1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
|
(** * Linearize: Place all and only operations in let binders *)
Require Import Crypto.Compilers.Syntax.
Require Import Crypto.Compilers.Relations.
Require Import Crypto.Compilers.InterpProofs.
Require Import Crypto.Compilers.Linearize.
Require Import Crypto.Util.Sigma Crypto.Util.Prod.
Require Import Crypto.Util.Tactics.BreakMatch.
Require Import Crypto.Util.Tactics.SpecializeBy.
Local Open Scope ctype_scope.
Section language.
Context {base_type_code : Type}
{interp_base_type : base_type_code -> Type}
{op : flat_type base_type_code -> flat_type base_type_code -> Type}
{interp_op : forall src dst, op src dst -> interp_flat_type interp_base_type src -> interp_flat_type interp_base_type dst}.
Local Notation flat_type := (flat_type base_type_code).
Local Notation type := (type base_type_code).
Local Notation interp_type := (interp_type interp_base_type).
Local Notation interp_flat_type := (interp_flat_type interp_base_type).
Local Notation exprf := (@exprf base_type_code op).
Local Notation expr := (@expr base_type_code op).
Local Notation Expr := (@Expr base_type_code op).
Local Hint Extern 1 => eapply interpf_SmartVarVarf.
Local Ltac t_fin :=
repeat match goal with
| _ => reflexivity
| _ => progress unfold LetIn.Let_In
| _ => progress simpl in *
| _ => progress intros
| _ => progress inversion_sigma
| _ => progress inversion_prod
| _ => solve [ intuition eauto | eauto | symmetry; eauto ]
| _ => apply (f_equal (interp_op _ _ _))
| _ => apply (f_equal2 (@pair _ _))
| _ => progress specialize_by assumption
| _ => progress subst
| [ H : context[List.In _ (_ ++ _)] |- _ ] => setoid_rewrite List.in_app_iff in H
| [ H : or _ _ |- _ ] => destruct H
| _ => progress break_match
| _ => rewrite <- !surjective_pairing
| [ H : ?x = _, H' : context[?x] |- _ ] => rewrite H in H'
| [ H : _ |- _ ] => apply H
| [ H : _ |- _ ] => rewrite H
| [ H : _ |- _ ] => erewrite H by reflexivity
| _ => rewrite interpf_SmartVarf
end.
Lemma interpf_under_letsf' let_bind_op_args bind_pairs {t tC} (ex : exprf t) (eC : _ -> exprf tC)
(eC_resp : forall x y,
x = interpf interp_op y
-> interpf interp_op (eC (inr y)) = interpf interp_op (eC (inl x)))
: interpf interp_op (under_letsf' let_bind_op_args bind_pairs ex eC)
= let x := interpf interp_op ex in interpf interp_op (eC (inl x)).
Proof using Type.
clear -eC_resp; revert bind_pairs.
induction ex; t_fin.
Qed.
Lemma interpf_under_letsf let_bind_op_args {t tC} (ex : exprf t) (eC : _ -> exprf tC)
(eC_resp : forall x y,
interpf interp_op x = interpf interp_op y
-> interpf interp_op (eC x) = interpf interp_op (eC y))
: interpf interp_op (under_letsf let_bind_op_args ex eC)
= let x := interpf interp_op ex in interpf interp_op (eC (SmartMap.SmartVarf x)).
Proof using Type.
unfold under_letsf; rewrite interpf_under_letsf'; t_fin.
Qed.
Section gen.
Context (let_bind_op_args : bool).
Lemma interpf_linearizef_gen {t} e
: interpf interp_op (linearizef_gen let_bind_op_args (t:=t) e) = interpf interp_op e.
Proof using Type.
clear.
induction e;
repeat first [ progress rewrite ?interpf_under_letsf, ?interpf_SmartVarf
| progress simpl
| t_fin ].
Qed.
Local Hint Resolve interpf_linearizef_gen.
Lemma interp_linearize_gen {t} e
: forall x, interp interp_op (linearize_gen let_bind_op_args (t:=t) e) x = interp interp_op e x.
Proof using Type.
induction e; simpl; eauto.
Qed.
Lemma InterpLinearize_gen {t} (e : Expr t)
: forall x, Interp interp_op (Linearize_gen let_bind_op_args e) x = Interp interp_op e x.
Proof using Type.
unfold Interp, Linearize_gen.
eapply interp_linearize_gen.
Qed.
Lemma InterpLinearize_gen_ind {t} (P : _ -> Prop) {e : Expr t} {x}
: P (Interp interp_op e x) -> P (Interp interp_op (Linearize_gen let_bind_op_args e) x).
Proof using Type. rewrite InterpLinearize_gen; exact id. Qed.
End gen.
Definition interpf_linearizef {t} e
: interpf interp_op (linearizef (t:=t) e) = interpf interp_op e
:= interpf_linearizef_gen _ e.
Definition interpf_a_normalf {t} e
: interpf interp_op (a_normalf (t:=t) e) = interpf interp_op e
:= interpf_linearizef_gen _ e.
Definition interp_linearize {t} e
: forall x, interp interp_op (linearize (t:=t) e) x = interp interp_op e x
:= interp_linearize_gen _ e.
Definition interp_a_normal {t} e
: forall x, interp interp_op (a_normal (t:=t) e) x = interp interp_op e x
:= interp_linearize_gen _ e.
Definition InterpLinearize {t} (e : Expr t)
: forall x, Interp interp_op (Linearize e) x = Interp interp_op e x
:= InterpLinearize_gen _ e.
Definition InterpANormal {t} (e : Expr t)
: forall x, Interp interp_op (ANormal e) x = Interp interp_op e x
:= InterpLinearize_gen _ e.
Definition InterpLinearize_ind {t} (P : _ -> Prop) {e : Expr t} {x}
: P (Interp interp_op e x) -> P (Interp interp_op (Linearize e) x)
:= InterpLinearize_gen_ind _ P.
Definition InterpANormal_ind {t} (P : _ -> Prop) {e : Expr t} {x}
: P (Interp interp_op e x) -> P (Interp interp_op (ANormal e) x)
:= InterpLinearize_gen_ind _ P.
End language.
Hint Rewrite @interpf_under_letsf : reflective_interp.
Hint Rewrite @InterpLinearize_gen @interp_linearize_gen @interpf_linearizef_gen @InterpLinearize @interp_linearize @interpf_linearizef @InterpANormal @interp_a_normal @interpf_a_normalf : reflective_interp.
|