aboutsummaryrefslogtreecommitdiff
path: root/src/CompleteEdwardsCurve/ExtendedCoordinates.v
blob: eef1eb3711974da549c0174d1daed0279a199fb5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
Require Export Crypto.Spec.CompleteEdwardsCurve.

Require Import Crypto.Algebra Crypto.Algebra.
Require Import Crypto.CompleteEdwardsCurve.Pre Crypto.CompleteEdwardsCurve.CompleteEdwardsCurveTheorems.
Require Import Coq.Logic.Eqdep_dec.
Require Import Crypto.Tactics.VerdiTactics.
Require Import Coq.Classes.Morphisms.
Require Import Coq.Relations.Relation_Definitions.
Require Import Crypto.Util.Tuple.
Require Import Crypto.Util.Notations.
Require Export Crypto.Util.FixCoqMistakes.

Module Extended.
  Section ExtendedCoordinates.
    Import Group Ring Field.
    Context {F Feq Fzero Fone Fopp Fadd Fsub Fmul Finv Fdiv a d}
            {field:@field F Feq Fzero Fone Fopp Fadd Fsub Fmul Finv Fdiv}
            {prm:@E.twisted_edwards_params F Feq Fzero Fone Fadd Fmul a d}
            {Feq_dec:DecidableRel Feq}.
    Local Infix "=" := Feq : type_scope. Local Notation "a <> b" := (not (a = b)) : type_scope.
    Local Notation "0" := Fzero.  Local Notation "1" := Fone.
    Local Infix "+" := Fadd. Local Infix "*" := Fmul.
    Local Infix "-" := Fsub. Local Infix "/" := Fdiv.
    Local Notation "x ^ 2" := (x*x).
    Local Notation Epoint := (@E.point F Feq Fone Fadd Fmul a d).
    Local Notation onCurve := (@Pre.onCurve F Feq Fone Fadd Fmul a d).

    Add Field _edwards_curve_extended_field : (field_theory_for_stdlib_tactic (H:=field)).

    (** [Extended.point] represents a point on an elliptic curve using extended projective
     * Edwards coordinates with twist a=-1 (see <https://eprint.iacr.org/2008/522.pdf>). *)
    Definition point := { P | let '(X,Y,Z,T) := P in onCurve((X/Z), (Y/Z)) /\ Z<>0 /\ Z*T=X*Y }.
    Definition coordinates (P:point) : F*F*F*F := proj1_sig P.

    Create HintDb bash discriminated.
    Local Hint Unfold E.eq fst snd fieldwise fieldwise' coordinates E.coordinates proj1_sig Pre.onCurve : bash.
    Ltac safe_bash :=
      repeat match goal with
             | |- Proper _ _ => intro
             | _ => progress intros
             | [ H: _ /\ _ |- _ ] => destruct H
             | [ p:E.point |- _ ] => destruct p as [ [??] ? ]
             | [ p:point |- _ ] => destruct p as [ [ [ [??] ? ] ? ] ? ]
             | _ => progress autounfold with bash in *
             | |- _ /\ _ => split
             | _ => solve [neq01]
             | _ => solve [eauto]
             | _ => solve [intuition eauto]
             | _ => solve [etransitivity; eauto]
             | |- _ => rewrite <-!(field_div_definition(field:=field)) in *
             | |- _*_ <> 0 => apply Ring.zero_product_iff_zero_factor
             | [H: _ |- _ ] => solve [intro; apply H; super_nsatz]
             | |- Feq _ _ => super_nsatz
             end.
    (** Using [pose proof E.char_gt_2] causes [E.char_gt_2] to get
        picked up in the proof term when we don't want it to. *)
    Ltac unsafe_bash := pose proof E.char_gt_2; safe_bash.
    Ltac bash := safe_bash; unsafe_bash.

    Obligation Tactic := bash.

    Program Definition from_twisted (P:Epoint) : point := exist _
      (let (x,y) := E.coordinates P in (x, y, 1, x*y)) _.

    Program Definition to_twisted (P:point) : Epoint := exist _
      (let '(X,Y,Z,T) := coordinates P in let iZ := Finv Z in ((X*iZ), (Y*iZ))) _.

    Definition eq (P Q:point) := E.eq (to_twisted P) (to_twisted Q).

    Definition eq_noinv (P1 P2:point) :=
        let '(X1, Y1, Z1, _) := coordinates P1 in
        let '(X2, Y2, Z2, _) := coordinates P2 in
        Z2*X1 = Z1*X2 /\ Z2*Y1 = Z1*Y2.

    Local Hint Unfold from_twisted to_twisted eq eq_noinv : bash.

    Lemma eq_noinv_eq P Q : eq P Q <-> eq_noinv P Q.
    Proof. safe_bash; repeat split; safe_bash.  Qed.
    Global Instance DecidableRel_eq_noinv : Decidable.DecidableRel eq_noinv.
    Proof.
      intros P Q.
      destruct P as [ [ [ [ ] ? ] ? ] ?], Q as [ [ [ [ ] ? ] ? ] ? ]; simpl; exact _.
    Defined.
    Global Instance DecidableRel_eq : Decidable.DecidableRel eq.
    Proof.
      intros ? ?.
      eapply @Decidable_iff_to_flip_impl; [eapply eq_noinv_eq | exact _].
    Defined.

    Global Instance Equivalence_eq : Equivalence eq. Proof. split; split; safe_bash. Qed.
    Global Instance Proper_from_twisted : Proper (E.eq==>eq) from_twisted. Proof. unsafe_bash. Qed.
    Global Instance Proper_to_twisted : Proper (eq==>E.eq) to_twisted. Proof. safe_bash. Qed.
    Lemma to_twisted_from_twisted P : E.eq (to_twisted (from_twisted P)) P. Proof. unsafe_bash. Qed.

    Section Proper.
      Global Instance point_Proper : Proper (fieldwise (n:=4) Feq ==> iff)
                                            (fun P => let '(X,Y,Z,T) := P in onCurve((X/Z), (Y/Z)) /\ Z<>0 /\ Z*T=X*Y).
      Proof.
        repeat intro.
        repeat match goal with
               | _ => progress simpl in *
               | [ H : prod _ _ |- _ ] => destruct H
               | [ H : and _ _ |- _ ] => destruct H
               | _ => reflexivity
               | [ H : ?x = ?y |- _ ] => is_var x; rewrite H; clear x H
               end.
      Qed.
      Global Instance point_Proper_impl
        : Proper (fieldwise (n:=4) Feq ==> Basics.impl)
                 (fun P => let '(X,Y,Z,T) := P in onCurve((X/Z), (Y/Z)) /\ Z<>0 /\ Z*T=X*Y).
      Proof.
        intros A B H H'.
        apply (@point_Proper A B H); assumption.
      Qed.
      Global Instance point_Proper_flip_impl
        : Proper (fieldwise (n:=4) Feq ==> Basics.flip Basics.impl)
                 (fun P => let '(X,Y,Z,T) := P in onCurve((X/Z), (Y/Z)) /\ Z<>0 /\ Z*T=X*Y).
      Proof.
        intros A B H H'.
        apply (@point_Proper A B H); assumption.
      Qed.
    End Proper.

    Section TwistMinus1.
      Context {a_eq_minus1 : a = Fopp 1}.
      Context {twice_d:F} {Htwice_d:twice_d = d + d}.
      (** Second equation from <http://eprint.iacr.org/2008/522.pdf> section 3.1, also <https://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html#addition-add-2008-hwcd-3> and <https://tools.ietf.org/html/draft-josefsson-eddsa-ed25519-03> *)
      Section generic.
        Context (F4 : Type)
                (pair4 : F -> F -> F -> F -> F4)
                (let_in : F -> (F -> F4) -> F4).
        Local Notation "'slet' x := y 'in' z" := (let_in y (fun x => z)).
        Definition add_coordinates_gen P1 P2 : F4 :=
          let '(X1, Y1, Z1, T1) := P1 in
          let '(X2, Y2, Z2, T2) := P2 in
          slet  A := (Y1-X1)*(Y2-X2) in
          slet  B := (Y1+X1)*(Y2+X2) in
          slet  C := T1*twice_d*T2 in
          slet  D := Z1*(Z2+Z2) in
          slet  E := B-A in
          slet  F := D-C in
          slet  G := D+C in
          slet  H := B+A in
          slet X3 := E*F in
          slet Y3 := G*H in
          slet T3 := E*H in
          slet Z3 := F*G in
          pair4 X3 Y3 Z3 T3.
      End generic.
      Definition add_coordinates P1 P2 : F*F*F*F :=
        Eval cbv beta delta [add_coordinates_gen] in
          @add_coordinates_gen
            (F*F*F*F)
            (fun X3 Y3 Z3 T3 => (X3, Y3, Z3, T3))
            (fun x f => let y := x in f y)
            P1 P2.

      Local Hint Unfold E.add E.coordinates add_coordinates : bash.

      Lemma add_coordinates_correct (P Q:point) :
        let '(X,Y,Z,T) := add_coordinates (coordinates P) (coordinates Q) in
        let (x, y) := E.coordinates (E.add (to_twisted P) (to_twisted Q)) in
        (fieldwise (n:=2) Feq) (x, y) (X/Z, Y/Z).
      Proof.
        destruct P as [ [ [ [ ] ? ] ? ] [ HP [ ] ] ]; destruct Q as [ [ [ [ ] ? ] ? ] [ HQ [ ] ] ].
        pose proof edwardsAddCompletePlus (a_nonzero:=E.nonzero_a)(a_square:=E.square_a)(d_nonsquare:=E.nonsquare_d)(char_gt_2:=E.char_gt_2) _ _ _ _ HP HQ.
        pose proof edwardsAddCompleteMinus (a_nonzero:=E.nonzero_a)(a_square:=E.square_a)(d_nonsquare:=E.nonsquare_d)(char_gt_2:=E.char_gt_2) _ _ _ _ HP HQ.
        unsafe_bash.
      Qed.

      Context {add_coordinates_opt}
              {add_coordinates_opt_correct
               : forall P1 P2, fieldwise (n:=4) Feq (add_coordinates_opt P1 P2) (add_coordinates P1 P2)}.

      Obligation Tactic := idtac.
      Program Definition add_unopt (P Q:point) : point := add_coordinates (coordinates P) (coordinates Q).
      Next Obligation.
        clear add_coordinates_opt add_coordinates_opt_correct.
        intros P Q.
        pose proof (add_coordinates_correct P Q) as Hrep.
        pose proof Pre.unifiedAdd'_onCurve(a_nonzero:=E.nonzero_a)(a_square:=E.square_a)(d_nonsquare:=E.nonsquare_d)(char_gt_2:=E.char_gt_2) (E.coordinates (to_twisted P)) (E.coordinates (to_twisted Q)) as Hon.
        destruct P as [ [ [ [ ] ? ] ? ] [ HP [ ] ] ]; destruct Q as [ [ [ [ ] ? ] ? ] [ HQ [ ] ] ].
        pose proof edwardsAddCompletePlus (a_nonzero:=E.nonzero_a)(a_square:=E.square_a)(d_nonsquare:=E.nonsquare_d)(char_gt_2:=E.char_gt_2) _ _ _ _ HP HQ as Hnz1.
        pose proof edwardsAddCompleteMinus (a_nonzero:=E.nonzero_a)(a_square:=E.square_a)(d_nonsquare:=E.nonsquare_d)(char_gt_2:=E.char_gt_2) _ _ _ _ HP HQ as Hnz2.
        autounfold with bash in *; simpl in *.
        destruct Hrep as [HA HB]. rewrite <-!HA, <-!HB; clear HA HB.
        safe_bash.
      Qed.
      Local Hint Unfold add_unopt : bash.

      Program Definition add (P Q:point) : point := add_coordinates_opt (coordinates P) (coordinates Q).
      Next Obligation.
        intros; eapply point_Proper_flip_impl;
          [ apply add_coordinates_opt_correct
          | exact (proj2_sig (add_unopt P Q)) ].
      Qed.
      Local Hint Unfold add : bash.

      Lemma to_twisted_add_unopt P Q : E.eq (to_twisted (add_unopt P Q)) (E.add (to_twisted P) (to_twisted Q)).
      Proof.
        clear add_coordinates_opt add_coordinates_opt_correct.
        pose proof (add_coordinates_correct P Q) as Hrep.
        destruct P as [ [ [ [ ] ? ] ? ] [ HP [ ] ] ]; destruct Q as [ [ [ [ ] ? ] ? ] [ HQ [ ] ] ].
        autounfold with bash in *; simpl in *.
        destruct Hrep as [HA HB].
        pose proof (field_div_definition(field:=field)) as Hdiv; symmetry in Hdiv;
          (rewrite_strat bottomup Hdiv);
          (rewrite_strat bottomup Hdiv in HA);
          (rewrite_strat bottomup Hdiv in HB).
        rewrite <-!HA, <-!HB; clear HA HB.
        split; reflexivity.
      Qed.

      Lemma to_twisted_add P Q : E.eq (to_twisted (add P Q)) (E.add (to_twisted P) (to_twisted Q)).
      Proof.
        rewrite <- to_twisted_add_unopt.
        { pose proof (add_coordinates_opt_correct (coordinates P) (coordinates Q)).
          cbv [add add_unopt].
          do 2 match goal with
               | [ |- context[exist _ ?x ?p] ]
                 => first [ is_var p; fail 1
                          | generalize p; cbv zeta; generalize dependent x ]
               end.
          clear add_coordinates_opt add_coordinates_opt_correct.
          cbv [to_twisted coordinates proj1_sig E.eq E.coordinates fst snd] in *.
          repeat match goal with
                 | _ => intro
                 | [ H : prod _ _ |- _ ] => destruct H
                 | [ H : and _ _ |- _ ] => destruct H
                 | _ => progress simpl in *
                 | [ |- and _ _ ] => split
                 | [ H : ?x = ?y |- context[?x] ] => is_var x; rewrite H
                 | _ => reflexivity
                 end. }
      Qed.

      Global Instance Proper_add : Proper (eq==>eq==>eq) add.
      Proof.
        unfold eq. intros x y H x0 y0 H0.
        transitivity (to_twisted x + to_twisted x0)%E; rewrite to_twisted_add, ?H, ?H0; reflexivity.
      Qed.

      Lemma homomorphism_to_twisted : @Monoid.is_homomorphism point eq add Epoint E.eq E.add to_twisted.
      Proof. split; trivial using Proper_to_twisted, to_twisted_add. Qed.

      Lemma add_from_twisted P Q : eq (from_twisted (P + Q)%E) (add (from_twisted P) (from_twisted Q)).
      Proof.
        pose proof (to_twisted_add (from_twisted P) (from_twisted Q)).
        unfold eq; rewrite !to_twisted_from_twisted in *.
        symmetry; assumption.
      Qed.

      Lemma homomorphism_from_twisted : @Monoid.is_homomorphism Epoint E.eq E.add point eq add from_twisted.
      Proof. split; trivial using Proper_from_twisted, add_from_twisted. Qed.

      Definition zero : point := from_twisted E.zero.
      Definition opp P : point := from_twisted (E.opp (to_twisted P)).
      Lemma extended_group : @group point eq add zero opp.
      Proof.
        eapply @isomorphism_to_subgroup_group; eauto with typeclass_instances core.
        - apply DecidableRel_eq.
        - unfold opp. repeat intro. match goal with [H:_|-_] => rewrite H; reflexivity end.
        - intros. apply to_twisted_add.
        - unfold opp; intros; rewrite to_twisted_from_twisted; reflexivity.
        - unfold zero; intros; rewrite to_twisted_from_twisted; reflexivity.
      Qed.

      (* TODO: decide whether we still need those, then port *)
    (*
    Lemma unifiedAddM1_0_r : forall P, unifiedAddM1 P (mkExtendedPoint E.zero) === P.
      unfold equiv, extendedPoint_eq; intros.
      rewrite <-!unifiedAddM1_rep, unExtendedPoint_mkExtendedPoint, E.add_0_r; auto.
    Qed.

    Lemma unifiedAddM1_0_l : forall P, unifiedAddM1 (mkExtendedPoint E.zero) P === P.
      unfold equiv, extendedPoint_eq; intros.
      rewrite <-!unifiedAddM1_rep, E.add_comm, unExtendedPoint_mkExtendedPoint, E.add_0_r; auto.
    Qed.

    Lemma unifiedAddM1_assoc : forall a b c, unifiedAddM1 a (unifiedAddM1 b c) === unifiedAddM1 (unifiedAddM1 a b) c.
    Proof.
      unfold equiv, extendedPoint_eq; intros.
      rewrite <-!unifiedAddM1_rep, E.add_assoc; auto.
    Qed.

    Lemma testbit_conversion_identity : forall x i, N.testbit_nat x i = N.testbit_nat ((fun a => a) x) i.
    Proof.
      trivial.
    Qed.

    Lemma scalarMultM1_rep : forall n P, unExtendedPoint (nat_iter_op unifiedAddM1 (mkExtendedPoint E.zero) n P) = E.mul n (unExtendedPoint P).
      induction n; [simpl; rewrite !unExtendedPoint_mkExtendedPoint; reflexivity|]; intros.
      unfold E.mul; fold E.mul.
      rewrite <-IHn, unifiedAddM1_rep; auto.
    Qed.
     *)
    End TwistMinus1.
  End ExtendedCoordinates.

  Lemma add_coordinates_respectful_hetero
        F Fadd Fsub Fmul twice_d P Q
        F' Fadd' Fsub' Fmul' twice_d' P' Q'
        (R : F -> F' -> Prop)
        (Hadd : forall x x' (Hx : R x x') y y' (Hy : R y y'), R (Fadd x y) (Fadd' x' y'))
        (Hsub : forall x x' (Hx : R x x') y y' (Hy : R y y'), R (Fsub x y) (Fsub' x' y'))
        (Hmul : forall x x' (Hx : R x x') y y' (Hy : R y y'), R (Fmul x y) (Fmul' x' y'))
        (Htwice_d : R twice_d twice_d')
        (HP : Tuple.fieldwise (n:=4) R P P')
        (HQ : Tuple.fieldwise (n:=4) R Q Q')
    : Tuple.fieldwise
        (n:=4) R
        (@add_coordinates F Fadd Fsub Fmul twice_d P Q)
        (@add_coordinates F' Fadd' Fsub' Fmul' twice_d' P' Q').
  Proof.
    repeat match goal with
           | [ H : and _ _ |- _ ] => destruct H
           | [ H : prod _ _ |- _ ] => destruct H
           | _ => progress unfold add_coordinates, fieldwise, fieldwise', fst, snd, tuple, tuple' in *
           | [ |- and _ _ ] => split
           | _ => solve [ auto ]
           end.
  Qed.
End Extended.