aboutsummaryrefslogtreecommitdiff
path: root/src/CompleteEdwardsCurve/CompleteEdwardsCurveTheorems.v
blob: f70479c3a17ebb061166819bbfd924998a863461 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
Require Export Crypto.Spec.CompleteEdwardsCurve.

Require Import Crypto.ModularArithmetic.FField.
Require Import Crypto.ModularArithmetic.FNsatz.
Require Import Crypto.CompleteEdwardsCurve.Pre.
Require Import Crypto.ModularArithmetic.PrimeFieldTheorems.
Require Import Coq.Logic.Eqdep_dec.
Require Import Crypto.Tactics.VerdiTactics.

Module E.
  Section CompleteEdwardsCurveTheorems.
    Context {prm:TwistedEdwardsParams}.
    Local Opaque q a d prime_q two_lt_q nonzero_a square_a nonsquare_d. (* [F_field] calls [compute] *)
    Existing Instance prime_q.
  
    Add Field Ffield_p' : (@Ffield_theory q _)
      (morphism (@Fring_morph q),
       preprocess [Fpreprocess],
       postprocess [Fpostprocess; try exact Fq_1_neq_0; try assumption],
       constants [Fconstant],
       div (@Fmorph_div_theory q),
       power_tac (@Fpower_theory q) [Fexp_tac]).
  
    Add Field Ffield_notConstant : (OpaqueFieldTheory q)
      (constants [notConstant]).
  
    Ltac clear_prm :=
      generalize dependent a; intro a; intros;
      generalize dependent d; intro d; intros;
      generalize dependent prime_q; intro prime_q; intros;
      generalize dependent q; intro q; intros;
      clear prm.
  
    Lemma point_eq : forall xy1 xy2 pf1 pf2,
      xy1 = xy2 -> exist E.onCurve xy1 pf1 = exist E.onCurve xy2 pf2.
    Proof.
      destruct xy1, xy2; intros; find_injection; intros; subst. apply f_equal.
      apply UIP_dec, F_eq_dec. (* this is a hack. We actually don't care about the equality of the proofs. However, we *can* prove it, and knowing it lets us use the universal equality instead of a type-specific equivalence, which makes many things nicer. *)
    Qed. Hint Resolve point_eq.
  
    Definition point_eqb (p1 p2:E.point) : bool := andb
        (F_eqb (fst (proj1_sig p1)) (fst (proj1_sig p2)))
        (F_eqb (snd (proj1_sig p1)) (snd (proj1_sig p2))).
  
    Local Ltac t :=
      unfold point_eqb;
        repeat match goal with
        | _ => progress intros
        | _ => progress simpl in *
        | _ => progress subst
        | [P:E.point |- _ ] => destruct P
        | [x: (F q * F q)%type |- _ ] => destruct x
        | [H: _ /\ _ |- _ ] => destruct H
        | [H: _ |- _ ] => rewrite Bool.andb_true_iff in H
        | [H: _ |- _ ] => apply F_eqb_eq in H
        | _ => rewrite F_eqb_refl
        end; eauto.
  
    Lemma point_eqb_sound : forall p1 p2, point_eqb p1 p2 = true -> p1 = p2.
    Proof.
      t.
    Qed.
  
    Lemma point_eqb_complete : forall p1 p2, p1 = p2 -> point_eqb p1 p2 = true.
    Proof.
      t.
    Qed.
  
    Lemma point_eqb_neq : forall p1 p2, point_eqb p1 p2 = false -> p1 <> p2.
    Proof.
      intros. destruct (point_eqb p1 p2) eqn:Hneq; intuition.
      apply point_eqb_complete in H0; congruence.
    Qed.
  
    Lemma point_eqb_neq_complete : forall p1 p2, p1 <> p2 -> point_eqb p1 p2 = false.
    Proof.
      intros. destruct (point_eqb p1 p2) eqn:Hneq; intuition.
      apply point_eqb_sound in Hneq. congruence.
    Qed.
  
    Lemma point_eqb_refl : forall p, point_eqb p p = true.
    Proof.
      t.
    Qed.
  
    Definition point_eq_dec (p1 p2:E.point) : {p1 = p2} + {p1 <> p2}.
      destruct (point_eqb p1 p2) eqn:H; match goal with
                                        | [ H: _ |- _ ] => apply point_eqb_sound in H
                                        | [ H: _ |- _ ] => apply point_eqb_neq in H
                                        end; eauto.
    Qed.
  
    Lemma point_eqb_correct : forall p1 p2, point_eqb p1 p2 = if point_eq_dec p1 p2 then true else false.
    Proof.
      intros. destruct (point_eq_dec p1 p2); eauto using point_eqb_complete, point_eqb_neq_complete.
    Qed.
  
    Ltac Edefn := unfold E.add, E.add', E.zero; intros;
                    repeat match goal with
                           | [ p : E.point |- _ ] =>
                             let x := fresh "x" p in
                             let y := fresh "y" p in
                             let pf := fresh "pf" p in
                             destruct p as [[x y] pf]; unfold E.onCurve in pf
                    | _ => eapply point_eq, (f_equal2 pair)
                    | _ => eapply point_eq
    end.
    Lemma add_comm : forall A B, (A+B = B+A)%E.
    Proof.
      Edefn; apply (f_equal2 div); ring.
    Qed.
  
    Ltac unifiedAdd_nonzero := match goal with
    | [ |- (?op 1 (d * _ * _ * _ * _ *
      inv (1 - d * ?xA * ?xB * ?yA * ?yB) * inv (1 + d * ?xA * ?xB * ?yA * ?yB)))%F <> 0%F]
      => let Hadd := fresh "Hadd" in
       pose proof (@unifiedAdd'_onCurve _ _ _ _ two_lt_q nonzero_a square_a nonsquare_d (xA, yA) (xB, yB)) as Hadd;
       simpl in Hadd;
       match goal with
       | [H : (1 - d * ?xC * xB * ?yC * yB)%F <> 0%F |- (?op 1 ?other)%F <> 0%F] =>
         replace other with
          (d * xC * ((xA * yB + yA * xB) / (1 + d * xA * xB * yA * yB)) 
          * yC * ((yA * yB - a * xA * xB) / (1 - d * xA * xB * yA * yB)))%F by (subst; unfold div; ring);
          auto
      end
    end.
  
    Lemma add_assoc : forall A B C, (A+(B+C) = (A+B)+C)%E.
    Proof.
      Edefn; F_field_simplify_eq; try abstract (rewrite ?@F_pow_2_r in *; clear_prm; F_nsatz);
        pose proof (@edwardsAddCompletePlus _ _ _ _ two_lt_q nonzero_a square_a nonsquare_d);
        pose proof (@edwardsAddCompleteMinus _ _ _ _ two_lt_q nonzero_a square_a nonsquare_d);
        cbv beta iota in *;
        repeat split; field_nonzero idtac; unifiedAdd_nonzero.
    Qed.
  
    Lemma add_0_r : forall P, (P + E.zero = P)%E.
    Proof.
      Edefn; repeat rewrite ?F_add_0_r, ?F_add_0_l, ?F_sub_0_l, ?F_sub_0_r,
             ?F_mul_0_r, ?F_mul_0_l, ?F_mul_1_l, ?F_mul_1_r, ?F_div_1_r; exact eq_refl.
    Qed.

    Lemma add_0_l : forall P, (E.zero + P)%E = P.
    Proof.
      intros; rewrite add_comm. apply add_0_r.
    Qed.

    Lemma mul_0_l : forall P, (0 * P = E.zero)%E.
    Proof.
      auto.
    Qed.

    Lemma mul_S_l : forall n P, (S n * P)%E = (P + n * P)%E.
    Proof.
      auto.
    Qed.

    Lemma mul_add_l : forall a b P, ((a + b)%nat * P)%E = E.add (a * P)%E (b * P)%E.
    Proof.
      induction a; intros; rewrite ?plus_Sn_m, ?plus_O_n, ?mul_S_l, ?mul_0_l, ?add_0_l, ?mul_S_, ?IHa, ?add_assoc; auto.
    Qed.

    Lemma mul_assoc : forall (n m : nat) P, (n * (m * P) = (n * m)%nat * P)%E.
    Proof.
      induction n; intros; auto.
      rewrite ?mul_S_l, ?Mult.mult_succ_l, ?mul_add_l, ?IHn, add_comm. reflexivity.
    Qed.

    Lemma mul_zero_r : forall m, (m * E.zero = E.zero)%E.
    Proof.
      induction m; rewrite ?mul_S_l, ?add_0_l; auto.
    Qed.
  
    (* solve for x ^ 2 *)
    Definition solve_for_x2 (y : F q) := ((y ^ 2 - 1) / (d * (y ^ 2) - a))%F.
  
    Lemma d_y2_a_nonzero : (forall y, 0 <> d * y ^ 2 - a)%F.
      intros ? eq_zero.
      pose proof prime_q.
      destruct square_a as [sqrt_a sqrt_a_id].
      rewrite <- sqrt_a_id in eq_zero.
      destruct (Fq_square_mul_sub _ _ _ eq_zero) as [ [sqrt_d sqrt_d_id] | a_zero].
      + pose proof (nonsquare_d sqrt_d); auto.
      + subst.
        rewrite Fq_pow_zero in sqrt_a_id by congruence.
        auto using nonzero_a.
    Qed.
  
    Lemma a_d_y2_nonzero : (forall y, a - d * y ^ 2 <> 0)%F.
    Proof.
      intros y eq_zero.
      pose proof prime_q.
      eapply F_minus_swap in eq_zero.
      eauto using (d_y2_a_nonzero y).
    Qed.
  
    Lemma solve_correct : forall x y, E.onCurve (x, y) <->
      (x ^ 2 = solve_for_x2 y)%F.
    Proof.
      split.
      + intro onCurve_x_y.
        pose proof prime_q.
        unfold E.onCurve in onCurve_x_y.
        eapply F_div_mul; auto using (d_y2_a_nonzero y).
        replace (x ^ 2 * (d * y ^ 2 - a))%F with ((d * x ^ 2 * y ^ 2) - (a * x ^ 2))%F by ring.
        rewrite F_sub_add_swap.
        replace (y ^ 2 + a * x ^ 2)%F with (a * x ^ 2 + y ^ 2)%F by ring.
        rewrite onCurve_x_y.
        ring.
      + intro x2_eq.
        unfold E.onCurve, solve_for_x2 in *.
        rewrite x2_eq.
        field.
        auto using d_y2_a_nonzero.
    Qed.
  
  
    Program Definition opp (P:E.point) : E.point := let '(x, y) := proj1_sig P in (opp x, y).
    Next Obligation. Proof.
      pose (proj2_sig P) as H; rewrite <-Heq_anonymous in H; simpl in H.
      rewrite F_square_opp; trivial.
    Qed.
    
    Definition sub P Q := (P + opp Q)%E.
    
    Lemma opp_zero : opp E.zero = E.zero.
    Proof.
      pose proof @F_opp_0.
      unfold opp, E.zero; eapply point_eq; congruence.
    Qed.
  
    Lemma add_opp_r : forall P, (P + opp P = E.zero)%E.
    Proof.
      unfold opp; Edefn; rewrite ?@F_pow_2_r in *; (F_field_simplify_eq; [clear_prm; F_nsatz|..]);
        rewrite <-?@F_pow_2_r in *;
        pose proof (@edwardsAddCompletePlus _ _ _ _ two_lt_q nonzero_a square_a nonsquare_d _ _ _ _ pfP pfP);
        pose proof (@edwardsAddCompleteMinus _ _ _ _ two_lt_q nonzero_a square_a nonsquare_d _ _ _ _ pfP pfP);
        field_nonzero idtac.
    Qed.
  
    Lemma add_opp_l : forall P, (opp P + P = E.zero)%E.
    Proof.
      intros. rewrite add_comm. eapply add_opp_r.
    Qed.
  
    Lemma add_cancel_r : forall A B C, (B+A = C+A -> B = C)%E.
    Proof.
      intros.
      assert ((B + A) + opp A = (C + A) + opp A)%E as Hc by congruence.
      rewrite <-!add_assoc, !add_opp_r, !add_0_r in Hc; exact Hc.
    Qed.
  
    Lemma add_cancel_l : forall A B C, (A+B = A+C -> B = C)%E.
    Proof.
      intros.
      rewrite (add_comm A C) in H.
      rewrite (add_comm A B) in H.
      eauto using add_cancel_r.
    Qed.
    
    Lemma shuffle_eq_add_opp : forall P Q R, (P + Q = R <-> Q = opp P + R)%E.
    Proof.
      split; intros.
      { assert (opp P + (P + Q) = opp P + R)%E as Hc by congruence.
        rewrite add_assoc, add_opp_l, add_comm, add_0_r in Hc; exact Hc. }
      { subst. rewrite add_assoc, add_opp_r, add_comm, add_0_r; reflexivity. }
    Qed.
        
    Lemma opp_opp : forall P, opp (opp P) = P.
    Proof.
      intros.
      pose proof (add_opp_r P%E) as H.
      rewrite add_comm in H.
      rewrite shuffle_eq_add_opp in H.
      rewrite add_0_r in H.
      congruence.
    Qed.
    
    Lemma opp_add : forall P Q, opp (P + Q)%E = (opp P + opp Q)%E.
    Proof.
      intros.
      pose proof (add_opp_r (P+Q)%E) as H.
      rewrite <-!add_assoc in H.
      rewrite add_comm in H.
      rewrite <-!add_assoc in H.
      rewrite shuffle_eq_add_opp in H.
      rewrite add_comm in H.
      rewrite shuffle_eq_add_opp in H.
      rewrite add_0_r in H.
      assumption.
    Qed.
      
    Lemma opp_mul : forall n P, opp (E.mul n P) = E.mul n (opp P).
    Proof.
      pose proof opp_add; pose proof opp_zero.
      induction n; simpl; intros; congruence.
    Qed.
  End CompleteEdwardsCurveTheorems.
End E.
Infix "-" := E.sub : E_scope.