1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
|
(** * Exact reification of PHOAS Representation of Gallina *)
(** The reification procedure goes through [InputSyntax], which allows
judgmental equality of the denotation of the reified term. *)
Require Import Coq.Strings.String.
Require Import Crypto.Compilers.Syntax.
Require Import Crypto.Compilers.Relations.
Require Import Crypto.Compilers.InputSyntax.
Require Import Crypto.Util.Tuple.
Require Import Crypto.Util.Tactics.DebugPrint.
(*Require Import Crypto.Util.Tactics.PrintContext.*)
Require Import Crypto.Util.Tactics.Head.
Require Import Crypto.Util.Tactics.SubstLet.
Require Import Crypto.Util.LetIn.
Require Import Crypto.Util.Notations.
Require Import Crypto.Util.Tactics.TransparentAssert.
(** Change this with [Ltac reify_debug_level ::= constr:(1).] to get
more debugging. *)
Ltac reify_debug_level := constr:(0).
Module Import ReifyDebugNotations.
Export Compilers.Syntax.Notations.
Export Util.LetIn.
Open Scope string_scope.
End ReifyDebugNotations.
Tactic Notation "debug_enter_reify_idtac" string(funname) uconstr(e)
:= idtac funname "Attempting to reify:" e.
Tactic Notation "debug_leave_reify_success_idtac" string(funname) uconstr(e) uconstr(ret)
:= idtac funname "Success in reifying:" e "as" ret.
Tactic Notation "debug_leave_reify_failure_idtac" string(funname) uconstr(e)
:= idtac funname "Failure in reifying:" e.
Ltac check_debug_level_then_Set _ :=
let lvl := reify_debug_level in
lazymatch type of lvl with
| nat => constr:(Set)
| ?T => constr_run_tac ltac:(fun _ => idtac "Error: reify_debug_level should have type nat but instead has type" T)
end.
Ltac debug0 tac :=
constr_run_tac tac.
Ltac debug1 tac :=
let lvl := reify_debug_level in
lazymatch lvl with
| S _ => constr_run_tac tac
| _ => check_debug_level_then_Set ()
end.
Ltac debug2 tac :=
let lvl := reify_debug_level in
lazymatch lvl with
| S (S _) => constr_run_tac tac
| _ => check_debug_level_then_Set ()
end.
Ltac debug3 tac :=
let lvl := reify_debug_level in
lazymatch lvl with
| S (S (S _)) => constr_run_tac tac
| _ => check_debug_level_then_Set ()
end.
Ltac debug_enter_reify_flat_type e := debug2 ltac:(fun _ => debug_enter_reify_idtac "reify_flat_type:" e).
Ltac debug_enter_reify_type e := debug2 ltac:(fun _ => debug_enter_reify_idtac "reify_type:" e).
Ltac debug_enter_reifyf e := debug2 ltac:(fun _ => debug_enter_reify_idtac "reifyf:" e).
Ltac debug_leave_reifyf_success e ret := debug3 ltac:(fun _ => debug_leave_reify_success_idtac "reifyf:" e ret).
Ltac debug_leave_reifyf_failure e := debug0 ltac:(fun _ => debug_leave_reify_failure_idtac "reifyf:" e).
Tactic Notation "debug_reifyf_case" string(case)
:= debug3 ltac:(fun _ => idtac "reifyf:" case).
Ltac debug_enter_reify_abs e := debug2 ltac:(fun _ => debug_enter_reify_idtac "reify_abs:" e).
Class reify {varT} (var : varT) {eT} (e : eT) {T : Type} := Build_reify : T.
Definition reify_var_for_in_is base_type_code {T} (x : T) (t : flat_type base_type_code) {eT} (e : eT) := False.
Arguments reify_var_for_in_is _ {T} _ _ {eT} _.
(** [reify] assumes that operations can be reified via the [reify_op]
typeclass, which gets passed the type family of operations, the
expression which is headed by an operation, and expects resolution
to fill in a number of arguments (which [reifyf] will
automatically curry), as well as the reified operator.
We also assume that types can be reified via the [reify] typeclass
with arguments [reify type <type to be reified>]. *)
Class reify_op {opTF} (op_family : opTF) {opExprT} (opExpr : opExprT) (nargs : nat) {opT} (reified_op : opT)
:= Build_reify_op : True.
Ltac strip_type_cast term := lazymatch term with ?term' => term' end.
(** Override this to get a faster [reify_type] *)
Ltac base_reify_type T :=
strip_type_cast (_ : reify type T).
Ltac reify_base_type T := base_reify_type T.
Ltac reify_flat_type T :=
let dummy := debug_enter_reify_flat_type T in
lazymatch T with
| prod ?A ?B
=> let a := reify_flat_type A in
let b := reify_flat_type B in
constr:(@Prod _ a b)
| Syntax.interp_type _ (Tflat ?T)
=> T
| Syntax.interp_flat_type _ ?T
=> T
| _
=> let v := reify_base_type T in
constr:(@Tbase _ v)
end.
Ltac reify_input_type T :=
let dummy := debug_enter_reify_type T in
lazymatch T with
| (?A -> ?B)%type
=> let a := reify_flat_type A in
let b := reify_input_type B in
constr:(@Arrow _ a b)
| InputSyntax.interp_type _ ?T
=> T
end.
Ltac reify_type T :=
let dummy := debug_enter_reify_type T in
lazymatch T with
| (?A -> ?B)%type
=> let a := reify_flat_type A in
let b := reify_flat_type B in
constr:(@Syntax.Arrow _ a b)
| Syntax.interp_type _ ?T
=> T
end.
Ltac reifyf_var x mkVar :=
lazymatch goal with
| _ : reify_var_for_in_is _ x ?t ?v |- _ => mkVar t v
| _ => lazymatch x with
| fst ?x' => reifyf_var x' ltac:(fun t v => lazymatch t with
| Prod ?A ?B => mkVar A (fst v)
end)
| snd ?x' => reifyf_var x' ltac:(fun t v => lazymatch t with
| Prod ?A ?B => mkVar B (snd v)
end)
end
end.
Inductive reify_result_helper :=
| finished_value {T} (res : T)
| context_value {TF} (resF : TF) {argT} (arg : argT)
| op_info {T} (res : T)
| reification_unsuccessful.
(** Override this to get a faster [reify_op] *)
Ltac base_reify_op op op_head expr :=
let r := constr:(_ : reify_op op op_head _ _) in
type of r.
Ltac reify_op op op_head expr :=
let t := base_reify_op op op_head expr in
constr:(op_info t).
Ltac debug_enter_reify_rec :=
let lvl := reify_debug_level in
match lvl with
| S _ => idtac_goal
| _ => idtac
end.
Ltac debug_leave_reify_rec e :=
let lvl := reify_debug_level in
match lvl with
| S _ => idtac "<infomsg>reifyf success:" e "</infomsg>"
| _ => idtac
end.
Ltac reifyf base_type_code interp_base_type op var e :=
let reify_rec e := reifyf base_type_code interp_base_type op var e in
let mkLetIn ex eC := constr:(LetIn (base_type_code:=base_type_code) (interp_base_type:=interp_base_type) (op:=op) (var:=var) ex eC) in
let mkPair ex ey := constr:(Pair (base_type_code:=base_type_code) (interp_base_type:=interp_base_type) (op:=op) (var:=var) ex ey) in
let mkVar T ex := constr:(Var (base_type_code:=base_type_code) (interp_base_type:=interp_base_type) (op:=op) (var:=var) (t:=T) ex) in
let mkConst T ex := constr:(Const (base_type_code:=base_type_code) (interp_base_type:=interp_base_type) (op:=op) (var:=var) (t:=T) ex) in
let mkOp T retT op_code args := constr:(Op (base_type_code:=base_type_code) (interp_base_type:=interp_base_type) (op:=op) (var:=var) (t1:=T) (tR:=retT) op_code args) in
let mkMatchPair tC ex eC := constr:(MatchPair (base_type_code:=base_type_code) (interp_base_type:=interp_base_type) (op:=op) (var:=var) (tC:=tC) ex eC) in
let mkFst ex := constr:(Fst (base_type_code:=base_type_code) (interp_base_type:=interp_base_type) (op:=op) (var:=var) ex) in
let mkSnd ex := constr:(Snd (base_type_code:=base_type_code) (interp_base_type:=interp_base_type) (op:=op) (var:=var) ex) in
let reify_pretag := constr:(@exprf base_type_code interp_base_type op) in
let reify_tag := constr:(reify_pretag var) in
let dummy := debug_enter_reifyf e in
match constr:(Set) with
| _ =>
let ret :=
lazymatch e with
| let x := ?ex in @?eC x =>
let dummy := debug_reifyf_case "let in" in
let ex := reify_rec ex in
let eC := reify_rec eC in
mkLetIn ex eC
| (dlet x := ?ex in @?eC x) =>
let dummy := debug_reifyf_case "dlet in" in
let ex := reify_rec ex in
let eC := reify_rec eC in
mkLetIn ex eC
| pair ?a ?b =>
let dummy := debug_reifyf_case "pair" in
let a := reify_rec a in
let b := reify_rec b in
mkPair a b
| (fun x : ?T => ?C) =>
let dummy := debug_reifyf_case "fun" in
let t := reify_flat_type T in
(* Work around Coq 8.5 and 8.6 bug *)
(* <https://coq.inria.fr/bugs/show_bug.cgi?id=4998> *)
(* Avoid re-binding the Gallina variable referenced by Ltac [x] *)
(* even if its Gallina name matches a Ltac in this tactic. *)
let maybe_x := fresh x in
let not_x := fresh x in
let C' := match constr:(Set) with
| _ => constr:(fun (x : T) (not_x : var t) (_ : reify_var_for_in_is base_type_code x t not_x) =>
(_ : reify reify_tag C)) (* [C] here is an open term that references "x" by name *)
| _ => constr_run_tac_fail ltac:(fun _ => idtac "Error: reifyf: Failed to reify by typeclasses:" e)
end in
match constr:(Set) with
| _ => lazymatch C'
with fun _ v _ => @?C v => C end
| _ => constr_run_tac_fail ltac:(fun _ => idtac "Error: reifyf: Failed to eliminate function dependencies of:" C')
end
| match ?ev with pair a b => @?eC a b end =>
let dummy := debug_reifyf_case "matchpair" in
let T := type of eC in
let t := (let T := match (eval cbv beta in T) with _ -> _ -> ?T => T end in reify_flat_type T) in
let v := reify_rec ev in
let C := reify_rec eC in
let ret := mkMatchPair t v C in
ret
| @fst ?A ?B ?ev =>
let dummy := debug_reifyf_case "fst" in
let v := reify_rec ev in
mkFst v
| @snd ?A ?B ?ev =>
let dummy := debug_reifyf_case "snd" in
let v := reify_rec ev in
mkSnd v
| ?x =>
let dummy := debug_reifyf_case "generic" in
let t := lazymatch type of x with ?t => reify_flat_type t end in
let retv := match constr:(Set) with
| _ => let retv := reifyf_var x mkVar in constr:(finished_value retv)
| _ => let op_head := head x in
reify_op op op_head x
| _ => lazymatch x with
| ?F ?args
=> lazymatch goal with
| [ rF : forall x not_x, reify reify_tag (F x) |- _ ]
=> constr:(context_value rF args)
| [ rF : forall var' x (not_x : var' _), reify (reify_pretag var') (F x) |- _ ]
=> constr:(context_value (rF var) args)
end
end
| _ => let c := mkConst t x in
constr:(finished_value c)
| _ => constr:(reification_unsuccessful)
end in
lazymatch retv with
| finished_value ?v => v
| context_value ?rFH ?eargs
=> let dummy := debug_reifyf_case "context_value" in
let args := reify_rec eargs in
let F_head := head rFH in
let F := lazymatch (eval cbv beta delta [F_head] in rFH) with
| fun _ => ?C => C
end in
mkLetIn args F
| op_info (reify_op _ _ ?nargs ?op_code)
=> let tR := (let tR := type of x in reify_flat_type tR) in
lazymatch nargs with
| 1%nat
=> lazymatch x with
| ?f ?x0
=> let a0T := (let t := type of x0 in reify_flat_type t) in
let a0 := reify_rec x0 in
mkOp a0T tR op_code a0
end
| 2%nat
=> lazymatch x with
| ?f ?x0 ?x1
=> let a0T := (let t := type of x0 in reify_flat_type t) in
let a0 := reify_rec x0 in
let a1T := (let t := type of x1 in reify_flat_type t) in
let a1 := reify_rec x1 in
let args := mkPair a0 a1 in
mkOp (@Prod _ a0T a1T) tR op_code args
end
| 3%nat
=> lazymatch x with
| ?f ?x0 ?x1 ?x2
=> let a0T := (let t := type of x0 in reify_flat_type t) in
let a0 := reify_rec x0 in
let a1T := (let t := type of x1 in reify_flat_type t) in
let a1 := reify_rec x1 in
let a2T := (let t := type of x2 in reify_flat_type t) in
let a2 := reify_rec x2 in
let args := let a01 := mkPair a0 a1 in mkPair a01 a2 in
mkOp (@Prod _ (@Prod _ a0T a1T) a2T) tR op_code args
end
| 4%nat
=> lazymatch x with
| ?f ?x0 ?x1 ?x2 ?x3
=> let a0T := (let t := type of x0 in reify_flat_type t) in
let a0 := reify_rec x0 in
let a1T := (let t := type of x1 in reify_flat_type t) in
let a1 := reify_rec x1 in
let a2T := (let t := type of x2 in reify_flat_type t) in
let a2 := reify_rec x2 in
let a3T := (let t := type of x3 in reify_flat_type t) in
let a3 := reify_rec x3 in
let args := let a01 := mkPair a0 a1 in let a012 := mkPair a01 a2 in mkPair a012 a3 in
mkOp (@Prod _ (@Prod _ (@Prod _ a0T a1T) a2T) a3T) tR op_code args
end
| _ => constr_run_tac_fail ltac:(fun _ => idtac "Error: Unsupported number of operation arguments in reifyf:" nargs)
end
| reification_unsuccessful
=> constr_run_tac_fail ltac:(fun _ => idtac "Error: Failed to reify:" x)
end
end in
let dummy := debug_leave_reifyf_success e ret in
ret
| _ => debug_leave_reifyf_failure e
end.
Hint Extern 0 (reify (@exprf ?base_type_code ?interp_base_type ?op ?var) ?e)
=> (debug_enter_reify_rec; let e := reifyf base_type_code interp_base_type op var e in debug_leave_reify_rec e; eexact e)
: typeclass_instances.
(** For reification including [Abs] *)
Class reify_abs {varT} (var : varT) {eT} (e : eT) {T : Type} := Build_reify_abs : T.
Ltac reify_abs base_type_code interp_base_type op var e :=
let reify_rec e := reify_abs base_type_code interp_base_type op var e in
let reifyf_term e := reifyf base_type_code interp_base_type op var e in
let mkReturn ef := constr:(Return (base_type_code:=base_type_code) (interp_base_type:=interp_base_type) (op:=op) (var:=var) ef) in
let mkAbs src ef := constr:(Abs (base_type_code:=base_type_code) (interp_base_type:=interp_base_type) (op:=op) (var:=var) (src:=src) ef) in
let reify_pretag := constr:(@exprf base_type_code interp_base_type op) in
let reify_tag := constr:(reify_pretag var) in
let dummy := debug_enter_reify_abs e in
lazymatch goal with
| [ re := ?rev : forall var' (x : ?T) (not_x : var' _), reify (reify_pretag var') (e x) |- _ ] =>
(* fast path *)
let t := reify_flat_type T in
let F := lazymatch (eval cbv beta in (rev var)) with
| fun _ => ?C => C
end in
mkAbs t F
| _ =>
lazymatch e with
| (fun x : ?T => ?C) =>
let t := reify_flat_type T in
(* Work around Coq 8.5 and 8.6 bug *)
(* <https://coq.inria.fr/bugs/show_bug.cgi?id=4998> *)
(* Avoid re-binding the Gallina variable referenced by Ltac [x] *)
(* even if its Gallina name matches a Ltac in this tactic. *)
let maybe_x := fresh x in
let not_x := fresh x in
let C' := match constr:(Set) with
| _ => constr:(fun (x : T) (not_x : var t) (_ : reify_var_for_in_is base_type_code x t not_x) =>
(_ : reify_abs reify_tag C)) (* [C] here is an open term that references "x" by name *)
| _ => constr_run_tac_fail ltac:(fun _ => idtac "Error: reify_abs: Failed to reify by typeclasses:" e)
end in
let C := match constr:(Set) with
| _ => lazymatch C'
with fun _ v _ => @?C v => C end
| _ => constr_run_tac_fail ltac:(fun _ => idtac "Error: reify_abs: Failed to eliminate function dependencies of:" C')
end in
mkAbs t C
| ?x =>
let xv := reifyf_term x in
mkReturn xv
end
end.
Hint Extern 0 (reify_abs (@exprf ?base_type_code ?interp_base_type ?op ?var) ?e)
=> (debug_enter_reify_rec; let e := reify_abs base_type_code interp_base_type op var e in debug_leave_reify_rec e; eexact e) : typeclass_instances.
Ltac Reify' base_type_code interp_base_type op e :=
lazymatch constr:(fun (var : flat_type base_type_code -> Type) => (_ : reify_abs (@exprf base_type_code interp_base_type op var) e)) with
(fun var => ?C) => constr:(fun (var : flat_type base_type_code -> Type) => C) (* copy the term but not the type cast *)
end.
Ltac Reify base_type_code interp_base_type op make_const e :=
let r := Reify' base_type_code interp_base_type op e in
let r := lazymatch type of r with
| forall var, exprf _ _ _ _ => constr:(fun var => Abs (src:=Unit) (fun _ => r var))
| _ => r
end in
constr:(@InputSyntax.Compile base_type_code interp_base_type op make_const _ r).
Ltac rhs_of_goal :=
lazymatch goal with
| [ |- ?R ?LHS ?RHS ] => RHS
| [ |- forall x, ?R (@?LHS x) (@?RHS x) ] => RHS
end.
Ltac transitivity_tt term :=
first [ transitivity term
| transitivity (term tt)
| let x := fresh in intro x; transitivity (term x); revert x ].
Ltac Reify_rhs_gen Reify prove_interp_compile_correct interp_op try_tac :=
let rhs := rhs_of_goal in
let RHS := Reify rhs in
let RHS' := (eval vm_compute in RHS) in
transitivity_tt (Syntax.Interp interp_op RHS');
[
| transitivity_tt (Syntax.Interp interp_op RHS);
[ lazymatch goal with
| [ |- ?R ?x ?y ]
=> cut (x = y)
| [ |- forall k, ?R (?x k) (?y k) ]
=> cut (x = y)
end;
[ let H := fresh in
intro H; rewrite H; reflexivity
| apply f_equal; vm_compute; reflexivity ]
| intros; etransitivity; (* first we strip off the [InputSyntax.Compile]
bit; Coq is bad at inferring the type, so we
help it out by providing it *)
[ cbv [InputSyntax.compilet];
prove_interp_compile_correct ()
| try_tac
ltac:(fun _
=> (* now we unfold the interpretation function,
including the parameterized bits; we assume that
[hnf] is enough to unfold the interpretation
functions that we're parameterized over. *)
clear;
abstract (
lazymatch goal with
| [ |- context[@InputSyntax.Interp ?base_type_code ?interp_base_type ?op ?interp_op ?t ?e] ]
=> let interp_base_type' := (eval hnf in interp_base_type) in
let interp_op' := (eval hnf in interp_op) in
change interp_base_type with interp_base_type';
change interp_op with interp_op'
end;
subst_let;
cbv iota beta delta [InputSyntax.Interp interp_type interp_type_gen interp_type_gen_hetero interp_flat_type interp interpf InputSyntax.Fst InputSyntax.Snd]; reflexivity)) ] ] ].
Ltac prove_compile_correct_using tac :=
fun _ => intros;
lazymatch goal with
| [ |- @Syntax.Interp ?base_type_code ?interp_base_type ?op ?interp_op _ (@Compile _ _ _ ?make_const (InputSyntax.Arrow ?src (Tflat ?dst)) ?e) ?x = _ ]
=> apply (fun pf => @InputSyntax.Compile_correct base_type_code interp_base_type op make_const interp_op pf src dst e x);
solve [ tac () ]
| [ |- @Syntax.Interp ?base_type_code ?interp_base_type ?op ?interp_op _ (@Compile _ _ _ ?make_const (Tflat ?T) ?e) ?x = _ ]
=> apply (fun pf => @InputSyntax.Compile_flat_correct_flat base_type_code interp_base_type op make_const interp_op pf T e x);
solve [ tac () ]
end.
Ltac prove_compile_correct :=
prove_compile_correct_using
ltac:(fun _ => let T := fresh in intro T; destruct T; reflexivity).
Ltac Reify_rhs base_type_code interp_base_type op make_const interp_op :=
Reify_rhs_gen
ltac:(Reify base_type_code interp_base_type op make_const)
prove_compile_correct
interp_op
ltac:(fun tac => tac ()).
(** Reification of context variables of the form [F := _ :
Syntax.interp_type _ _] *)
Ltac unique_reify_context_variable base_type_code interp_base_type op F Fbody rT :=
let reify_pretag := constr:(@exprf base_type_code interp_base_type op) in
lazymatch goal with
| [ H : forall var x not_x, reify _ (F x) |- _ ]
=> fail
| _
=> let H' := fresh in
let src := lazymatch rT with Syntax.Arrow ?src ?dst => src end in
lazymatch Fbody with
| fun x : ?X => ?Fbody'
=> let maybe_x := fresh x in
let not_x := fresh maybe_x in
let rF := lazymatch constr:(fun var' (x : X) (not_x : var' src) (_ : reify_var_for_in_is base_type_code x src not_x)
=> (_ : reify (reify_pretag var') Fbody'))
with
| fun (var' : ?VAR) (x : ?X) (v : ?V) _ => ?C
=> constr:(fun (var' : VAR) (v : V) => C)
end in
let F' := fresh F in
pose rF as F';
pose ((fun var (x : X) => F' var) : forall var (x : X) (not_x : var src), reify (reify_pretag var) (F x)) as H';
cbv beta in (value of H')
end
end.
Ltac prereify_context_variables interp_base_type :=
(** N.B. this assumes that [interp_base_type] is a transparent
definition; minor reorganization may be needed if this is changed
(moving the burden of reifying [interp_base_type T] to
[reify_base_type], rather than keeping it here) *)
cbv beta iota delta [interp_base_type] in *.
Ltac reify_context_variable base_type_code interp_base_type op :=
(** [match reverse] so that we respect the chain of dependencies in
context variables; otherwise we're going to be trying the last
context variable many times, and bottlenecking there. *)
match reverse goal with
| [ F := ?Fbody : Syntax.interp_type _ ?rT |- _ ]
=> unique_reify_context_variable base_type_code interp_base_type op F Fbody rT
end.
Ltac lazy_reify_context_variable base_type_code interp_base_type op :=
lazymatch reverse goal with
| [ F := ?Fbody : Syntax.interp_type _ ?rT |- _ ]
=> unique_reify_context_variable base_type_code interp_base_type op F Fbody rT
end.
Ltac reify_context_variables base_type_code interp_base_type op :=
prereify_context_variables interp_base_type;
repeat reify_context_variable base_type_code interp_base_type op.
|