aboutsummaryrefslogtreecommitdiff
path: root/src/Curves/Montgomery/XZProofs.v
blob: d3fd486d846431b6cfaed670b3a6db22d051e1f1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
Require Import Crypto.Algebra.Field.
Require Import Crypto.Util.Sum Crypto.Util.Prod Crypto.Util.LetIn.
Require Import Crypto.Util.Decidable.
Require Import Crypto.Util.Tuple.
Require Import Crypto.Util.Tactics.SetoidSubst.
Require Import Crypto.Util.Tactics.SpecializeBy.
Require Import Crypto.Util.Tactics.DestructHead.
Require Import Crypto.Util.Tactics.BreakMatch.
Require Import Crypto.Spec.MontgomeryCurve Crypto.Curves.Montgomery.Affine.
Require Import Crypto.Curves.Montgomery.AffineInstances.
Require Import Crypto.Curves.Montgomery.XZ BinPos.
Require Import Coq.Classes.Morphisms.

Module M.
  Section MontgomeryCurve.
    Context {F Feq Fzero Fone Fopp Fadd Fsub Fmul Finv Fdiv}
            {field:@Algebra.Hierarchy.field F Feq Fzero Fone Fopp Fadd Fsub Fmul Finv Fdiv}
            {Feq_dec:Decidable.DecidableRel Feq}
            {char_ge_3:@Ring.char_ge F Feq Fzero Fone Fopp Fadd Fsub Fmul 3}
            {char_ge_5:@Ring.char_ge F Feq Fzero Fone Fopp Fadd Fsub Fmul 5}
            {char_ge_12:@Ring.char_ge F Feq Fzero Fone Fopp Fadd Fsub Fmul 12}
            {char_ge_28:@Ring.char_ge F Feq Fzero Fone Fopp Fadd Fsub Fmul 28}.
    Local Infix "=" := Feq : type_scope. Local Notation "a <> b" := (not (a = b)) : type_scope.
    Local Infix "+" := Fadd. Local Infix "*" := Fmul.
    Local Infix "-" := Fsub. Local Infix "/" := Fdiv.
    Local Notation "0" := Fzero.  Local Notation "1" := Fone.
    Local Notation "'∞'" := (inr tt) : core_scope.
    Local Notation "( x , y )" := (inl (pair x y)).

    Context {a b: F} {b_nonzero:b <> 0}.
    Context {a24:F} {a24_correct:(1+1+1+1)*a24 = a-(1+1)}.
    Local Notation Madd := (M.add(a:=a)(b_nonzero:=b_nonzero)(char_ge_3:=char_ge_3)).
    Local Notation Mopp := (M.opp(a:=a)(b_nonzero:=b_nonzero)).
    Local Notation Mpoint := (@M.point F Feq Fadd Fmul a b).
    Local Notation xzladderstep := (M.xzladderstep(a24:=a24)(Fadd:=Fadd)(Fsub:=Fsub)(Fmul:=Fmul)).
    Local Notation donnaladderstep := (M.donnaladderstep(a24:=a24)(Fadd:=Fadd)(Fsub:=Fsub)(Fmul:=Fmul)).
    Local Notation to_xz := (M.to_xz(Fzero:=Fzero)(Fone:=Fone)(Feq:=Feq)(Fadd:=Fadd)(Fmul:=Fmul)(a:=a)(b:=b)).

    Lemma donnaladderstep_ok x1 Q Q' :
      let eq := fieldwise (n:=2) (fieldwise (n:=2) Feq) in
      eq (xzladderstep x1 Q Q') (donnaladderstep x1 Q Q').
    Proof. cbv; break_match; repeat split; fsatz. Qed.

    Definition projective (P:F*F) :=
      if dec (snd P = 0) then fst P <> 0 else True.
    Definition eq (P Q:F*F) := fst P * snd Q = fst Q * snd P.

    Local Ltac do_unfold :=
      cbv [eq projective fst snd M.coordinates M.add M.zero M.eq M.opp proj1_sig xzladderstep M.to_xz Let_In Proper respectful] in *.

    Ltac t_step _ :=
      match goal with
      | _ => solve [ contradiction | trivial ]
      | _ => progress intros
      | _ => progress subst
      | _ => progress specialize_by_assumption
      | [ H : ?x = ?x |- _ ] => clear H
      | [ H : ?x <> ?x |- _ ] => specialize (H (reflexivity _))
      | [ H0 : ?T, H1 : ~?T -> _ |- _ ] => clear H1
      | _ => progress destruct_head'_prod
      | _ => progress destruct_head'_and
      | _ => progress Sum.inversion_sum
      | _ => progress Prod.inversion_prod
      | _ => progress cbv [fst snd proj1_sig projective eq] in * |-
      | _ => progress cbn [to_xz M.coordinates proj1_sig] in * |-
      | _ => progress destruct_head' @M.point
      | _ => progress destruct_head'_sum
      | [ H : context[dec ?T], H' : ~?T -> _ |- _ ]
        => let H'' := fresh in
           destruct (dec T) as [H''|H'']; [ clear H' | specialize (H' H'') ]
      | _ => progress break_match_hyps
      | _ => progress break_match
      | |- _ /\ _ => split
      | _ => progress do_unfold
      end.
    Ltac t := repeat t_step ().

    (* happens if u=0 in montladder, all denominators remain 0 *)
    Lemma add_0_numerator_r A B C D
      :  snd (fst (xzladderstep 0 (pair C 0) (pair 0 A))) = 0
      /\ snd (snd (xzladderstep 0 (pair D 0) (pair 0 B))) = 0.
    Proof. t; fsatz. Qed.
    Lemma add_0_denominators A B C D
      :  snd (fst (xzladderstep 0 (pair A 0) (pair C 0))) = 0
      /\ snd (snd (xzladderstep 0 (pair B 0) (pair D 0))) = 0.
    Proof. t; fsatz. Qed.

    (** This tactic is to work around deficiencies in the Coq 8.6
        (released) version of [nsatz]; it has some heuristics for
        clearing hypotheses and running [exfalso], and then tries to
        solve the goal with [tac].  If [tac] fails on a goal, this
        tactic does nothing. *)
    Local Ltac exfalso_smart_clear_solve_by tac :=
      try lazymatch goal with
          | [ fld : Hierarchy.field (T:=?F) (eq:=?Feq), Feq_dec : DecidableRel ?Feq |- _ ]
            => lazymatch goal with
               | [ H : ?x * 1 = ?y * ?z, H' : ?x <> 0, H'' : ?z = 0 |- _ ]
                 => clear -H H' H'' fld Feq_dec; exfalso; tac
               | [ H : ?x * 0 = 1 * ?y, H' : ?y <> 0 |- _ ]
                 => clear -H H' fld Feq_dec; exfalso; tac
               | _
                 => match goal with
                    | [ H : ?b * ?lhs = ?rhs, H' : ?b * ?lhs' = ?rhs', Heq : ?x = ?y, Hb : ?b <> 0 |- _ ]
                      => exfalso;
                         repeat match goal with H : Ring.char_ge _ |- _ => revert H end;
                         let rhs := match (eval pattern x in rhs) with ?f _ => f end in
                         let rhs' := match (eval pattern y in rhs') with ?f _ => f end in
                         unify rhs rhs';
                         match goal with
                         | [ H'' : ?x = ?Fopp ?x, H''' : ?x <> ?Fopp (?Fopp ?y) |- _ ]
                           => let lhs := match (eval pattern x in lhs) with ?f _ => f end in
                              let lhs' := match (eval pattern y in lhs') with ?f _ => f end in
                              unify lhs lhs';
                              clear -H H' Heq H'' H''' Hb fld Feq_dec; intros
                         | [ H'' : ?x <> ?Fopp ?y, H''' : ?x <> ?Fopp (?Fopp ?y) |- _ ]
                           => let lhs := match (eval pattern x in lhs) with ?f _ => f end in
                              let lhs' := match (eval pattern y in lhs') with ?f _ => f end in
                              unify lhs lhs';
                              clear -H H' Heq H'' H''' Hb fld Feq_dec; intros
                         end;
                         tac
                    | [ H : ?x * (?y * ?z) = 0 |- _ ]
                      => exfalso;
                         repeat match goal with
                                | [ H : ?x * 1 = ?y * ?z |- _ ]
                                  => is_var x; is_var y; is_var z;
                                     revert H
                                end;
                         generalize fld;
                         let lhs := match type of H with ?lhs = _ => lhs end in
                         repeat match goal with
                                | [ x : F |- _ ] => lazymatch type of H with
                                                    | context[x] => fail
                                                    | _ => clear dependent x
                                                    end
                                end;
                         intros _; intros;
                         tac
                    end
               end
          end.

    Lemma to_xz_add (x1:F) (xz x'z':F*F)
          (Hxz:projective xz) (Hz'z':projective x'z')
          (Q Q':Mpoint)
          (HQ:eq xz (to_xz Q)) (HQ':eq x'z' (to_xz Q'))
          (difference_correct:match M.coordinates (Madd Q (Mopp Q')) with
                              | ∞ => False                  (* Q <> Q' *)
                              | (x,y) => x = x1 /\ x1 <> 0  (* Q-Q' <> (0, 0) *)
                              end)
      :  eq (to_xz (Madd Q Q )) (fst (xzladderstep x1 xz xz))
      /\ eq (to_xz (Madd Q Q')) (snd (xzladderstep x1 xz x'z'))
      /\ projective (snd (xzladderstep x1 xz x'z')).
    Proof.
      fsatz_prepare_hyps.
      Time t.
      Time par: abstract (exfalso_smart_clear_solve_by fsatz || fsatz).
    Time Qed.

    Context {a2m4_nonsquare:forall r, r*r <> a*a - (1+1+1+1)}.

    Lemma projective_fst_xzladderstep x1 Q (HQ:projective Q)
      :  projective (fst (xzladderstep x1 Q Q)).
    Proof.
      specialize (a2m4_nonsquare (fst Q/snd Q  - fst Q/snd Q)).
      destruct (dec (snd Q = 0)); t; specialize_by assumption; fsatz.
    Qed.

    Let a2m4_nz : a*a - (1+1+1+1) <> 0.
    Proof. specialize (a2m4_nonsquare 0). fsatz. Qed.

    Lemma difference_preserved Q Q' :
          M.eq
            (Madd (Madd Q Q) (Mopp (Madd Q Q')))
            (Madd Q (Mopp Q')).
    Proof.
      pose proof (let (_, h, _, _) := AffineInstances.M.MontgomeryWeierstrassIsomorphism b_nonzero (a:=a) a2m4_nz in h) as commutative_group.
      rewrite Group.inv_op.
      rewrite <-Hierarchy.associative.
      rewrite Group.cancel_left.
      rewrite Hierarchy.commutative.
      rewrite <-Hierarchy.associative.
      rewrite Hierarchy.left_inverse.
      rewrite Hierarchy.right_identity.
      reflexivity.
    Qed.

    Lemma to_xz_add'
          (x1:F)
          (xz x'z':F*F)
          (Q Q':Mpoint)

          (HQ:eq xz (to_xz Q))
          (HQ':eq x'z' (to_xz Q'))
          (Hxz:projective xz)
          (Hx'z':projective x'z')
          (difference_correct:match M.coordinates (Madd Q (Mopp Q')) with
                              | ∞ => False                  (* Q <> Q' *)
                              | (x,y) => x = x1 /\ x1 <> 0  (* Q-Q' <> (0, 0) *)
                              end)
      :
           eq (to_xz (Madd Q Q )) (fst (xzladderstep x1 xz xz))
        /\ eq (to_xz (Madd Q Q')) (snd (xzladderstep x1 xz x'z'))
        /\ projective (fst (xzladderstep x1 xz x'z'))
        /\ projective (snd (xzladderstep x1 xz x'z'))
        /\ match M.coordinates (Madd (Madd Q Q) (Mopp (Madd Q Q'))) with
                              | ∞ => False                  (* Q <> Q' *)
                              | (x,y) => x = x1 /\ x1 <> 0  (* Q-Q' <> (0, 0) *)
                              end.
    Proof.
      destruct (to_xz_add x1 xz x'z' Hxz Hx'z' Q Q' HQ HQ' difference_correct) as [? [? ?]].
      split; [|split; [|split;[|split]]]; eauto.
      {
        pose proof projective_fst_xzladderstep x1 xz Hxz.
        destruct_head prod.
        cbv [projective fst xzladderstep] in *; eauto. }
      {
        pose proof difference_preserved Q Q' as HQQ;
        destruct (Madd (Madd Q Q) (Mopp (Madd Q Q'))) as [[[xQ yQ]|[]]pfQ];
        destruct (Madd Q (Mopp Q')) as [[[xD yD]|[]]pfD];
        cbv [M.coordinates proj1_sig M.eq] in *;
        destruct_head' and; try split;
          try contradiction; try etransitivity; eauto.
      }
    Qed.

    Definition to_x (xz:F*F) : F :=
      if dec (snd xz = 0) then 0 else fst xz / snd xz.

    Lemma to_x_to_xz Q : to_x (to_xz Q) = match M.coordinates Q with
                                          | ∞ => 0
                                          | (x,y) => x
                                          end.
    Proof.
      cbv [to_x]; t; fsatz.
    Qed.

    Lemma proper_to_x_projective xz x'z'
           (Hxz:projective xz) (Hx'z':projective x'z')
           (H:eq xz x'z') : Feq (to_x xz) (to_x x'z').
    Proof.
      destruct (dec (snd xz = 0)), (dec(snd x'z' = 0));
        cbv [to_x]; t;
        specialize_by (assumption||reflexivity);
        try fsatz.
    Qed.

    Lemma to_x_zero x : to_x (pair x 0) = 0.
    Proof. cbv; t; fsatz. Qed.

    Lemma projective_to_xz Q : projective (to_xz Q).
    Proof. t; fsatz. Qed.
  End MontgomeryCurve.
End M.