1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
|
Require Import Crypto.Compilers.Syntax.
Require Import Crypto.Compilers.SmartMap.
Require Import Crypto.Compilers.WfProofs.
Require Import Crypto.Compilers.Wf.
Require Import Crypto.Compilers.WfInversion.
Require Import Crypto.Compilers.ExprInversion.
Require Import Crypto.Compilers.Rewriter.
Require Import Crypto.Compilers.RewriterWf.
Require Import Crypto.Compilers.InlineConstAndOpByRewrite.
Require Import Crypto.Util.Tactics.BreakMatch.
Require Import Crypto.Util.Tactics.DestructHead.
Require Import Crypto.Util.Option.
Module Export Rewrite.
Section language.
Context {base_type_code : Type}
{op : flat_type base_type_code -> flat_type base_type_code -> Type}
{interp_base_type : base_type_code -> Type}.
Local Notation flat_type := (flat_type base_type_code).
Local Notation type := (type base_type_code).
Local Notation Tbase := (@Tbase base_type_code).
Local Notation exprf := (@exprf base_type_code op).
Local Notation expr := (@expr base_type_code op).
Local Notation Expr := (@Expr base_type_code op).
Local Notation wff := (@wff base_type_code op).
Local Notation wf := (@wf base_type_code op).
Local Hint Constructors Wf.wff.
Section with_var.
Context {interp_op1 : forall s d, op s d -> interp_flat_type interp_base_type s -> interp_flat_type interp_base_type d}
{interp_op2 : forall s d, op s d -> interp_flat_type interp_base_type s -> interp_flat_type interp_base_type d}
{var1 var2 : base_type_code -> Type}
{invert_Const1 : forall s d, op s d -> @exprf var1 s -> option (interp_flat_type interp_base_type d)}
{invert_Const2 : forall s d, op s d -> @exprf var2 s -> option (interp_flat_type interp_base_type d)}
{Const1 : forall t, interp_base_type t -> @exprf var1 (Tbase t)}
{Const2 : forall t, interp_base_type t -> @exprf var2 (Tbase t)}
(Hinterp_op : forall s d opv args, interp_op1 s d opv args = interp_op2 s d opv args)
(Hinvert_Const : forall s d opv G e1 e2, wff G e1 e2 -> invert_Const1 s d opv e1 = invert_Const2 s d opv e2)
(HConst : forall t v G, wff G (Const1 t v) (Const2 t v)).
Local Ltac t_fin :=
repeat first [ intro
| exfalso; assumption
| exact I
| progress destruct_head'_prod
| progress destruct_head'_and
| progress destruct_head'_sig
| progress subst
| rewrite Hinterp_op
| rewrite SmartPairf_Pair
| tauto
| solve [ auto with nocore
| apply wff_SmartPairf_SmartVarfMap_same; auto ]
| progress simpl in *
| constructor
| solve [ eauto ]
| progress inversion_wf_constr
| match goal with
| [ H : invert_PairsConst _ _ = ?x, H' : invert_PairsConst _ _ = ?y |- _ ]
=> assert (x = y)
by (rewrite <- H, <- H'; eapply wff_invert_PairsConst; [ eauto | eassumption ]);
inversion_option;
progress (subst || congruence)
end
| break_innermost_match_hyps_step
| break_innermost_match_step ].
Lemma wff_rewrite_for_const_and_op G s d opc args1 args2
(Hwf : wff G (var1:=var1) (var2:=var2) args1 args2)
: wff G
(rewrite_for_const_and_op interp_op1 invert_Const1 Const1 s d opc args1)
(rewrite_for_const_and_op interp_op2 invert_Const2 Const2 s d opc args2).
Proof using HConst Hinterp_op Hinvert_Const. cbv [rewrite_for_const_and_op]; t_fin. Qed.
Lemma wff_inline_const_and_op_genf {t} e1 e2 G
(wf : wff G e1 e2)
: @wff var1 var2 G t
(inline_const_and_op_genf interp_op1 invert_Const1 Const1 e1)
(inline_const_and_op_genf interp_op2 invert_Const2 Const2 e2).
Proof using HConst Hinvert_Const Hinterp_op.
unfold inline_const_and_op_genf;
eauto using wff_rewrite_opf, wff_rewrite_for_const_and_op.
Qed.
Lemma wff_inline_const_and_op_gen {t} e1 e2
(Hwf : wf e1 e2)
: @wf var1 var2 t
(inline_const_and_op_gen interp_op1 invert_Const1 Const1 e1)
(inline_const_and_op_gen interp_op2 invert_Const2 Const2 e2).
Proof using HConst Hinvert_Const Hinterp_op.
unfold inline_const_and_op_gen;
eauto using wf_rewrite_op, wff_rewrite_for_const_and_op.
Qed.
End with_var.
Section const_unit.
Context {interp_op1 : forall s d, op s d -> interp_flat_type interp_base_type s -> interp_flat_type interp_base_type d}
{interp_op2 : forall s d, op s d -> interp_flat_type interp_base_type s -> interp_flat_type interp_base_type d}
{var1 var2 : base_type_code -> Type}
(OpConst1 OpConst2 : forall t, interp_base_type t -> op Unit (Tbase t))
(HOpConst : forall t v, OpConst1 t v = OpConst2 t v)
(Hinterp_op : forall s d opv args, interp_op1 s d opv args = interp_op2 s d opv args).
Lemma wff_invert_ConstUnit
s d opv e1 e2
: @invert_ConstUnit _ _ _ interp_op1 var1 s d opv e1
= @invert_ConstUnit _ _ _ interp_op2 var2 s d opv e2.
Proof using Hinterp_op.
cbv [invert_ConstUnit invert_ConstUnit']; destruct s; f_equal; auto.
Qed.
Lemma wff_Const {t} v G
: wff G (@Const _ _ _ var1 OpConst1 t v) (@Const _ _ _ var2 OpConst2 t v).
Proof using HOpConst.
cbv [Const]; rewrite HOpConst; auto.
Qed.
Lemma wff_inline_const_and_opf {t} e1 e2 G
(wf : wff G e1 e2)
: @wff var1 var2 G t
(inline_const_and_opf interp_op1 OpConst1 e1)
(inline_const_and_opf interp_op2 OpConst2 e2).
Proof using HOpConst Hinterp_op.
unfold inline_const_and_opf;
eauto using wff_inline_const_and_op_genf, wff_invert_ConstUnit, wff_Const.
Qed.
Lemma wff_inline_const_and_op {t} e1 e2
(Hwf : wf e1 e2)
: @wf var1 var2 t (inline_const_and_op interp_op1 OpConst1 e1) (inline_const_and_op interp_op2 OpConst2 e2).
Proof using HOpConst Hinterp_op.
unfold inline_const_and_op;
eauto using wff_inline_const_and_op_gen, wff_invert_ConstUnit, wff_Const.
Qed.
End const_unit.
Lemma Wf_InlineConstAndOpGen
{interp_op}
(invert_Const : forall var s d, op s d -> @exprf var s -> option (interp_flat_type interp_base_type d))
(Const : forall var t, interp_base_type t -> @exprf var (Tbase t))
(Hinvert_Const
: forall var1 var2 s d opv G e1 e2,
wff G e1 e2
-> invert_Const var1 s d opv e1 = invert_Const var2 s d opv e2)
(HConst
: forall var1 var2 t v G,
wff G (Const var1 t v) (Const var2 t v))
{t} (e : Expr t)
(Hwf : Wf e)
: Wf (InlineConstAndOpGen interp_op invert_Const Const e).
Proof using Type.
unfold InlineConstAndOpGen;
eauto using Wf_RewriteOp, wff_rewrite_for_const_and_op.
Qed.
Lemma Wf_InlineConstAndOp
{interp_op}
(OpConst : forall t, interp_base_type t -> op Unit (Tbase t))
{t} (e : Expr t)
(Hwf : Wf e)
: Wf (InlineConstAndOp interp_op OpConst e).
Proof using Type.
unfold InlineConstAndOp;
eauto using Wf_RewriteOp, wff_rewrite_for_const_and_op, wff_Const.
Qed.
End language.
Hint Resolve Wf_InlineConstAndOpGen Wf_InlineConstAndOp : wf.
End Rewrite.
|