aboutsummaryrefslogtreecommitdiff
path: root/src/Curves/PointFormats.v
blob: 6db178aea932dc95bf7080c9b21e28e97d1c2b0f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
Require Import Crypto.Galois.Galois Crypto.Galois.GaloisTheory Crypto.Galois.ComputationalGaloisField.
Require Import Tactics.VerdiTactics.
Require Import Logic.Eqdep_dec.

Module GaloisDefs (M : Modulus).
  Module Export GT := GaloisTheory M.
  Open Scope GF_scope.
End GaloisDefs.

Module Type TwistedEdwardsParams (M : Modulus).
  Module Export GFDefs := GaloisDefs M.
  Parameter a : GF.
  Axiom a_nonzero : a <> 0.
  Axiom a_square : exists x, x * x = a.
  Parameter d : GF.
  Axiom d_nonsquare : forall x, x * x <> d.
End TwistedEdwardsParams.

Module CompleteTwistedEdwardsCurve (M : Modulus) (Import P : TwistedEdwardsParams M).
  (** Twisted Ewdwards curves with complete addition laws. References:
  * <https://eprint.iacr.org/2008/013.pdf>
  * <http://ed25519.cr.yp.to/ed25519-20110926.pdf>
  * <https://eprint.iacr.org/2015/677.pdf>
  *)
  Definition onCurve P := let '(x,y) := P in a*x^2 + y^2 = 1 + d*x^2*y^2.
  Definition point := { P | onCurve P}.
  Definition mkPoint := exist onCurve.

  Definition projX (P:point) := fst (proj1_sig P).
  Definition projY (P:point) := snd (proj1_sig P).

  Definition checkOnCurve x y : if Zbool.Zeq_bool (a*x^2 + y^2) (1 + d*x^2*y^2) then point else True.
    break_if. exists (x, y). exact (GFdecidable  _ _ Heqb). trivial.
  Defined.
  Hint Unfold onCurve mkPoint.

  Definition zero : point. exists (0, 1).
    abstract (unfold onCurve; ring).
  Defined.

  Definition unifiedAdd' (P1' P2' : (GF*GF)) :=
    let '(x1, y1) := P1' in
    let '(x2, y2) := P2' in
    (((x1*y2  +  y1*x2)/(1 + d*x1*x2*y1*y2)) , ((y1*y2 - a*x1*x2)/(1 - d*x1*x2*y1*y2))).

  Definition unifiedAdd (P1 P2 : point) : point. refine (
    let 'exist P1' pf1 := P1 in
    let 'exist P2' pf2 := P2 in
    mkPoint (unifiedAdd' P1' P2') _).
  Proof.
    destruct P1' as [x1 y1], P2' as [x2 y2]; unfold unifiedAdd', onCurve.
    admit. (* field will likely work here, but I have not done this by hand *)
  Defined.
  Local Infix "+" := unifiedAdd.

  Fixpoint scalarMult (n:nat) (P : point) : point :=
    match n with 
    | O => zero
    | S n' => P + scalarMult n' P
    end
  .
End CompleteTwistedEdwardsCurve.


Module Type CompleteTwistedEdwardsPointFormat (M : Modulus) (Import P : TwistedEdwardsParams M).
  Module Curve := CompleteTwistedEdwardsCurve M P.
  Parameter point : Type.
  Parameter encode : (GF*GF) -> point.
  Parameter decode : point -> (GF*GF).
  Parameter unifiedAdd : point -> point -> point.

  Parameter rep : point -> (GF*GF) -> Prop.
  Local Notation "P '~=' rP" := (rep P rP) (at level 70).

  Axiom encode_rep: forall P, encode P ~= P.
  Axiom decode_rep : forall P rP, P ~= rP -> decode P = rP.
  Axiom unifiedAdd_rep: forall P Q rP rQ, Curve.onCurve rP -> Curve.onCurve rQ ->
    P ~= rP -> Q ~= rQ -> (unifiedAdd P Q) ~= (Curve.unifiedAdd' rP rQ).
End CompleteTwistedEdwardsPointFormat.

Module CompleteTwistedEdwardsFacts (M : Modulus) (Import P : TwistedEdwardsParams M).
  Module Import Curve := CompleteTwistedEdwardsCurve M P.
  Lemma twistedAddCompletePlus : forall (P1 P2:point),
    let '(x1, y1) := proj1_sig P1 in
    let '(x2, y2) := proj1_sig P2 in
    (1 + d*x1*x2*y1*y2) <> 0.
    (* "Twisted Edwards Curves" <http://eprint.iacr.org/2008/013.pdf> section 6 *)
  Admitted.
  Lemma twistedAddCompleteMinus : forall (P1 P2:point),
    let '(x1, y1) := proj1_sig P1 in
    let '(x2, y2) := proj1_sig P2 in
    (1 - d*x1*x2*y1*y2) <> 0.
    (* "Twisted Edwards Curves" <http://eprint.iacr.org/2008/013.pdf> section 6 *)
  Admitted.

  Lemma point_eq : forall x1 x2 y1 y2,
    x1 = x2 -> y1 = y2 ->
    forall p1 p2,
    mkPoint (x1, y1) p1 = mkPoint (x2, y2) p2.
  Proof.
    intros; subst; f_equal.
    apply (UIP_dec). (* this is a hack. We actually don't care about the equality of the proofs. However, we *can* prove it, and knowing it lets us use the universal equality instead of a type-specific equivalence, which makes many things nicer. *)
    admit. (* GF_eq_dec *)
  Qed.
  Hint Resolve point_eq.

  Hint Unfold unifiedAdd onCurve.
  Ltac twisted := autounfold; intros;
                  repeat (match goal with
                             | [ x : point |- _ ] => destruct x; unfold onCurve in *
                             | [ x : (GF*GF)%type |- _ ] => destruct x
                             | [  |- exist _ _ _ = exist _ _ _ ] => eapply point_eq
                         end; simpl; repeat (ring || f_equal)).
  Local Infix "+" := unifiedAdd.
  Lemma twistedAddComm : forall A B, (A+B = B+A).
  Proof.
    twisted.
  Qed.

  Lemma twistedAddAssoc : forall A B C, A+(B+C) = (A+B)+C.
  Proof.
    (* http://math.rice.edu/~friedl/papers/AAELLIPTIC.PDF *)
  Admitted.

  Lemma zeroIsIdentity : forall P, P + zero = P.
  Proof.
    twisted.
    (* the denominators are 1 and numerators are equal *)
  Admitted.

End CompleteTwistedEdwardsFacts.

Module Type Minus1Params (Import M : Modulus) <: TwistedEdwardsParams M.
  Module Export GFDefs := GaloisDefs M.
  Open Scope GF_scope.
  Definition a := inject (- 1).
  Axiom a_nonzero : a <> 0.
  Axiom a_square : exists x, x * x = a.
  Parameter d : GF.
  Axiom d_nonsquare : forall x, x * x <> d.
End Minus1Params.

Module Minus1Format (M : Modulus) (Import P : Minus1Params M) <: CompleteTwistedEdwardsPointFormat M P.
  Module Import Facts := CompleteTwistedEdwardsFacts M P.
  Module Import Curve := Facts.Curve.
  (** [projective] represents a point on an elliptic curve using projective
  * Edwards coordinates for twisted edwards curves with a=-1 (see
  * <https://hyperelliptic.org/EFD/g1p/auto-edwards-projective.html>
  * <https://en.wikipedia.org/wiki/Edwards_curve#Projective_homogeneous_coordinates>) *)
  Record projective := mkProjective {projectiveX : GF; projectiveY : GF; projectiveZ : GF}.
  Local Notation "'(' X ',' Y ',' Z ')'" := (mkProjective X Y Z).

  Definition twistedToProjective (P : (GF*GF)) : projective :=
    let '(x, y) := P in (x, y, 1).

  Definition projectiveToTwisted (P : projective) : GF * GF :=
    let 'mkProjective X Y Z := P in
    pair (X/Z) (Y/Z).
  Hint Unfold projectiveToTwisted twistedToProjective.

  Lemma GFdiv_1 : forall x, x/1 = x.
  Admitted.
  Hint Resolve GFdiv_1.

  Lemma twistedProjectiveInv P : projectiveToTwisted (twistedToProjective P) = P.
  Proof.
    twisted; eapply GFdiv_1.
  Qed.

  (** [extended] represents a point on an elliptic curve using extended projective
  * Edwards coordinates with twist a=-1 (see <https://eprint.iacr.org/2008/522.pdf>). *)
  Record extended := mkExtended {extendedToProjective : projective; extendedT : GF}.

  Definition point := extended.
  Local Notation "'(' X ',' Y ',' Z ',' T ')'" := (mkExtended (X, Y, Z) T).
  Definition extendedValid (P : point) : Prop :=
    let pP := extendedToProjective P in
    let X := projectiveX pP in
    let Y := projectiveY pP in
    let Z := projectiveZ pP in
    let T := extendedT P in
    T = X*Y/Z.


  Definition twistedToExtended (P : (GF*GF)) : point :=
    let '(x, y) := P in (x, y, 1, x*y).
  Definition encode P := let '(x, y) := P in twistedToExtended (x, y).

  Definition decode (P : point) :=
    projectiveToTwisted (extendedToProjective P).
  Local Hint Unfold extendedValid twistedToExtended decode projectiveToTwisted Curve.unifiedAdd'.

  Lemma twistedExtendedInv : forall P,
    decode (twistedToExtended P) = P.
  Proof.
    twisted; eapply GFdiv_1.
  Qed.

  Lemma twistedToExtendedValid : forall P, extendedValid (twistedToExtended P).
  Proof.
    autounfold.
    destruct P.
    simpl.
    rewrite GFdiv_1; reflexivity.
  Qed.

  Definition rep (P:point) (rP:(GF*GF)) : Prop :=
    decode P = rP /\ extendedValid P.
  Local Notation "P '~=' rP" := (rep P rP) (at level 70).
  Ltac rep := repeat progress (intros; autounfold; subst; auto; match goal with
                           | [ x : rep ?a ?b |- _ ] => destruct x
                           end).

  Lemma encode_rep : forall P, encode P ~= P.
  Proof.
    split.
    apply twistedExtendedInv.
    apply twistedToExtendedValid.
  Qed.

  Lemma decode_rep : forall P rP, P ~= rP -> decode P = rP.
  Proof.
    rep.
  Qed.


  Local Notation "2" := (1+1).
  (** Second equation from <http://eprint.iacr.org/2008/522.pdf> section 3.1, also <https://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html#addition-add-2008-hwcd-3> and <https://tools.ietf.org/html/draft-josefsson-eddsa-ed25519-03> *)
  Definition unifiedAdd (P1 P2 : point) : point :=
    let k := 2 * d in
    let pP1 := extendedToProjective P1 in
    let X1 := projectiveX pP1 in
    let Y1 := projectiveY pP1 in
    let Z1 := projectiveZ pP1 in
    let T1 := extendedT P1 in
    let pP2 := extendedToProjective P2 in
    let X2 := projectiveX pP2 in
    let Y2 := projectiveY pP2 in
    let Z2 := projectiveZ pP2 in
    let T2 := extendedT P2 in
    let  A := (Y1-X1)*(Y2-X2) in
    let  B := (Y1+X1)*(Y2+X2) in
    let  C := T1*k*T2 in
    let  D := Z1*2*Z2 in
    let  E := B-A in
    let  F := D-C in
    let  G := D+C in
    let  H := B+A in
    let X3 := E*F in
    let Y3 := G*H in
    let T3 := E*H in
    let Z3 := F*G in
    mkExtended (mkProjective X3 Y3 Z3) T3.

  Delimit Scope extendedM1_scope with extendedM1.
  Infix "+" := unifiedAdd : extendedM1_scope.

  Lemma unifiedAddCon : forall (P1 P2:point)
    (hv1:extendedValid P1) (hv2:extendedValid P2),
    extendedValid (P1 + P2)%extendedM1.
  Proof.
    intros.
    remember ((P1+P2)%extendedM1) as P3.
    destruct P1 as [[X1 Y1 Z1] T1].
    destruct P2 as [[X2 Y2 Z2] T2].
    destruct P3 as [[X3 Y3 Z3] T3].
    unfold extendedValid, extendedToProjective, projectiveToTwisted in *.
    invcs HeqP3.
    subst.
    (* field. -- fails. but it works in sage:
sage -c 'var("d X1 X2 Y1 Y2 Z1 Z2");
print(bool((((Y1 + X1) * (Y2 + X2) - (Y1 - X1) * (Y2 - X2)) *
((Y1 + X1) * (Y2 + X2) - (Y1 - X1) * (Y2 - X2)) ==
((Y1 + X1) * (Y2 + X2) - (Y1 - X1) * (Y2 - X2)) *
(2 * Z1 * Z2 - 2 * ((0 - d) / a) * (X1 * Y1 / Z1) * (X2 * Y2 / Z2)) *
((2 * Z1 * Z2 + 2 * ((0 - d) / a) * (X1 * Y1 / Z1) * (X2 * Y2 / Z2)) *
((Y1 + X1) * (Y2 + X2) - (Y1 - X1) * (Y2 - X2))) /
((2 * Z1 * Z2 - 2 * ((0 - d) / a) * (X1 * Y1 / Z1) * (X2 * Y2 / Z2)) *
(2 * Z1 * Z2 + 2 * ((0 - d) / a) * (X1 * Y1 / Z1) * (X2 * Y2 / Z2))))))'
      Outputs:
        True
    *)
  Admitted.

  Ltac extended0 := repeat progress (autounfold; simpl); intros;
                    repeat match goal with
                           | [ x : Curve.point |- _ ] => destruct x
                           | [ x : point |- _ ] => destruct x
                           | [ x : projective |- _ ] => destruct x
                           end; simpl in *; subst.

  Ltac extended := extended0; repeat (ring || f_equal)(*; field*).

  Lemma unifiedAddToTwisted : forall (P1 P2 : point) tP1 tP2
    (P1con : extendedValid P1) (P1on : Curve.onCurve tP1) (P1rep : decode P1 = tP1)
    (P2con : extendedValid P2) (P2on : Curve.onCurve tP2) (P2rep : decode P2 = tP2),
    decode (P1 + P2)%extendedM1 = Curve.unifiedAdd' tP1 tP2.
  Proof.
    extended0.
    apply f_equal2.
    (* case 1 verified by hand: follows from field and completeness of edwards addition *)
  Admitted.

  Lemma unifiedAdd_rep: forall P Q rP rQ, Curve.onCurve rP -> Curve.onCurve rQ ->
    P ~= rP -> Q ~= rQ -> (unifiedAdd P Q) ~= (Curve.unifiedAdd' rP rQ).
  Proof.
    split; rep.
    apply unifiedAddToTwisted; auto.
    apply unifiedAddCon; auto.
  Qed.
End Minus1Format.


(*
(** [precomputed] represents a point on an elliptic curve using "precomputed"
* Edwards coordinates, as used for fixed-base scalar multiplication
* (see <http://ed25519.cr.yp.to/ed25519-20110926.pdf> section 4: addition). *)
Record precomputed := mkPrecomputed {precomputedSum : GF;
                                   precomputedDifference : GF;
                                   precomputed2dxy : GF}.
Definition twistedToPrecomputed (d:GF) (P : twisted) : precomputed :=
let x := twistedX P in
let y := twistedY P in
mkPrecomputed (y+x) (y-x) (2*d*x*y).
*)

Module WeirstrassMontgomery (Import M : Modulus).
  Module Import GT := GaloisTheory M.
  Local Open Scope GF_scope.
  Local Notation "2" := (1+1).
  Local Notation "3" := (1+1+1).
  Local Notation "4" := (1+1+1+1).
  Local Notation "27" := (3*3*3).
  (** [weierstrass] represents a point on an elliptic curve using Weierstrass
  * coordinates (<http://cs.ucsb.edu/~koc/ccs130h/2013/EllipticHyperelliptic-CohenFrey.pdf>) definition 13.1*)
  Record weierstrass := mkWeierstrass {weierstrassX : GF; weierstrassY : GF}.
  Definition weierstrassOnCurve (a1 a2 a3 a4 a5 a6:GF) (P : weierstrass) : Prop :=
  let x := weierstrassX P in
  let y := weierstrassY P in
  y^2 + a1*x*y + a3*y = x^3 + a2*x^2 + a4*x + a6.

  (** [montgomery] represents a point on an elliptic curve using Montgomery
  * coordinates (see <https://en.wikipedia.org/wiki/Montgomery_curve>) *)
  Record montgomery := mkMontgomery {montgomeryX : GF; montgomeryY : GF}.
  Definition montgomeryOnCurve (B A:GF) (P : montgomery) : Prop :=
  let x := montgomeryX P in
  let y := montgomeryY P in
  B*y^2 = x^3 + A*x^2 + x.

  (** see <http://cs.ucsb.edu/~koc/ccs130h/2013/EllipticHyperelliptic-CohenFrey.pdf> section 13.2.3.c and <https://en.wikipedia.org/wiki/Montgomery_curve#Equivalence_with_Weierstrass_curves> *)
  Definition montgomeryToWeierstrass (B A:GF) (P : montgomery) : weierstrass :=
  let x := montgomeryX P in
  let y := montgomeryY P in
  mkWeierstrass (x/B + A/(3*B)) (y/B).

  Lemma montgomeryToWeierstrassOnCurve : forall (B A:GF) (P:montgomery),
  let a4 := 1/B^2 - A^2/(3*B^2) in
  let a6 := 0- A^3/(27*B^3) - a4*A/(3*B) in
  let P' := montgomeryToWeierstrass B A P in
  montgomeryOnCurve B A P -> weierstrassOnCurve 0 0 0 a4 0 a6 P'.
  Proof.
  intros.
  unfold montgomeryToWeierstrass, montgomeryOnCurve, weierstrassOnCurve in *.
  remember (weierstrassY P') as y in *.
  remember (weierstrassX P') as x in *.
  remember (montgomeryX P) as u in *.
  remember (montgomeryY P) as v in *.
  clear Hequ Heqv Heqy Heqx P'.
  (* This is not currently important and makes field run out of memory. Maybe
  * because I transcribed it incorrectly... *)
  Abort.


  (* from <http://www.hyperelliptic.org/EFD/g1p/auto-montgom.html> *)
  Definition montgomeryAddDistinct (B A:GF) (P1 P2:montgomery) : montgomery :=
  let x1 := montgomeryX P1 in
  let y1 := montgomeryY P1 in
  let x2 := montgomeryX P2 in
  let y2 := montgomeryY P2 in
  mkMontgomery
  (B*(y2-y1)^2/(x2-x1)^2-A-x1-x2)
  ((2*x1+x2+A)*(y2-y1)/(x2-x1)-B*(y2-y1)^3/(x2-x1)^3-y1).
  Definition montgomeryDouble (B A:GF) (P1:montgomery) : montgomery :=
  let x1 := montgomeryX P1 in
  let y1 := montgomeryY P1 in
  mkMontgomery
  (B*(3*x1^2+2*A*x1+1)^2/(2*B*y1)^2-A-x1-x1)
  ((2*x1+x1+A)*(3*x1^2+2*A*x1+1)/(2*B*y1)-B*(3*x1^2+2*A*x1+1)^3/(2*B*y1)^3-y1).
  Definition montgomeryNegate P := mkMontgomery (montgomeryX P) (0-montgomeryY P).

  (** [montgomeryXFrac] represents a point on an elliptic curve using Montgomery x
  * coordinate stored as fraction as in
  * <http://cr.yp.to/ecdh/curve25519-20060209.pdf> appendix B. *)
  Record montgomeryXFrac := mkMontgomeryXFrac {montgomeryXFracX : GF; montgomeryXFracZ : GF}.
  Definition montgomeryToMontgomeryXFrac P := mkMontgomeryXFrac (montgomeryX P) 1.
  Definition montgomeryXFracToMontgomeryX P : GF := (montgomeryXFracX P) / (montgomeryXFracZ P).

  (* from <http://www.hyperelliptic.org/EFD/g1p/auto-montgom-xz.html#ladder-mladd-1987-m>,
  * also appears in <https://tools.ietf.org/html/draft-josefsson-tls-curve25519-06#appendix-A.1.3> *)
  Definition montgomeryDifferentialDoubleAndAdd (a : GF)
  (X1 : GF) (P2 P3 : montgomeryXFrac) : (montgomeryXFrac * montgomeryXFrac) :=
    let X2 := montgomeryXFracX P2 in
    let Z2 := montgomeryXFracZ P2 in
    let X3 := montgomeryXFracX P3 in
    let Z3 := montgomeryXFracZ P3 in
    let A  := X2 + Z2 in
    let AA := A^2 in
    let B  := X2 - Z2 in
    let BB := B^2 in
    let E  := AA - BB in
    let C  := X3 + Z3 in
    let D  := X3 - Z3 in
    let DA := D * A in
    let CB := C * B in
    let X5 := (DA + CB)^2 in
    let Z5 := X1 * (DA - CB)^2 in
    let X4 := AA * BB in
    let Z4 := E * (BB + (a-2)/4 * E) in
    (mkMontgomeryXFrac X4 Z4, mkMontgomeryXFrac X5 Z5).

  (*
  (* <https://eprint.iacr.org/2008/013.pdf> Theorem 3.2. *)
  (* TODO: exceptional points *)
  Definition twistedToMontfomery (a d:GF) (P : twisted) : montgomery :=
  let x := twistedX P in
  let y := twistedY P in
  mkMontgomery ((1+y)/(1-y)) ((1+y)/((1-y)*x)).
  Definition montgomeryToTwisted (B A:GF) (P : montgomery) : twisted :=
  let X := montgomeryX P in
  let Y := montgomeryY P in
  mkTwisted (X/Y) ((X-1)/(X+1)).
  *)

End WeirstrassMontgomery.