A in
      let CB := C * B in
      let X5 := (DA + CB)^2 in
      let Z5 := X1 * (DA - CB)^2 in
      let X4 := AA * BB in
      let Z4 := E * (BB + (a-2)/4 * E) in
      (mkMontgomeryXFrac X4 Z4, mkMontgomeryXFrac X5 Z5).

  (*
  (* <https://eprint.iacr.org/2008/013.pdf> Theorem 3.2. *)
  (* TODO: exceptional points *)
  Definition twistedToMontfomery (a d:GF) (P : twisted) : montgomery := 
    let x := twistedX P in
    let y := twistedY P in
    mkMontgomery ((1+y)/(1-y)) ((1+y)/((1-y)*x)).
  Definition montgomeryToTwisted (B A:GF) (P : montgomery) : twisted :=
    let X := montgomeryX P in
    let Y := montgomeryY P in
    mkTwisted (X/Y) ((X-1)/(X+1)).
   *)
End PointFormats.