aboutsummaryrefslogtreecommitdiff
path: root/src/CompleteEdwardsCurve/CompleteEdwardsCurveTheorems.v
blob: 683addd5da0e7124a2c89a89bcd7e4979d5f2cb9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
Require Export Crypto.Spec.CompleteEdwardsCurve.

Require Import Crypto.Algebra Crypto.Tactics.Nsatz.
Require Import Crypto.CompleteEdwardsCurve.Pre.
Require Import Coq.Logic.Eqdep_dec.
Require Import Crypto.Tactics.VerdiTactics.
Require Import Coq.Classes.Morphisms.
Require Import Relation_Definitions.
Require Import Crypto.Util.Tuple.

Module E.
  Import Group Ring Field CompleteEdwardsCurve.E.
  Section CompleteEdwardsCurveTheorems.
    Context {F Feq Fzero Fone Fopp Fadd Fsub Fmul Finv Fdiv a d}
            {field:@field F Feq Fzero Fone Fopp Fadd Fsub Fmul Finv Fdiv}
            {prm:@twisted_edwards_params F Feq Fzero Fone Fadd Fmul a d}.
    Local Infix "=" := Feq : type_scope. Local Notation "a <> b" := (not (a = b)) : type_scope.
    Local Notation "0" := Fzero.  Local Notation "1" := Fone.
    Local Infix "+" := Fadd. Local Infix "*" := Fmul.
    Local Infix "-" := Fsub. Local Infix "/" := Fdiv.
    Local Notation "x ^2" := (x*x) (at level 30).
    Local Notation point := (@point F Feq Fone Fadd Fmul a d).
    Local Notation onCurve := (@onCurve F Feq Fone Fadd Fmul a d).

    Add Field _edwards_curve_theorems_field : (field_theory_for_stdlib_tactic (H:=field)).

    Definition eq (P Q:point) := fieldwise (n:=2) Feq (coordinates P) (coordinates Q).
    Infix "=" := eq : E_scope.

    (* TODO: decide whether we still want something like this, then port
    Local Ltac t :=
      unfold point_eqb;
        repeat match goal with
        | _ => progress intros
        | _ => progress simpl in *
        | _ => progress subst
        | [P:E.point |- _ ] => destruct P
        | [x: (F q * F q)%type |- _ ] => destruct x
        | [H: _ /\ _ |- _ ] => destruct H
        | [H: _ |- _ ] => rewrite Bool.andb_true_iff in H
        | [H: _ |- _ ] => apply F_eqb_eq in H
        | _ => rewrite F_eqb_refl
        end; eauto.

    Lemma point_eqb_sound : forall p1 p2, point_eqb p1 p2 = true -> p1 = p2.
    Proof.
      t.
    Qed.

    Lemma point_eqb_complete : forall p1 p2, p1 = p2 -> point_eqb p1 p2 = true.
    Proof.
      t.
    Qed.

    Lemma point_eqb_neq : forall p1 p2, point_eqb p1 p2 = false -> p1 <> p2.
    Proof.
      intros. destruct (point_eqb p1 p2) eqn:Hneq; intuition.
      apply point_eqb_complete in H0; congruence.
    Qed.

    Lemma point_eqb_neq_complete : forall p1 p2, p1 <> p2 -> point_eqb p1 p2 = false.
    Proof.
      intros. destruct (point_eqb p1 p2) eqn:Hneq; intuition.
      apply point_eqb_sound in Hneq. congruence.
    Qed.

    Lemma point_eqb_refl : forall p, point_eqb p p = true.
    Proof.
      t.
    Qed.

    Definition point_eq_dec (p1 p2:E.point) : {p1 = p2} + {p1 <> p2}.
      destruct (point_eqb p1 p2) eqn:H; match goal with
                                        | [ H: _ |- _ ] => apply point_eqb_sound in H
                                        | [ H: _ |- _ ] => apply point_eqb_neq in H
                                        end; eauto.
    Qed.

    Lemma point_eqb_correct : forall p1 p2, point_eqb p1 p2 = if point_eq_dec p1 p2 then true else false.
    Proof.
      intros. destruct (point_eq_dec p1 p2); eauto using point_eqb_complete, point_eqb_neq_complete.
    Qed.
    *)

    (* TODO: move to util *)
    Lemma decide_and  : forall P Q, {P}+{not P} -> {Q}+{not Q} -> {P/\Q}+{not(P/\Q)}.
    Proof. intros; repeat match goal with [H:{_}+{_}|-_] => destruct H end; intuition. Qed.

    Ltac destruct_points :=
      repeat match goal with
             | [ p : point |- _ ] =>
               let x := fresh "x" p in
               let y := fresh "y" p in
               let pf := fresh "pf" p in
               destruct p as [[x y] pf]
             end.

    Ltac expand_opp :=
      rewrite ?mul_opp_r, ?mul_opp_l, ?ring_sub_definition, ?inv_inv, <-?ring_sub_definition.

    Local Hint Resolve char_gt_2.
    Local Hint Resolve nonzero_a.
    Local Hint Resolve square_a.
    Local Hint Resolve nonsquare_d.
    Local Hint Resolve @edwardsAddCompletePlus.
    Local Hint Resolve @edwardsAddCompleteMinus.

    Local Obligation Tactic := intros; destruct_points; simpl; field_algebra.
    Program Definition opp (P:point) : point :=
      exist _ (let '(x, y) := coordinates P in (Fopp x, y) ) _.

    Ltac bash_step :=
      match goal with
      | |- _ => progress intros
      | [H: _ /\ _ |- _ ] => destruct H
      | |- _ => progress destruct_points
      | |- _ => progress cbv [fst snd coordinates proj1_sig eq fieldwise fieldwise' add zero opp] in *
      | |- _ => split
      | |- Feq _ _ => field_algebra
      | |- _ <> 0 => expand_opp; solve [nsatz_nonzero|eauto 6]
      | |- {_}+{_} => eauto 15 using decide_and, @eq_dec with typeclass_instances
      end.

    Ltac bash := repeat bash_step.

    Global Instance Proper_add : Proper (eq==>eq==>eq) add. Proof. bash. Qed.
    Global Instance Proper_opp : Proper (eq==>eq) opp. Proof. bash. Qed.
    Global Instance Proper_coordinates : Proper (eq==>fieldwise (n:=2) Feq) coordinates. Proof. bash. Qed.

    Global Instance edwards_acurve_abelian_group : abelian_group (eq:=eq)(op:=add)(id:=zero)(inv:=opp).
    Proof.
      bash.
      (* TODO: port denominator-nonzero proofs for associativity *)
      match goal with | |- _ <> 0 => admit end.
      match goal with | |- _ <> 0 => admit end.
      match goal with | |- _ <> 0 => admit end.
      match goal with | |- _ <> 0 => admit end.
    Admitted.

    (* TODO: move to [Group] and [AbelianGroup] as appropriate *)
    Lemma mul_0_l : forall P, (0 * P = zero)%E.
    Proof. intros; reflexivity. Qed.
    Lemma mul_S_l : forall n P, (S n * P = P + n * P)%E.
    Proof. intros; reflexivity. Qed.
    Lemma mul_add_l : forall (n m:nat) (P:point), ((n + m)%nat * P = n * P + m * P)%E.
    Proof.
      induction n; intros;
        rewrite ?plus_Sn_m, ?plus_O_n, ?mul_S_l, ?left_identity, <-?associative, <-?IHn; reflexivity.
    Qed.
    Lemma mul_assoc : forall (n m : nat) P, (n * (m * P) = (n * m)%nat * P)%E.
    Proof.
      induction n; intros; [reflexivity|].
      rewrite ?mul_S_l, ?Mult.mult_succ_l, ?mul_add_l, ?IHn, commutative; reflexivity.
    Qed.
    Lemma mul_zero_r : forall m, (m * E.zero = E.zero)%E.
    Proof. induction m; rewrite ?mul_S_l, ?left_identity, ?IHm; try reflexivity. Qed.
    Lemma opp_mul : forall n P, (opp (n * P) = n * (opp P))%E.
    Admitted.

    Section PointCompression.
      Local Notation "x ^2" := (x*x).
      Definition solve_for_x2 (y : F) := ((y^2 - 1) / (d * (y^2) - a)).

      Lemma a_d_y2_nonzero : forall y, d * y^2 - a <> 0.
      Proof.
        intros ? eq_zero.
        destruct square_a as [sqrt_a sqrt_a_id]; rewrite <- sqrt_a_id in eq_zero.
        destruct (eq_dec y 0); [apply nonzero_a|apply nonsquare_d with (sqrt_a/y)]; field_algebra.
      Qed.

      Lemma solve_correct : forall x y, onCurve (x, y) <-> (x^2 = solve_for_x2 y).
      Proof.
        unfold solve_for_x2; simpl; split; intros; field_algebra; auto using a_d_y2_nonzero.
      Qed.
    End PointCompression.
  End CompleteEdwardsCurveTheorems.

  Section Homomorphism.
    Context {F Feq Fzero Fone Fopp Fadd Fsub Fmul Finv Fdiv Fa Fd}
            {fieldF:@field F Feq Fzero Fone Fopp Fadd Fsub Fmul Finv Fdiv}
            {Fprm:@twisted_edwards_params F Feq Fzero Fone Fadd Fmul Fa Fd}.
    Context {K Keq Kzero Kone Kopp Kadd Ksub Kmul Kinv Kdiv Ka Kd}
            {fieldK:@field K Keq Kzero Kone Kopp Kadd Ksub Kmul Kinv Kdiv}
            {Kprm:@twisted_edwards_params K Keq Kzero Kone Kadd Kmul Ka Kd}.
    Context {phi:F->K} {Hphi:@Ring.is_homomorphism F Feq Fone Fadd Fmul
                                                   K Keq Kone Kadd Kmul phi}.
    Context {Ha:Keq (phi Fa) Ka} {Hd:Keq (phi Fd) Kd}.
    Local Notation Fpoint := (@point F Feq Fone Fadd Fmul Fa Fd).
    Local Notation Kpoint := (@point K Keq Kone Kadd Kmul Ka Kd).

    Create HintDb field_homomorphism discriminated.
    Hint Rewrite <-
         homomorphism_one
         homomorphism_add
         homomorphism_sub
         homomorphism_mul
         homomorphism_div
         Ha
         Hd
      : field_homomorphism.

    Program Definition ref_phi (P:Fpoint) : Kpoint := exist _ (
      let (x, y) := coordinates P in (phi x, phi y)) _.
    Next Obligation.
      destruct P as [[? ?] ?]; simpl.
      rewrite_strat bottomup hints field_homomorphism.
      eauto using is_homomorphism_phi_proper; assumption.
    Qed.

    Context {point_phi:Fpoint->Kpoint}
            {point_phi_Proper:Proper (eq==>eq) point_phi}
            {point_phi_correct: forall (P:Fpoint), eq (point_phi P) (ref_phi P)}.

    Lemma lift_homomorphism : @Group.is_homomorphism Fpoint eq add Kpoint eq add point_phi.
    Proof.
      repeat match goal with
             | |- Group.is_homomorphism => split
             | |- _ => intro
             | |-  _ /\ _ => split
             | [H: _ /\ _ |- _ ] => destruct H
             | [p: point |- _ ] => destruct p as [[??]?]
             | |- context[point_phi] => setoid_rewrite point_phi_correct
             | |- _ => progress cbv [fst snd coordinates proj1_sig eq fieldwise fieldwise' add zero opp ref_phi] in *
             | |- Keq ?x ?x => reflexivity
             | |- Keq ?x ?y => rewrite_strat bottomup hints field_homomorphism
             | [ H : Feq _ _ |- Keq (phi _) (phi _)] => solve [f_equiv; intuition]
             end.
      Qed.
  End Homomorphism.
End E.