aboutsummaryrefslogtreecommitdiff
path: root/src/Curves/PointFormats.v
blob: a6cd1a86dd5ed18a9ca648f087be961bc2b00ec0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
Require Import Crypto.Galois.Galois Crypto.Galois.GaloisTheory Crypto.Galois.ComputationalGaloisField.
Require Import Tactics.VerdiTactics.
Require Import Logic.Eqdep_dec.
Require Import BinNums NArith.

Module GaloisDefs (M : Modulus).
  Module Export GT := GaloisTheory M.
  Open Scope GF_scope.
End GaloisDefs.

Module Type TwistedEdwardsParams (M : Modulus).
  Module Export GFDefs := GaloisDefs M.
  Parameter a : GF.
  Axiom a_nonzero : a <> 0.
  Axiom a_square : exists x, x * x = a.
  Parameter d : GF.
  Axiom d_nonsquare : forall x, x * x <> d.
End TwistedEdwardsParams.

Class OpWithZero (A : Type) := {
  op : A -> A -> A;
  zero : A;
  zero_id : forall x : A, op x zero = x
}.

Definition testbit_rev p i := Pos.testbit_nat p (Pos.size_nat p - i).

(* TODO: decide if this should go here or somewhere else (util?) *)
(* implements Pos.iter_op only using testbit, not destructing the positive *)
Definition iter_op  {A} (OpWZ : OpWithZero A) :=
  fix iter (p : positive) (i : nat) (a : A) : A :=
    match i with
    | O => zero
    | S i' => if testbit_rev p i
              then op a (iter p i' (op a a))
              else iter p i' (op a a)
    end.

Lemma testbit_rev_xI : forall p i,
  (i <= Pos.size_nat p) ->
  testbit_rev p~1 i = testbit_rev p i.
Proof.
  unfold testbit_rev; intros.
  replace (Pos.size_nat p~1) with (S (Pos.size_nat p)) by auto.
  rewrite NPeano.Nat.sub_succ_l by omega.
  auto.
Qed.

Lemma testbit_rev_xO : forall p i,
  (i <= Pos.size_nat p) ->
  testbit_rev p~0 i = testbit_rev p i.
Proof.
  unfold testbit_rev; intros.
  replace (Pos.size_nat p~0) with (S (Pos.size_nat p)) by auto.
  rewrite NPeano.Nat.sub_succ_l by omega.
  auto.
Qed.

Lemma iter_op_xI : forall {A} p i OpWZ (a : A),
  (i <= Pos.size_nat p) -> (0 < i) ->
  iter_op OpWZ p~1 i a = iter_op OpWZ p i a.
Proof.
  induction i; intros; [pose proof (Gt.gt_irrefl 0); intuition|].
  unfold iter_op.
  fold (iter_op OpWZ p~1 i (op a a) ).
  fold (iter_op OpWZ p i (op a a) ).
  rewrite testbit_rev_xI by omega; simpl.
  case_eq i; intros; auto.
  replace (S n) with i by auto.
  assert (i <= Pos.size_nat p) as hi_bound by omega.
  assert (0 < i) as lo_bound by (pose proof Gt.gt_Sn_O; omega).
  rewrite (IHi _ _ hi_bound lo_bound).
  reflexivity.
Qed.

Lemma iter_op_xO : forall {A} p i OpWZ (a : A),
  (i <= Pos.size_nat p) -> (0 < i) ->
  iter_op OpWZ p~0 i a = iter_op OpWZ p i a.
Proof.
  induction i; intros; [pose proof (Gt.gt_irrefl 0); intuition|].
  unfold iter_op.
  fold (iter_op OpWZ p~0 i (op a a) ).
  fold (iter_op OpWZ p i (op a a) ).
  rewrite testbit_rev_xO by omega; simpl.
  case_eq i; intros; auto.
  replace (S n) with i by auto.
  assert (i <= Pos.size_nat p) as hi_bound by omega.
  assert (0 < i) as lo_bound by (pose proof Gt.gt_Sn_O; omega).
  rewrite (IHi _ _ hi_bound lo_bound).
  reflexivity.
Qed.

Lemma pos_size_gt0 : forall p, 0 < Pos.size_nat p.
Proof.
  intros; case_eq p; intros; simpl; auto; try apply Lt.lt_0_Sn.
Qed.
Hint Resolve pos_size_gt0.

Lemma test_low_bit_xI : forall p, testbit_rev p~1 (Pos.size_nat p~1) = true.
Proof.
  unfold testbit_rev; intros; rewrite Minus.minus_diag; auto.
Qed.
Hint Resolve test_low_bit_xI.

Lemma test_low_bit_xO : forall p, testbit_rev p~0 (Pos.size_nat p~0) = false.
Proof.
  unfold testbit_rev; intros; rewrite Minus.minus_diag; auto.
Qed.
Hint Resolve test_low_bit_xO.

Ltac low_bit := match goal with
| H : testbit_rev ?p~1 (S (Pos.size_nat ?p)) = false |- _ =>
    pose proof (test_low_bit_xI p); simpl in *; congruence
| H : testbit_rev ?p~0 (S (Pos.size_nat ?p)) = true |- _ =>
    pose proof (test_low_bit_xO p); simpl in *; congruence
| _ => idtac
end.

Lemma iter_op_spec : forall p {A} OpWZ (a : A),
  iter_op OpWZ p (Pos.size_nat p) a = Pos.iter_op op p a.
Proof.
  induction p; intros; simpl; try apply zero_id. {
    break_if; low_bit.
    rewrite iter_op_xI by (try apply pos_size_gt0; auto).
    rewrite IHp; reflexivity.
  } {
    break_if; low_bit.
    rewrite iter_op_xO by (try apply pos_size_gt0; auto).
    rewrite IHp; reflexivity.
  }
Qed.

Module CompleteTwistedEdwardsCurve (M : Modulus) (Import P : TwistedEdwardsParams M).
  (** Twisted Ewdwards curves with complete addition laws. References:
  * <https://eprint.iacr.org/2008/013.pdf>
  * <http://ed25519.cr.yp.to/ed25519-20110926.pdf>
  * <https://eprint.iacr.org/2015/677.pdf>
  *)
  Definition onCurve P := let '(x,y) := P in a*x^2 + y^2 = 1 + d*x^2*y^2.
  Definition point := { P | onCurve P}.
  Definition mkPoint := exist onCurve.

  Definition projX (P:point) := fst (proj1_sig P).
  Definition projY (P:point) := snd (proj1_sig P).

  Definition checkOnCurve x y : if Zbool.Zeq_bool (a*x^2 + y^2) (1 + d*x^2*y^2) then point else True.
    break_if. exists (x, y). exact (GFdecidable  _ _ Heqb). trivial.
  Defined.
  Hint Unfold onCurve mkPoint.

  Definition zero : point. exists (0, 1).
    abstract (unfold onCurve; ring).
  Defined.

  Definition unifiedAdd' (P1' P2' : (GF*GF)) :=
    let '(x1, y1) := P1' in
    let '(x2, y2) := P2' in
    (((x1*y2  +  y1*x2)/(1 + d*x1*x2*y1*y2)) , ((y1*y2 - a*x1*x2)/(1 - d*x1*x2*y1*y2))).

  Definition unifiedAdd (P1 P2 : point) : point. refine (
    let 'exist P1' pf1 := P1 in
    let 'exist P2' pf2 := P2 in
    mkPoint (unifiedAdd' P1' P2') _).
  Proof.
    destruct P1' as [x1 y1], P2' as [x2 y2]; unfold unifiedAdd', onCurve.
    admit. (* field will likely work here, but I have not done this by hand *)
  Defined.
  Local Infix "+" := unifiedAdd.

  Lemma zeroIsIdentity : forall P, P + zero = P.
  Admitted.

  Definition unifiedAddWZ : OpWithZero point :=
    Build_OpWithZero point unifiedAdd zero zeroIsIdentity.

  Fixpoint scalarMult (n:nat) (P : point) : point :=
    match n with
    | O => zero
    | S n' => P + scalarMult n' P
    end
  .

  Definition doubleAndAdd (n : nat) (P : point) : point :=
    match N.of_nat n with
    | 0%N => zero
    | N.pos p => iter_op unifiedAddWZ p (Pos.size_nat p) P
    end.

End CompleteTwistedEdwardsCurve.


Module Type CompleteTwistedEdwardsPointFormat (M : Modulus) (Import P : TwistedEdwardsParams M).
  Module Curve := CompleteTwistedEdwardsCurve M P.
  Parameter point : Type.
  Parameter encode : (GF*GF) -> point.
  Parameter decode : point -> (GF*GF).
  Parameter unifiedAdd : point -> point -> point.

  Parameter rep : point -> (GF*GF) -> Prop.
  Local Notation "P '~=' rP" := (rep P rP) (at level 70).

  Axiom encode_rep: forall P, encode P ~= P.
  Axiom decode_rep : forall P rP, P ~= rP -> decode P = rP.
  Axiom unifiedAdd_rep: forall P Q rP rQ, Curve.onCurve rP -> Curve.onCurve rQ ->
    P ~= rP -> Q ~= rQ -> (unifiedAdd P Q) ~= (Curve.unifiedAdd' rP rQ).
End CompleteTwistedEdwardsPointFormat.

Module CompleteTwistedEdwardsFacts (M : Modulus) (Import P : TwistedEdwardsParams M).
  Module Import Curve := CompleteTwistedEdwardsCurve M P.
  Lemma twistedAddCompletePlus : forall (P1 P2:point),
    let '(x1, y1) := proj1_sig P1 in
    let '(x2, y2) := proj1_sig P2 in
    (1 + d*x1*x2*y1*y2) <> 0.
    (* "Twisted Edwards Curves" <http://eprint.iacr.org/2008/013.pdf> section 6 *)
  Admitted.
  Lemma twistedAddCompleteMinus : forall (P1 P2:point),
    let '(x1, y1) := proj1_sig P1 in
    let '(x2, y2) := proj1_sig P2 in
    (1 - d*x1*x2*y1*y2) <> 0.
    (* "Twisted Edwards Curves" <http://eprint.iacr.org/2008/013.pdf> section 6 *)
  Admitted.

  Lemma point_eq : forall x1 x2 y1 y2,
    x1 = x2 -> y1 = y2 ->
    forall p1 p2,
    mkPoint (x1, y1) p1 = mkPoint (x2, y2) p2.
  Proof.
    intros; subst; f_equal.
    apply (UIP_dec). (* this is a hack. We actually don't care about the equality of the proofs. However, we *can* prove it, and knowing it lets us use the universal equality instead of a type-specific equivalence, which makes many things nicer. *)
    admit. (* GF_eq_dec *)
  Qed.
  Hint Resolve point_eq.

  Hint Unfold unifiedAdd onCurve.
  Ltac twisted := autounfold; intros;
                  repeat (match goal with
                             | [ x : point |- _ ] => destruct x; unfold onCurve in *
                             | [ x : (GF*GF)%type |- _ ] => destruct x
                             | [  |- exist _ _ _ = exist _ _ _ ] => eapply point_eq
                         end; simpl; repeat (ring || f_equal)).
  Local Infix "+" := unifiedAdd.
  Lemma twistedAddComm : forall A B, (A+B = B+A).
  Proof.
    twisted.
  Qed.

  Lemma twistedAddAssoc : forall A B C, A+(B+C) = (A+B)+C.
  Proof.
    (* http://math.rice.edu/~friedl/papers/AAELLIPTIC.PDF *)
  Admitted.

  Hint Resolve zeroIsIdentity.

  Lemma scalarMult_double : forall n P, scalarMult (n + n) P = scalarMult n (P + P).
  Proof.
    intros.
    replace (n + n)%nat with (n * 2)%nat by omega.
    induction n; simpl; auto.
    rewrite twistedAddAssoc.
    f_equal; auto.
  Qed.

  Lemma iter_op_double : forall p P,
    Pos.iter_op unifiedAdd (p + p) P = Pos.iter_op unifiedAdd p (P + P).
  Proof.
    (* TODO: use scalarMult_assoc instead of induction. *)
    intros.
    rewrite Pos.add_diag.
    unfold Pos.iter_op; simpl.
    auto.
  Qed.

  Lemma xO_neq1 : forall p, (1 < p~0)%positive.
  Proof.
    induction p; simpl; auto.
    replace 2%positive with (Pos.succ 1) by auto.
    apply Pos.lt_succ_diag_r.
  Qed.

  Lemma xI_neq1 : forall p, (1 < p~1)%positive.
  Proof.
    induction p; simpl; auto.
    replace 3%positive with (Pos.succ (Pos.succ 1)) by auto.
    pose proof (Pos.lt_succ_diag_r (Pos.succ 1)).
    pose proof (Pos.lt_succ_diag_r 1).
    apply (Pos.lt_trans _ _ _ H0 H).
  Qed.

  Lemma xI_is_succ : forall n p
    (H : Pos.of_succ_nat n = p~1%positive),
    (Pos.to_nat (2 * p))%nat = n.
  Proof.
    induction n; intros; simpl in *; auto. {
      pose proof (xI_neq1 p).
      rewrite H in H0.
      pose proof (Pos.lt_irrefl p~1).
      intuition.
    } {
      rewrite Pos.xI_succ_xO in H.
      pose proof (Pos.succ_inj _ _ H); clear H.
      rewrite Pos.of_nat_succ in H0.
      rewrite <- Pnat.Pos2Nat.inj_iff in H0.
      rewrite Pnat.Pos2Nat.inj_xO in H0.
      rewrite Pnat.Nat2Pos.id in H0 by apply NPeano.Nat.neq_succ_0.
      rewrite H0.
      apply Pnat.Pos2Nat.inj_xO.
    }
  Qed.

  Lemma xO_is_succ : forall n p
    (H : Pos.of_succ_nat n = p~0%positive),
    Pos.to_nat (Pos.pred_double p) = n.
  Proof.
    induction n; intros; simpl; auto. {
      pose proof (xO_neq1 p).
      simpl in H; rewrite H in H0.
      pose proof (Pos.lt_irrefl p~0).
      intuition.
    } {
      rewrite Pos.pred_double_spec.
      rewrite <- Pnat.Pos2Nat.inj_iff in H.
      rewrite Pnat.Pos2Nat.inj_xO in H.
      rewrite Pnat.SuccNat2Pos.id_succ in H.
      rewrite Pnat.Pos2Nat.inj_pred by apply xO_neq1.
      rewrite <- NPeano.Nat.succ_inj_wd.
      rewrite Pnat.Pos2Nat.inj_xO.
      rewrite <-  H.
      auto.
    }
  Qed.

  Lemma doubleAndAdd_iterop : forall p P,
    Pos.iter_op unifiedAdd p P = doubleAndAdd (Pos.to_nat p) P.
  Proof.
    unfold doubleAndAdd; intros; simpl.
    rewrite Znat.positive_nat_N.
    rewrite iter_op_spec; auto.
  Qed.

  Lemma doubleAndAdd_spec :
    forall n P, scalarMult n P = doubleAndAdd n P.
  Proof.
    induction n; auto; intros.
    unfold doubleAndAdd.
    simpl; rewrite iter_op_spec.
    unfold Pos.iter_op; simpl.
    case_eq (Pos.of_succ_nat n); intros. {
      simpl. f_equal.
      fold (Pos.iter_op unifiedAdd p (P + P)).
      rewrite IHn.
      unfold doubleAndAdd.
      rewrite <- (xI_is_succ n p) by apply H.
      rewrite Znat.positive_nat_N; simpl.
      rewrite test_low_bit_xO by auto.
      rewrite iter_op_xO by auto.
      rewrite iter_op_spec.
      reflexivity.
    } {
      fold (Pos.iter_op unifiedAdd p (P + P)).
      rewrite IHn.
      unfold doubleAndAdd.
      rewrite <- (xO_is_succ n p) by apply H.
      rewrite Znat.positive_nat_N; simpl.
      rewrite iter_op_spec.
      rewrite <- (Pos.iter_op_succ _ _ twistedAddAssoc _ _).
      rewrite Pos.succ_pred_double.
      rewrite <- Pos.add_diag.
      apply iter_op_double.
    } {
      rewrite <- Pnat.Pos2Nat.inj_iff in H.
      rewrite Pnat.SuccNat2Pos.id_succ in H.
      rewrite Pnat.Pos2Nat.inj_1 in H.
      assert (n = 0)%nat by omega; subst.
      auto.
    }
  Qed.

End CompleteTwistedEdwardsFacts.

Module Type Minus1Params (Import M : Modulus) <: TwistedEdwardsParams M.
  Module Export GFDefs := GaloisDefs M.
  Open Scope GF_scope.
  Definition a := inject (- 1).
  Axiom a_nonzero : a <> 0.
  Axiom a_square : exists x, x * x = a.
  Parameter d : GF.
  Axiom d_nonsquare : forall x, x * x <> d.
End Minus1Params.

Module Minus1Format (M : Modulus) (Import P : Minus1Params M) <: CompleteTwistedEdwardsPointFormat M P.
  Module Import Facts := CompleteTwistedEdwardsFacts M P.
  Module Import Curve := Facts.Curve.
  (** [projective] represents a point on an elliptic curve using projective
  * Edwards coordinates for twisted edwards curves with a=-1 (see
  * <https://hyperelliptic.org/EFD/g1p/auto-edwards-projective.html>
  * <https://en.wikipedia.org/wiki/Edwards_curve#Projective_homogeneous_coordinates>) *)
  Record projective := mkProjective {projectiveX : GF; projectiveY : GF; projectiveZ : GF}.
  Local Notation "'(' X ',' Y ',' Z ')'" := (mkProjective X Y Z).

  Definition twistedToProjective (P : (GF*GF)) : projective :=
    let '(x, y) := P in (x, y, 1).

  Definition projectiveToTwisted (P : projective) : GF * GF :=
    let 'mkProjective X Y Z := P in
    pair (X/Z) (Y/Z).
  Hint Unfold projectiveToTwisted twistedToProjective.

  Lemma GFdiv_1 : forall x, x/1 = x.
  Admitted.
  Hint Resolve GFdiv_1.

  Lemma twistedProjectiveInv P : projectiveToTwisted (twistedToProjective P) = P.
  Proof.
    twisted; eapply GFdiv_1.
  Qed.

  (** [extended] represents a point on an elliptic curve using extended projective
  * Edwards coordinates with twist a=-1 (see <https://eprint.iacr.org/2008/522.pdf>). *)
  Record extended := mkExtended {extendedToProjective : projective; extendedT : GF}.

  Definition point := extended.
  Local Notation "'(' X ',' Y ',' Z ',' T ')'" := (mkExtended (X, Y, Z) T).
  Definition extendedValid (P : point) : Prop :=
    let pP := extendedToProjective P in
    let X := projectiveX pP in
    let Y := projectiveY pP in
    let Z := projectiveZ pP in
    let T := extendedT P in
    T = X*Y/Z.


  Definition twistedToExtended (P : (GF*GF)) : point :=
    let '(x, y) := P in (x, y, 1, x*y).
  Definition encode P := let '(x, y) := P in twistedToExtended (x, y).

  Definition decode (P : point) :=
    projectiveToTwisted (extendedToProjective P).
  Local Hint Unfold extendedValid twistedToExtended decode projectiveToTwisted Curve.unifiedAdd'.

  Lemma twistedExtendedInv : forall P,
    decode (twistedToExtended P) = P.
  Proof.
    twisted; eapply GFdiv_1.
  Qed.

  Lemma twistedToExtendedValid : forall P, extendedValid (twistedToExtended P).
  Proof.
    autounfold.
    destruct P.
    simpl.
    rewrite GFdiv_1; reflexivity.
  Qed.

  Definition rep (P:point) (rP:(GF*GF)) : Prop :=
    decode P = rP /\ extendedValid P.
  Local Notation "P '~=' rP" := (rep P rP) (at level 70).
  Ltac rep := repeat progress (intros; autounfold; subst; auto; match goal with
                           | [ x : rep ?a ?b |- _ ] => destruct x
                           end).

  Lemma encode_rep : forall P, encode P ~= P.
  Proof.
    split.
    apply twistedExtendedInv.
    apply twistedToExtendedValid.
  Qed.

  Lemma decode_rep : forall P rP, P ~= rP -> decode P = rP.
  Proof.
    rep.
  Qed.


  Local Notation "2" := (1+1).
  (** Second equation from <http://eprint.iacr.org/2008/522.pdf> section 3.1, also <https://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html#addition-add-2008-hwcd-3> and <https://tools.ietf.org/html/draft-josefsson-eddsa-ed25519-03> *)
  Definition unifiedAdd (P1 P2 : point) : point :=
    let k := 2 * d in
    let pP1 := extendedToProjective P1 in
    let X1 := projectiveX pP1 in
    let Y1 := projectiveY pP1 in
    let Z1 := projectiveZ pP1 in
    let T1 := extendedT P1 in
    let pP2 := extendedToProjective P2 in
    let X2 := projectiveX pP2 in
    let Y2 := projectiveY pP2 in
    let Z2 := projectiveZ pP2 in
    let T2 := extendedT P2 in
    let  A := (Y1-X1)*(Y2-X2) in
    let  B := (Y1+X1)*(Y2+X2) in
    let  C := T1*k*T2 in
    let  D := Z1*2*Z2 in
    let  E := B-A in
    let  F := D-C in
    let  G := D+C in
    let  H := B+A in
    let X3 := E*F in
    let Y3 := G*H in
    let T3 := E*H in
    let Z3 := F*G in
    mkExtended (mkProjective X3 Y3 Z3) T3.

  Delimit Scope extendedM1_scope with extendedM1.
  Infix "+" := unifiedAdd : extendedM1_scope.

  Lemma unifiedAddCon : forall (P1 P2:point)
    (hv1:extendedValid P1) (hv2:extendedValid P2),
    extendedValid (P1 + P2)%extendedM1.
  Proof.
    intros.
    remember ((P1+P2)%extendedM1) as P3.
    destruct P1 as [[X1 Y1 Z1] T1].
    destruct P2 as [[X2 Y2 Z2] T2].
    destruct P3 as [[X3 Y3 Z3] T3].
    unfold extendedValid, extendedToProjective, projectiveToTwisted in *.
    invcs HeqP3.
    subst.
    (* field. -- fails. but it works in sage:
sage -c 'var("d X1 X2 Y1 Y2 Z1 Z2");
print(bool((((Y1 + X1) * (Y2 + X2) - (Y1 - X1) * (Y2 - X2)) *
((Y1 + X1) * (Y2 + X2) - (Y1 - X1) * (Y2 - X2)) ==
((Y1 + X1) * (Y2 + X2) - (Y1 - X1) * (Y2 - X2)) *
(2 * Z1 * Z2 - 2 * ((0 - d) / a) * (X1 * Y1 / Z1) * (X2 * Y2 / Z2)) *
((2 * Z1 * Z2 + 2 * ((0 - d) / a) * (X1 * Y1 / Z1) * (X2 * Y2 / Z2)) *
((Y1 + X1) * (Y2 + X2) - (Y1 - X1) * (Y2 - X2))) /
((2 * Z1 * Z2 - 2 * ((0 - d) / a) * (X1 * Y1 / Z1) * (X2 * Y2 / Z2)) *
(2 * Z1 * Z2 + 2 * ((0 - d) / a) * (X1 * Y1 / Z1) * (X2 * Y2 / Z2))))))'
      Outputs:
        True
    *)
  Admitted.

  Ltac extended0 := repeat progress (autounfold; simpl); intros;
                    repeat match goal with
                           | [ x : Curve.point |- _ ] => destruct x
                           | [ x : point |- _ ] => destruct x
                           | [ x : projective |- _ ] => destruct x
                           end; simpl in *; subst.

  Ltac extended := extended0; repeat (ring || f_equal)(*; field*).

  Lemma unifiedAddToTwisted : forall (P1 P2 : point) tP1 tP2
    (P1con : extendedValid P1) (P1on : Curve.onCurve tP1) (P1rep : decode P1 = tP1)
    (P2con : extendedValid P2) (P2on : Curve.onCurve tP2) (P2rep : decode P2 = tP2),
    decode (P1 + P2)%extendedM1 = Curve.unifiedAdd' tP1 tP2.
  Proof.
    extended0.
    apply f_equal2.
    (* case 1 verified by hand: follows from field and completeness of edwards addition *)
  Admitted.

  Lemma unifiedAdd_rep: forall P Q rP rQ, Curve.onCurve rP -> Curve.onCurve rQ ->
    P ~= rP -> Q ~= rQ -> (unifiedAdd P Q) ~= (Curve.unifiedAdd' rP rQ).
  Proof.
    split; rep.
    apply unifiedAddToTwisted; auto.
    apply unifiedAddCon; auto.
  Qed.
End Minus1Format.


(*
(** [precomputed] represents a point on an elliptic curve using "precomputed"
* Edwards coordinates, as used for fixed-base scalar multiplication
* (see <http://ed25519.cr.yp.to/ed25519-20110926.pdf> section 4: addition). *)
Record precomputed := mkPrecomputed {precomputedSum : GF;
                                   precomputedDifference : GF;
                                   precomputed2dxy : GF}.
Definition twistedToPrecomputed (d:GF) (P : twisted) : precomputed :=
let x := twistedX P in
let y := twistedY P in
mkPrecomputed (y+x) (y-x) (2*d*x*y).
*)

Module WeirstrassMontgomery (Import M : Modulus).
  Module Import GT := GaloisTheory M.
  Local Open Scope GF_scope.
  Local Notation "2" := (1+1).
  Local Notation "3" := (1+1+1).
  Local Notation "4" := (1+1+1+1).
  Local Notation "27" := (3*3*3).
  (** [weierstrass] represents a point on an elliptic curve using Weierstrass
  * coordinates (<http://cs.ucsb.edu/~koc/ccs130h/2013/EllipticHyperelliptic-CohenFrey.pdf>) definition 13.1*)
  Record weierstrass := mkWeierstrass {weierstrassX : GF; weierstrassY : GF}.
  Definition weierstrassOnCurve (a1 a2 a3 a4 a5 a6:GF) (P : weierstrass) : Prop :=
  let x := weierstrassX P in
  let y := weierstrassY P in
  y^2 + a1*x*y + a3*y = x^3 + a2*x^2 + a4*x + a6.

  (** [montgomery] represents a point on an elliptic curve using Montgomery
  * coordinates (see <https://en.wikipedia.org/wiki/Montgomery_curve>) *)
  Record montgomery := mkMontgomery {montgomeryX : GF; montgomeryY : GF}.
  Definition montgomeryOnCurve (B A:GF) (P : montgomery) : Prop :=
  let x := montgomeryX P in
  let y := montgomeryY P in
  B*y^2 = x^3 + A*x^2 + x.

  (** see <http://cs.ucsb.edu/~koc/ccs130h/2013/EllipticHyperelliptic-CohenFrey.pdf> section 13.2.3.c and <https://en.wikipedia.org/wiki/Montgomery_curve#Equivalence_with_Weierstrass_curves> *)
  Definition montgomeryToWeierstrass (B A:GF) (P : montgomery) : weierstrass :=
  let x := montgomeryX P in
  let y := montgomeryY P in
  mkWeierstrass (x/B + A/(3*B)) (y/B).

  Lemma montgomeryToWeierstrassOnCurve : forall (B A:GF) (P:montgomery),
  let a4 := 1/B^2 - A^2/(3*B^2) in
  let a6 := 0- A^3/(27*B^3) - a4*A/(3*B) in
  let P' := montgomeryToWeierstrass B A P in
  montgomeryOnCurve B A P -> weierstrassOnCurve 0 0 0 a4 0 a6 P'.
  Proof.
  intros.
  unfold montgomeryToWeierstrass, montgomeryOnCurve, weierstrassOnCurve in *.
  remember (weierstrassY P') as y in *.
  remember (weierstrassX P') as x in *.
  remember (montgomeryX P) as u in *.
  remember (montgomeryY P) as v in *.
  clear Hequ Heqv Heqy Heqx P'.
  (* This is not currently important and makes field run out of memory. Maybe
  * because I transcribed it incorrectly... *)
  Abort.


  (* from <http://www.hyperelliptic.org/EFD/g1p/auto-montgom.html> *)
  Definition montgomeryAddDistinct (B A:GF) (P1 P2:montgomery) : montgomery :=
  let x1 := montgomeryX P1 in
  let y1 := montgomeryY P1 in
  let x2 := montgomeryX P2 in
  let y2 := montgomeryY P2 in
  mkMontgomery
  (B*(y2-y1)^2/(x2-x1)^2-A-x1-x2)
  ((2*x1+x2+A)*(y2-y1)/(x2-x1)-B*(y2-y1)^3/(x2-x1)^3-y1).
  Definition montgomeryDouble (B A:GF) (P1:montgomery) : montgomery :=
  let x1 := montgomeryX P1 in
  let y1 := montgomeryY P1 in
  mkMontgomery
  (B*(3*x1^2+2*A*x1+1)^2/(2*B*y1)^2-A-x1-x1)
  ((2*x1+x1+A)*(3*x1^2+2*A*x1+1)/(2*B*y1)-B*(3*x1^2+2*A*x1+1)^3/(2*B*y1)^3-y1).
  Definition montgomeryNegate P := mkMontgomery (montgomeryX P) (0-montgomeryY P).

  (** [montgomeryXFrac] represents a point on an elliptic curve using Montgomery x
  * coordinate stored as fraction as in
  * <http://cr.yp.to/ecdh/curve25519-20060209.pdf> appendix B. *)
  Record montgomeryXFrac := mkMontgomeryXFrac {montgomeryXFracX : GF; montgomeryXFracZ : GF}.
  Definition montgomeryToMontgomeryXFrac P := mkMontgomeryXFrac (montgomeryX P) 1.
  Definition montgomeryXFracToMontgomeryX P : GF := (montgomeryXFracX P) / (montgomeryXFracZ P).

  (* from <http://www.hyperelliptic.org/EFD/g1p/auto-montgom-xz.html#ladder-mladd-1987-m>,
  * also appears in <https://tools.ietf.org/html/draft-josefsson-tls-curve25519-06#appendix-A.1.3> *)
  Definition montgomeryDifferentialDoubleAndAdd (a : GF)
  (X1 : GF) (P2 P3 : montgomeryXFrac) : (montgomeryXFrac * montgomeryXFrac) :=
    let X2 := montgomeryXFracX P2 in
    let Z2 := montgomeryXFracZ P2 in
    let X3 := montgomeryXFracX P3 in
    let Z3 := montgomeryXFracZ P3 in
    let A  := X2 + Z2 in
    let AA := A^2 in
    let B  := X2 - Z2 in
    let BB := B^2 in
    let E  := AA - BB in
    let C  := X3 + Z3 in
    let D  := X3 - Z3 in
    let DA := D * A in
    let CB := C * B in
    let X5 := (DA + CB)^2 in
    let Z5 := X1 * (DA - CB)^2 in
    let X4 := AA * BB in
    let Z4 := E * (BB + (a-2)/4 * E) in
    (mkMontgomeryXFrac X4 Z4, mkMontgomeryXFrac X5 Z5).

  (*
  (* <https://eprint.iacr.org/2008/013.pdf> Theorem 3.2. *)
  (* TODO: exceptional points *)
  Definition twistedToMontfomery (a d:GF) (P : twisted) : montgomery :=
  let x := twistedX P in
  let y := twistedY P in
  mkMontgomery ((1+y)/(1-y)) ((1+y)/((1-y)*x)).
  Definition montgomeryToTwisted (B A:GF) (P : montgomery) : twisted :=
  let X := montgomeryX P in
  let Y := montgomeryY P in
  mkTwisted (X/Y) ((X-1)/(X+1)).
  *)

End WeirstrassMontgomery.