aboutsummaryrefslogtreecommitdiff
path: root/src/Compilers/WfReflectiveGen.v
blob: 4de37845184caaa8e5cbeb8af5b67e79bf11a4e3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
(** * A reflective version of [Wf]/[WfRel] proofs *)
(** Because every constructor of [Syntax.wff] stores the syntax tree
    being proven well-formed, a proof that a syntax tree is
    well-formed is quadratic in the size of the syntax tree.  (Tacking
    an extra term on to the head of the syntax tree requires an extra
    constructor of [Syntax.wff], and that constructor stores the
    entirety of the new syntax tree.)

    In practice, this makes proving well-formedness of large trees
    very slow.  To remedy this, we provide an alternative type
    ([reflect_wffT]) that implies [Syntax.wff], but is only linear in
    the size of the syntax tree, with a coefficient less than 1.

    The idea is that, since we already know the syntax-tree arguments
    to the constructors (and, moreover, already fully know the shape
    of the [Syntax.wff] proof, because it will exactly match the shape
    of the syntax tree), the proof doesn't have to store any of that
    information.  It only has to store the genuinely new information
    in [Syntax.wff], namely, that the constants don't depend on the
    [var] argument (i.e., that the constants in the same location in
    the two expressions are equal), and that there are no free nor
    mismatched variables (i.e., that the variables in the same
    location in the two expressions are in the relevant list of
    binders).  We can make the further optimization of storing the
    location in the list of each binder, so that all that's left to
    verify is that the locations line up correctly.

    Since there is no way to assign list locations (De Bruijn indices)
    after the fact (that is, once we have an [exprf var t] rather than
    an [Expr t]), we instead start from an expression where [var] is
    enriched with De Bruijn indices, and talk about [Syntax.wff] of
    that expression stripped of its De Bruijn indices.  Since this
    procedure is only expected to work on concrete syntax trees, we
    will be able to simply check by unification to check that
    stripping the indices results in the term that we started with.

    The interface of this file is that, to prove a [Syntax.Wf] goal,
    you invoke the tactic [reflect_Wf base_type_eq_semidec_is_dec
    op_beq_bl], where:

    - [base_type_eq_semidec_is_dec : forall t1 t2,
       base_type_eq_semidec_transparent t1 t2 = None -> t1 <> t2] for
       some [base_type_eq_semidec_transparent : forall t1 t2 :
       base_type_code, option (t1 = t2)], and

    - [op_beq_bl : forall t1 tR x y, prop_of_option (op_beq t1 tR x y)
      -> x = y] for some [op_beq : forall t1 tR, op t1 tR -> op t1 tR
      -> option pointed_Prop] *)

Require Import Coq.Arith.Arith Coq.Logic.Eqdep_dec.
Require Import Crypto.Compilers.Syntax.
Require Import Crypto.Util.Notations Crypto.Util.Option Crypto.Util.Sigma Crypto.Util.Prod Crypto.Util.Decidable Crypto.Util.ListUtil.
Require Import Crypto.Util.Tactics.RewriteHyp.
Require Import Crypto.Compilers.Wf.
Require Export Crypto.Util.PartiallyReifiedProp. (* export for the [bool >-> reified_Prop] coercion *)
Require Export Crypto.Util.FixCoqMistakes.


Section language.
  (** To be able to optimize away so much of the [Syntax.wff] proof,
      we must be able to decide a few things: equality of base types,
      and equality of operator codes.  Since we will be casting across
      the equality proofs of base types, we require that this
      semi-decider give transparent proofs.  (This requirement is not
      enforced, but it will block [vm_compute] when trying to use the
      lemma in this file.) *)
  Context (base_type_code : Type)
          (base_type_eq_semidec_transparent : forall t1 t2 : base_type_code, option (t1 = t2))
          (base_type_eq_semidec_is_dec : forall t1 t2, base_type_eq_semidec_transparent t1 t2 = None -> t1 <> t2)
          (op : flat_type base_type_code -> flat_type base_type_code -> Type).
  (** In practice, semi-deciding equality of operators should either
      return [Some trivial] or [None], and not make use of the
      generality of [pointed_Prop].  However, we need to use
      [pointed_Prop] internally because we need to talk about equality
      of things of type [var t], for [var : base_type_code -> Type].
      It does not hurt to allow extra generality in [op_beq]. *)
  Context (op_beq : forall t1 tR, op t1 tR -> op t1 tR -> reified_Prop).
  Context (op_beq_bl : forall t1 tR x y, to_prop (op_beq t1 tR x y) -> x = y).
  Context {var1 var2 : base_type_code -> Type}.

  Local Notation eP := (fun t => var1 (fst t) * var2 (snd t))%type (only parsing).

  (* convenience notations that fill in some arguments used across the section *)
  Local Notation flat_type := (flat_type base_type_code).
  Local Notation type := (type base_type_code).
  Local Notation exprf := (@exprf base_type_code op).
  Local Notation expr := (@expr base_type_code op).

  Local Ltac inversion_base_type_code_step :=
    match goal with
    | [ H : ?x = ?x :> base_type_code |- _ ]
      => assert (H = eq_refl) by eapply UIP_dec, dec_rel_of_semidec_rel, base_type_eq_semidec_is_dec; subst H
    | [ H : ?x = ?y :> base_type_code |- _ ] => subst x || subst y
    end.
  Local Ltac inversion_base_type_code := repeat inversion_base_type_code_step.

  (* lift [base_type_eq_semidec_transparent] across [flat_type] *)
  Fixpoint flat_type_eq_semidec_transparent (t1 t2 : flat_type) : option (t1 = t2)
    := match t1, t2 return option (t1 = t2) with
       | Tbase t1, Tbase t2
         => option_map (@f_equal _ _ Tbase _ _)
                       (base_type_eq_semidec_transparent t1 t2)
       | Tbase _, _ => None
       | Unit, Unit => Some eq_refl
       | Unit, _ => None
       | Prod A B, Prod A' B'
         => match flat_type_eq_semidec_transparent A A', flat_type_eq_semidec_transparent B B' with
           | Some p, Some q => Some (f_equal2 Prod p q)
           | _, _ => None
           end
       | Prod _ _, _ => None
       end.
  Definition type_eq_semidec_transparent (t1 t2 : type) : option (t1 = t2)
    := match t1, t2 return option (t1 = t2) with
       | Arrow A B, Arrow A' B'
         => match flat_type_eq_semidec_transparent A A', flat_type_eq_semidec_transparent B B' with
            | Some p, Some q => Some (f_equal2 (@Arrow base_type_code) p q)
            | _, _ => None
            end
       end.
  Lemma base_type_eq_semidec_transparent_refl t : base_type_eq_semidec_transparent t t = Some eq_refl.
  Proof using base_type_eq_semidec_is_dec.
    clear -base_type_eq_semidec_is_dec.
    pose proof (base_type_eq_semidec_is_dec t t).
    destruct (base_type_eq_semidec_transparent t t); intros; try intuition congruence.
    inversion_base_type_code; reflexivity.
  Qed.
  Lemma flat_type_eq_semidec_transparent_refl t : flat_type_eq_semidec_transparent t t = Some eq_refl.
  Proof using base_type_eq_semidec_is_dec.
    clear -base_type_eq_semidec_is_dec.
    induction t as [t | | A B IHt]; simpl; try reflexivity.
    { rewrite base_type_eq_semidec_transparent_refl; reflexivity. }
    { rewrite_hyp !*; reflexivity. }
  Qed.
  Lemma type_eq_semidec_transparent_refl t : type_eq_semidec_transparent t t = Some eq_refl.
  Proof using base_type_eq_semidec_is_dec.
    clear -base_type_eq_semidec_is_dec.
    destruct t; simpl; rewrite !flat_type_eq_semidec_transparent_refl; reflexivity.
  Qed.


  Definition op_beq' t1 tR t1' tR' (x : op t1 tR) (y : op t1' tR') : reified_Prop
    := match flat_type_eq_semidec_transparent t1 t1', flat_type_eq_semidec_transparent tR tR' with
       | Some p, Some q
         => match p in (_ = t1'), q in (_ = tR') return op t1' tR' -> _ with
           | eq_refl, eq_refl => fun y => op_beq _ _ x y
           end y
       | _, _ => rFalse
       end.

  (** While [Syntax.wff] is parameterized over a list of [sigT (fun t
      => var1 t * var2 t)], it is simpler here to make everything
      heterogenous, rather than trying to mix homogenous and
      heterogenous things.† Thus we parameterize our [reflect_wffT]
      over a list of [sigT (fun t => var1 (fst t) * var2 (snd t))],
      and write a function ([duplicate_type]) that turns the former
      into the latter.

      † This is an instance of the general theme that abstraction
        barriers are important.  Here we enforce the abstraction
        barrier that our input decision procedures are homogenous, but
        all of our internal code is strictly heterogenous.  This
        allows us to contain the conversions between homogenous and
        heterogenous code to a few functions: [op_beq'],
        [eq_type_and_var], [eq_type_and_const], and to the statement
        about [Syntax.wff] itself.  *)

  Definition eq_semidec_and_gen {T} (semidec : forall x y : T, option (x = y))
             (t t' : T) (f g : T -> Type) (R : forall t, f t -> g t -> reified_Prop)
             (x : f t) (x' : g t')
    : reified_Prop
    := match semidec t t' with
       | Some p
         => R _ (eq_rect _ f x _ p) x'
       | None => rFalse
       end.

  (* Here is where we use the generality of [pointed_Prop], to say
     that two things of type [var1] are equal, and two things of type
     [var2] are equal. *)
  Definition eq_type_and_var : sigT eP -> sigT eP -> reified_Prop
    := fun x y => (eq_semidec_and_gen
                  base_type_eq_semidec_transparent _ _ var1 var1 (fun _ => rEq) (fst (projT2 x)) (fst (projT2 y))
                /\ eq_semidec_and_gen
                     base_type_eq_semidec_transparent _ _ var2 var2 (fun _ => rEq) (snd (projT2 x)) (snd (projT2 y)))%reified_prop.

  Definition duplicate_type (ls : list (sigT (fun t => var1 t * var2 t)%type)) : list (sigT eP)
    := List.map (fun v => existT eP (projT1 v, projT1 v) (projT2 v)) ls.

  Lemma duplicate_type_app ls ls'
    : (duplicate_type (ls ++ ls') = duplicate_type ls ++ duplicate_type ls')%list.
  Proof using Type. apply List.map_app. Qed.
  Lemma duplicate_type_length ls
    : List.length (duplicate_type ls) = List.length ls.
  Proof using Type. apply List.map_length. Qed.
  Lemma duplicate_type_in t v ls
    : List.In (existT _ (t, t) v) (duplicate_type ls) -> List.In (existT _ t v) ls.
  Proof using base_type_eq_semidec_is_dec.
    unfold duplicate_type; rewrite List.in_map_iff.
    intros [ [? ?] [? ?] ].
    inversion_sigma; inversion_prod; inversion_base_type_code; subst; simpl.
    assumption.
  Qed.
  Lemma duplicate_type_not_in G t t0 v (H : base_type_eq_semidec_transparent t t0 = None)
    : ~List.In (existT _ (t, t0) v) (duplicate_type G).
  Proof using base_type_eq_semidec_is_dec.
    apply base_type_eq_semidec_is_dec in H.
    clear -H; intro H'.
    induction G as [|? ? IHG]; simpl in *; destruct H';
      intuition; congruence.
  Qed.

  Definition preflatten_binding_list2 t1 t2 : option (forall (x : interp_flat_type var1 t1) (y : interp_flat_type var2 t2), list (sigT (fun t => var1 t * var2 t)%type))
    := match flat_type_eq_semidec_transparent t1 t2 with
       | Some p
         => Some (fun x y
                 => let x := eq_rect _ (interp_flat_type var1) x _ p in
                   flatten_binding_list x y)
       | None => None
       end.
  Definition flatten_binding_list2 t1 t2 : option (forall (x : interp_flat_type var1 t1) (y : interp_flat_type var2 t2), list (sigT eP))
    := option_map (fun f x y => duplicate_type (f x y)) (preflatten_binding_list2 t1 t2).
  (** This function adds De Bruijn indices to variables *)
  Fixpoint natize_interp_flat_type var t (base : nat) (v : interp_flat_type var t) {struct t}
    : nat * interp_flat_type (fun t : base_type_code => nat * var t)%type t
    := match t return interp_flat_type var t -> nat * interp_flat_type _ t with
       | Prod A B => fun v => let ret := @natize_interp_flat_type _ A base (fst v) in
                          let base := fst ret in
                          let a := snd ret in
                          let ret := @natize_interp_flat_type _ B base (snd v) in
                          let base := fst ret in
                          let b := snd ret in
                          (base, (a, b))
       | Unit => fun v => (base, v)
       | Tbase t => fun v => (S base, (base, v))
       end v.
  Arguments natize_interp_flat_type {var t} _ _.
  Lemma length_natize_interp_flat_type1 {t} (base : nat) (v1 : interp_flat_type var1 t) (v2 : interp_flat_type var2 t)
    : fst (natize_interp_flat_type base v1) = length (flatten_binding_list v1 v2) + base.
  Proof using Type.
    revert base; induction t; simpl; [ reflexivity | reflexivity | ].
    intros; rewrite List.app_length, <- plus_assoc.
    rewrite_hyp <- ?*; reflexivity.
  Qed.
  Lemma length_natize_interp_flat_type2 {t} (base : nat) (v1 : interp_flat_type var1 t) (v2 : interp_flat_type var2 t)
    : fst (natize_interp_flat_type base v2) = length (flatten_binding_list v1 v2) + base.
  Proof using Type.
    revert base; induction t; simpl; [ reflexivity | reflexivity | ].
    intros; rewrite List.app_length, <- plus_assoc.
    rewrite_hyp <- ?*; reflexivity.
  Qed.

  (* This function strips De Bruijn indices from expressions *)
  Fixpoint unnatize_exprf {var t} (base : nat)
           (e : @Syntax.exprf base_type_code op (fun t => nat * var t)%type t)
    : @Syntax.exprf base_type_code op var t
    := match e in @Syntax.exprf _ _ _ t return Syntax.exprf _ _ t with
       | TT => TT
       | Var _ x => Var (snd x)
       | Op _ _ op args => Op op (@unnatize_exprf _ _ base args)
       | LetIn _ ex _ eC
         => LetIn (@unnatize_exprf _ _ base ex)
                  (fun x => let v := natize_interp_flat_type base x in
                            @unnatize_exprf _ _ (fst v) (eC (snd v)))
       | Pair _ x _ y
         => Pair (@unnatize_exprf _ _ base x) (@unnatize_exprf _ _ base y)
       end.
  Definition unnatize_expr {var t} (base : nat)
             (e : @Syntax.expr base_type_code op (fun t => nat * var t)%type t)
    : @Syntax.expr base_type_code op var t
    := match e in @Syntax.expr _ _ _ t return Syntax.expr _ _ t with
       | Abs tx tR f => Abs (fun x : interp_flat_type var tx =>
                               let v := natize_interp_flat_type (t:=tx) base x in
                               @unnatize_exprf _ _ (fst v) (f (snd v)))
       end.

  Fixpoint reflect_wffT (G : list (sigT (fun t => var1 (fst t) * var2 (snd t))%type))
           {t1 t2 : flat_type}
           (e1 : @exprf (fun t => nat * var1 t)%type t1)
           (e2 : @exprf (fun t => nat * var2 t)%type t2)
           {struct e1}
    : reified_Prop
    := match e1, e2 with
       | TT, TT => rTrue
       | TT, _ => rFalse
       | Var t0 x, Var t1 y
         => match beq_nat (fst x) (fst y), List.nth_error G (List.length G - S (fst x)) with
           | true, Some v => eq_type_and_var v (existT _ (t0, t1) (snd x, snd y))
           | _, _ => rFalse
           end
       | Var _ _, _ => rFalse
       | Op t1 tR op args, Op t1' tR' op' args'
         => (@reflect_wffT G t1 t1' args args' /\ op_beq' t1 tR t1' tR' op op')%reified_prop
       | Op _ _ _ _, _ => rFalse
       | LetIn tx ex tC eC, LetIn tx' ex' tC' eC'
         => let p := @reflect_wffT G tx tx' ex ex' in
            match @flatten_binding_list2 tx tx', flat_type_eq_semidec_transparent tC tC' with
           | Some G0, Some _
             => p
                /\ (∀ (x : interp_flat_type var1 tx) (x' : interp_flat_type var2 tx'),
                       @reflect_wffT (G0 x x' ++ G)%list _ _
                                     (eC (snd (natize_interp_flat_type (List.length G) x)))
                                     (eC' (snd (natize_interp_flat_type (List.length G) x'))))
           | _, _ => rFalse
           end
       | LetIn _ _ _ _, _ => rFalse
       | Pair tx ex ty ey, Pair tx' ex' ty' ey'
         => @reflect_wffT G tx tx' ex ex' /\ @reflect_wffT G ty ty' ey ey'
       | Pair _ _ _ _, _ => rFalse
       end%reified_prop.

    Definition reflect_wfT (G : list (sigT (fun t => var1 (fst t) * var2 (snd t))%type))
           {t1 t2 : type}
           (e1 : @expr (fun t => nat * var1 t)%type t1)
           (e2 : @expr (fun t => nat * var2 t)%type t2)
    : reified_Prop
    := match e1, e2 with
       | Abs tx tR f, Abs tx' tR' f'
         => match @flatten_binding_list2 tx tx', flat_type_eq_semidec_transparent tR tR' with
           | Some G0, Some _
             => ∀ (x : interp_flat_type var1 tx) (x' : interp_flat_type var2 tx'),
               @reflect_wffT (G0 x x' ++ G)%list _ _
                             (f (snd (natize_interp_flat_type (List.length G) x)))
                             (f' (snd (natize_interp_flat_type (List.length G) x')))
           | _, _ => rFalse
           end
       end%reified_prop.
End language.

Global Arguments reflect_wffT {_} _ {op} op_beq {var1 var2} G {t1 t2} _ _.
Global Arguments reflect_wfT {_} _ {op} op_beq {var1 var2} G {t1 t2} _ _.
Global Arguments unnatize_exprf {_ _ _ _} _ _.
Global Arguments unnatize_expr {_ _ _ _} _ _.
Global Arguments natize_interp_flat_type {_ _ t} _ _.