aboutsummaryrefslogtreecommitdiff
path: root/src/CompleteEdwardsCurve/CompleteEdwardsCurveTheorems.v
blob: 716d72b3e40acde792a8dcba8a469be97d2edc28 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
Require Export Crypto.Spec.CompleteEdwardsCurve.

Require Import Crypto.Algebra Crypto.Algebra.
Require Import Crypto.CompleteEdwardsCurve.Pre.
Require Import Coq.Logic.Eqdep_dec.
Require Import Crypto.Tactics.VerdiTactics.
Require Import Coq.Classes.Morphisms.
Require Import Coq.Relations.Relation_Definitions.
Require Import Crypto.Util.Tuple Crypto.Util.Notations Crypto.Util.Tactics.
Require Export Crypto.Util.FixCoqMistakes.

Module E.
  Import Group ScalarMult Ring Field CompleteEdwardsCurve.E.
  Section CompleteEdwardsCurveTheorems.
    Context {F Feq Fzero Fone Fopp Fadd Fsub Fmul Finv Fdiv a d}
            {field:@field F Feq Fzero Fone Fopp Fadd Fsub Fmul Finv Fdiv}
            {prm:@twisted_edwards_params F Feq Fzero Fone Fadd Fmul a d}.
    Local Infix "=" := Feq : type_scope. Local Notation "a <> b" := (not (a = b)) : type_scope.
    Local Notation "0" := Fzero.  Local Notation "1" := Fone.
    Local Infix "+" := Fadd. Local Infix "*" := Fmul.
    Local Infix "-" := Fsub. Local Infix "/" := Fdiv.
    Local Notation "x ^ 2" := (x*x).
    Local Notation point := (@point F Feq Fone Fadd Fmul a d).
    Local Notation onCurve := (@onCurve F Feq Fone Fadd Fmul a d).

    Add Field _edwards_curve_theorems_field : (field_theory_for_stdlib_tactic (H:=field)).

    Definition eq (P Q:point) := fieldwise (n:=2) Feq (coordinates P) (coordinates Q).
    Infix "=" := eq : E_scope.

    Ltac destruct_points :=
      repeat match goal with
             | [ p : point |- _ ] =>
               let x := fresh "x" p in
               let y := fresh "y" p in
               let pf := fresh "pf" p in
               destruct p as [ [x y] pf]
             end.

    Local Obligation Tactic := intros; destruct_points; simpl; super_nsatz.
    Program Definition opp (P:point) : point :=
      exist _ (let '(x, y) := coordinates P in (Fopp x, y) ) _.

    (* all nonzero-denominator goals here require proofs that are not
    trivially implied by field axioms. Posing all such proofs at once
    and then solving the nonzero-denominator goal using [super_nsatz]
    is too slow because the context contains many assumed nonzero
    expressions and the product of all of them is a very large
    polynomial. However, we never need to use more than one
    nonzero-ness assumption for a given nonzero-denominator goal, so
    we can try them separately one-by-one. *)

    Ltac apply_field_nonzero H :=
      match goal with |- not (Feq _ 0) => idtac | _ => fail "not a nonzero goal" end;
      try solve [exact H];
      let Hx := fresh "H" in
      intro Hx;
      apply H;
      try common_denominator;
      [rewrite <-Hx; ring | ..].

    Ltac bash_step :=
      let addCompletePlus := constr:(edwardsAddCompletePlus(char_gt_2:=char_gt_2)(d_nonsquare:=nonsquare_d)(a_square:=square_a)(a_nonzero:=nonzero_a)) in
      let addCompleteMinus := constr:(edwardsAddCompleteMinus(char_gt_2:=char_gt_2)(d_nonsquare:=nonsquare_d)(a_square:=square_a)(a_nonzero:=nonzero_a)) in
      let addOnCurve := constr:(unifiedAdd'_onCurve(char_gt_2:=char_gt_2)(d_nonsquare:=nonsquare_d)(a_square:=square_a)(a_nonzero:=nonzero_a)) in
      match goal with
      | |- _ => progress intros
      | [H: _ /\ _ |- _ ] => destruct H
      | [H: ?a = ?b |- _ ] => is_var a; is_var b; repeat rewrite <-H in *; clear H b (* fast path *)
      | |- _ => progress destruct_points
      | |- _ => progress cbv [fst snd coordinates proj1_sig eq fieldwise fieldwise' add zero opp] in *
      | |- _ => split
      | [H:Feq (a*_^2+_^2) (1 + d*_^2*_^2) |- _ <> 0]
        => apply_field_nonzero (addCompletePlus _ _ _ _ H H) ||
           apply_field_nonzero (addCompleteMinus _ _ _ _ H H)
      | [A:Feq (a*_^2+_^2) (1 + d*_^2*_^2),
           B:Feq (a*_^2+_^2) (1 + d*_^2*_^2) |- _ <> 0]
        => apply_field_nonzero (addCompletePlus _ _ _ _ A B) ||
           apply_field_nonzero (addCompleteMinus _ _ _ _ A B)
      | [A:Feq (a*_^2+_^2) (1 + d*_^2*_^2),
           B:Feq (a*_^2+_^2) (1 + d*_^2*_^2),
             C:Feq (a*_^2+_^2) (1 + d*_^2*_^2) |- _ <> 0]
        => apply_field_nonzero (addCompleteMinus _ _ _ _ A (addOnCurve (_, _) (_, _) B C)) ||
           apply_field_nonzero (addCompletePlus _ _ _ _ A (addOnCurve (_, _) (_, _) B C))
      | |- ?x <> 0 => let H := fresh "H" in assert (x = 1) as H by ring; rewrite H; exact one_neq_zero
      | |- Feq _ _ => progress common_denominator
      | |- Feq _ _ => nsatz
      | |- _ => exact _ (* typeclass instances *)
      end.

    Ltac bash := repeat bash_step.

    Global Instance Proper_add : Proper (eq==>eq==>eq) add. Proof. bash. Qed.
    Global Instance Proper_opp : Proper (eq==>eq) opp. Proof. bash. Qed.
    Global Instance Proper_coordinates : Proper (eq==>fieldwise (n:=2) Feq) coordinates. Proof. bash. Qed.
    Global Instance edwards_acurve_abelian_group : abelian_group (eq:=eq)(op:=add)(id:=zero)(inv:=opp).
    Proof.
      bash.
    Qed.

    Global Instance Proper_mul : Proper (Logic.eq==>eq==>eq) mul.
    Proof.
      intros n n'; repeat intro; subst n'.
      induction n; (reflexivity || eapply Proper_add; eauto).
    Qed.

    Global Instance mul_is_scalarmult : @is_scalarmult point eq add zero mul.
    Proof. unfold mul; split; intros; (reflexivity || exact _). Qed.

    Section PointCompression.
      Local Notation "x ^ 2" := (x*x).
      Definition solve_for_x2 (y : F) := ((y^2 - 1) / (d * (y^2) - a)).

      Lemma a_d_y2_nonzero : forall y, d * y^2 - a <> 0.
      Proof.
        intros ? eq_zero.
        destruct square_a as [sqrt_a sqrt_a_id]; rewrite <- sqrt_a_id in eq_zero.
        destruct (eq_dec y 0); [apply nonzero_a | apply nonsquare_d with (sqrt_a/y)]; super_nsatz.
      Qed.

      Lemma solve_correct : forall x y, onCurve (x, y) <-> (x^2 = solve_for_x2 y).
      Proof.
        unfold solve_for_x2; simpl; split; intros;
          (common_denominator_all; [nsatz | auto using a_d_y2_nonzero]).
      Qed.
    End PointCompression.
  End CompleteEdwardsCurveTheorems.
  Section Homomorphism.
    Context {F Feq Fzero Fone Fopp Fadd Fsub Fmul Finv Fdiv Fa Fd}
            {field:@field F Feq Fzero Fone Fopp Fadd Fsub Fmul Finv Fdiv}
            {Fprm:@twisted_edwards_params F Feq Fzero Fone Fadd Fmul Fa Fd}.
    Context {K Keq Kzero Kone Kopp Kadd Ksub Kmul Kinv Kdiv Ka Kd}
            {fieldK: @Algebra.field K Keq Kzero Kone Kopp Kadd Ksub Kmul Kinv Kdiv}
            {Kprm:@twisted_edwards_params K Keq Kzero Kone Kadd Kmul Ka Kd}.
    Context {phi:F->K} {Hphi:@Ring.is_homomorphism F Feq Fone Fadd Fmul
                                                   K Keq Kone Kadd Kmul phi}.
    Context {Ha:Keq (phi Fa) Ka} {Hd:Keq (phi Fd) Kd}.
    Local Notation Fpoint := (@E.point F Feq Fone Fadd Fmul Fa Fd).
    Local Notation Kpoint := (@E.point K Keq Kone Kadd Kmul Ka Kd).
    Local Notation FonCurve := (@onCurve F Feq Fone Fadd Fmul Fa Fd).
    Local Notation KonCurve := (@onCurve K Keq Kone Kadd Kmul Ka Kd).

    Create HintDb field_homomorphism discriminated.
    Hint Rewrite <-
         homomorphism_one
         homomorphism_add
         homomorphism_sub
         homomorphism_mul
         homomorphism_div
         Ha
         Hd
      : field_homomorphism.

    Obligation Tactic := idtac.
    Program Definition ref_phi (P:Fpoint) : Kpoint := exist _ (
      let (x, y) := coordinates P in (phi x, phi y)) _.
    Next Obligation.
      destruct P as [ [? ?] ?]; simpl.
      rewrite_strat bottomup hints field_homomorphism.
      eauto using is_homomorphism_phi_proper; assumption.
    Qed.

    Context {point_phi:Fpoint->Kpoint}
            {point_phi_Proper:Proper (eq==>eq) point_phi}
            {point_phi_correct: forall (P:point), eq (point_phi P) (ref_phi P)}.

    Lemma lift_homomorphism : @Group.is_homomorphism Fpoint eq add Kpoint eq add point_phi.
    Proof.
      repeat match goal with
             | |- Group.is_homomorphism => split
             | |- _ => intro
             | |-  _ /\ _ => split
             | [H: _ /\ _ |- _ ] => destruct H
             | [p: point |- _ ] => destruct p as [ [??]?]
             | |- context[point_phi] => setoid_rewrite point_phi_correct
             | |- _ => progress cbv [fst snd coordinates proj1_sig eq fieldwise fieldwise' add zero opp ref_phi] in *
             | |- Keq ?x ?x => reflexivity
             | |- Keq ?x ?y => rewrite_strat bottomup hints field_homomorphism
             | [ H : Feq _ _ |- Keq (phi _) (phi _)] => solve [f_equiv; intuition]
             end;
        assert (FonCurve (f1,f2)) as FonCurve1 by assumption;
        assert (FonCurve (f,f0)) as FonCurve2 by assumption;
        [ eapply (@edwardsAddCompleteMinus F) with (x1 := f1); destruct Fprm; eauto
        | eapply (@edwardsAddCompletePlus  F) with (x1 := f1); destruct Fprm; eauto].
      Qed.
  End Homomorphism.
End E.