aboutsummaryrefslogtreecommitdiff
path: root/src/Assembly/StringConversion.v
blob: 9eeb0f2cab719de424de672835d1e50a676c8df4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
Require Export Language Conversion.
Require Import QhasmCommon QhasmEvalCommon QhasmUtil Qhasm.
Require Export String Ascii.
Require Import NArith NPeano.
Require Export Bedrock.Word.

Module QhasmString <: Language.
  Definition Program := string.
  Definition State := unit.

  Definition evaluatesTo (p: Program) (i o: State): Prop := True.
End QhasmString.

Module StringConversion <: Conversion Qhasm QhasmString.
  Import Qhasm ListNotations.

  (* The easy one *)
  Definition convertState (st: QhasmString.State): option Qhasm.State := None.

  (* Hexadecimal Primitives *)

  Section Hex.
    Local Open Scope string_scope.

    Definition natToDigit (n : nat) : string :=
      match n with
        | 0  => "0"  | 1  => "1"  | 2  => "2"  | 3  => "3"
        | 4  => "4"  | 5  => "5"  | 6  => "6"  | 7  => "7"
        | 8  => "8"  | 9  => "9"  | 10 => "A"  | 11 => "B"
        | 12 => "C"  | 13 => "D"  | 14 => "E"  | _  => "F"
      end.

    Fixpoint nToHex' (n: N) (digitsLeft: nat): string :=
        match digitsLeft with
        | O => ""
        | S nextLeft =>
            match n with
            | N0 => "0"
            | _ => (nToHex' (N.shiftr_nat n 4) nextLeft) ++
                (natToDigit (N.to_nat (N.land n 15%N)))
            end
        end.

    Definition nToHex (n: N): string :=
      let size := (N.size n) in
      let div4 := fun x => (N.shiftr x 2%N) in
      let size' := (size + 4 - (N.land size 3))%N in
      nToHex' n (N.to_nat (div4 size')).

  End Hex.

  (* Conversion of elements *)

  Section Elements.
    Local Open Scope string_scope.
    Import Util.

    Definition nameSuffix (n: nat): string := 
      (nToHex (N.of_nat n)).

    Coercion wordToString {n} (w: word n): string := 
      "0x" ++ (nToHex (wordToN w)).

    Coercion intConstToString {n} (c: IConst n): string :=
      match c with
      | constInt32 w => "0x" ++ w
      | constInt64 w => "0x" ++ w
      end.

    Coercion intRegToString {n} (r: IReg n): string :=
      match r with
      | regInt32 n => "w" ++ (nameSuffix n)
      | regInt64 n => "w" ++ (nameSuffix n)
      end.

    Coercion natToString (n: nat): string :=
      "0x" ++ (nToHex (N.of_nat n)).

    Coercion stackToString {n} (s: Stack n): string :=
      match s with
      | stack32 n => "ss" ++ (nameSuffix n)
      | stack64 n => "ls" ++ (nameSuffix n)
      | stack128 n => "qs" ++ (nameSuffix n)
      end.

    Coercion stringToSome (x: string): option string := Some x.

    Definition stackLocation {n} (s: Stack n): word 32 :=
      combine (natToWord 8 n) (natToWord 24 n).

    Definition assignmentToString (a: Assignment): option string :=
      let f := fun x => if (Nat.eq_dec x 32) then "32" else "64" in
      match a with
      | ARegStackInt n r s => r ++ " = *(int" ++ f n ++ " *)" ++ s
      | AStackRegInt n s r => "*(int" ++ f n ++ " *) " ++ s ++ " = " ++ r
      | ARegRegInt n a b => a ++ " = " ++ b
      | AConstInt n r c => r ++ " = " ++ c
      | AIndex n m a b i =>
        a ++ " = *(int" ++ f n ++ " *) (" ++ b ++ " + " ++ (m/n) ++ ")"
      | APtr n r s => r ++ " = " ++ s
      end.

    Coercion intOpToString (b: IntOp): string :=
      match b with
      | IPlus => "+"
      | IMinus => "-"
      | IXor => "^"
      | IAnd => "&"
      | IOr => "|"
      end.

    Coercion dualOpToString (b: DualOp): string :=
      match b with
      | IMult => "*"
      end.
 
    Coercion rotOpToString (r: RotOp): string :=
      match r with
      | Shl => "<<"
      | Shr => ">>"
      end.
 
    Definition operationToString (op: Operation): option string :=
      match op with
      | IOpConst n o r c => 
        r ++ " " ++ o ++ "= " ++ c
      | IOpReg n o a b =>
        a ++ " " ++ o ++ "= " ++ b
      | DOpReg n o a b x =>
        match x with
        | Some r =>
          "inline " ++ r ++ " " ++ a ++ " " ++ o ++ "= " ++ b
        | None => a ++ " " ++ o ++ "= " ++ b
        end
      | OpRot n o r i =>
        r ++ " " ++ o ++ "= " ++ i
      end.

    Definition testOpToString (t: TestOp): bool * string :=
      match t with
      | TEq => (true, "=")
      | TLt => (true, "<")
      | TGt => (true, ">")
      | TLe => (false, ">")
      | TGe => (false, "<")
      end.

    Definition conditionalToString (c: Conditional): string * string :=
      match c with
      | TestTrue => ("=? 0", ">") (* these will be elided later on*)
      | TestFalse => (">? 0", ">")
      | TestInt n o a b =>
        match (testOpToString o) with
        | (true, s) =>
          (s ++ "? " ++ a ++ " - " ++ b, s)
        | (false, s) =>
          ("!" ++ s ++ "? " ++ a ++ " - " ++ b, "!" ++ s)
        end
      end.

  End Elements.

  Section Parsing.
    Inductive Entry :=
      | intEntry: forall n, IReg n -> Entry
      | stackEntry: forall n, Stack n -> Entry.

    Definition entryId (x: Entry): nat * nat * nat :=
      match x with
      | intEntry n (regInt32 v) => (0, n, v)
      | intEntry n (regInt64 v) => (1, n, v)
      | stackEntry n (stack32 v) => (2, n, v)
      | stackEntry n (stack64 v) => (3, n, v)
      | stackEntry n (stack128 v) => (4, n, v)
      end.

    Lemma id_equal: forall {x y}, x = y <-> entryId x = entryId y.
    Proof.
      intros; split; intros;
        destruct x as [nx x | nx x];
        destruct y as [ny y | ny y];
        try rewrite H;

        destruct x, y; subst;
        destruct (Nat.eq_dec n n0); subst;

        simpl in H; inversion H; intuition.
    Qed.

    Lemma triple_conv: forall {x0 x1 x2 y0 y1 y2: nat},
      (x0 = y0 /\ x1 = y1 /\ x2 = y2) <-> (x0, x1, x2) = (y0, y1, y2).
    Proof.
      intros; split; intros.

      - destruct H; destruct H0; subst; intuition.

      - inversion_clear H; intuition.
    Qed.

    Definition triple_dec (x y: nat * nat * nat): {x = y} + {x <> y}.
      refine (match x as x' return x' = _ -> _ with
      | (x0, x1, x2) => fun _ =>
        match y as y' return y' = _ -> _ with
        | (y0, y1, y2) => fun _ =>
           _ (Nat.eq_dec x0 y0) (Nat.eq_dec x1 y1) (Nat.eq_dec x2 y2)
        end (eq_refl y)
      end (eq_refl x));
        rewrite <- _H, <- _H0;
        clear _H _H0 x y p p0;
        intros.

      intros; destruct x6, x7, x8; first [
        left; abstract (subst; intuition)
      | right; abstract (intro;
          apply triple_conv in H;
          destruct H; destruct H0; intuition)
      ].
    Defined.

    Definition entry_dec (x y: Entry): {x = y} + {x <> y}.
      refine (_ (triple_dec (entryId x) (entryId y))).
      intros; destruct x0.

      - left; abstract (apply id_equal in e; intuition).
      - right; abstract (intro; apply id_equal in H; intuition).
    Defined.

    Fixpoint entries (prog: Program): list Entry :=
      match prog with
      | cons s next =>
        match s with
        | QAssign a =>
          match a with
          | ARegStackInt n r s => [intEntry n r; stackEntry n s]
          | AStackRegInt n s r => [intEntry n r; stackEntry n s]
          | ARegRegInt n a b => [intEntry n a; intEntry n b]
          | AConstInt n r c => [intEntry n r]
          | AIndex n m a b i => [intEntry n a; stackEntry m b]
          | APtr n r s => [intEntry 32 r; stackEntry n s]
          end
        | QOp o =>
          match o with
          | IOpConst n o r c => [intEntry n r]
          | IOpReg n o a b => [intEntry n a; intEntry n b]
          | DOpReg n o a b x =>
            match x with
            | Some r =>
              [intEntry n a; intEntry n b; intEntry n r]
            | None =>
              [intEntry n a; intEntry n b]
            end
          | OpRot n o r i => [intEntry n r]
          end
        | QJmp c _ =>
          match c with
          | TestInt n o a b => [intEntry n a; intEntry n b]
          | _ => []
          end
        | QLabel _ => []
        end ++ (entries next)
      | nil => nil
      end.

    Definition flatMapOpt {A B} (lst: list A) (f: A -> option B): list B :=
      fold_left
        (fun lst a => match (f a) with | Some x => cons x lst | _ => lst end)
        lst [].

    Definition flatMapList {A B} (lst: list A) (f: A -> list B): list B :=
      fold_left (fun lst a => lst ++ (f a)) lst [].

    Fixpoint dedup (l : list Entry) : list Entry :=
      match l with
      | [] => []
      | x::xs =>
        if in_dec entry_dec x xs
        then dedup xs
        else x::(dedup xs)
      end.

    Definition everyIReg32 (lst: list Entry): list (IReg 32) :=
      flatMapOpt (dedup lst) (fun e =>
        match e with | intEntry 32 r => Some r | _ => None end).

    Definition everyIReg64 (lst: list Entry): list (IReg 64) :=
      flatMapOpt (dedup lst) (fun e =>
        match e with | intEntry 64 r => Some r | _ => None end).

    Definition everyStack (n: nat) (lst: list Entry): list (Stack n).
      refine (flatMapOpt (dedup lst) (fun e =>
        match e with
        | stackEntry n' r =>
          if (Nat.eq_dec n n') then Some (convert r _) else None
        | _ => None
        end)); subst; reflexivity.
    Defined.

    Fixpoint getUsedBeforeInit' (prog: list QhasmStatement) (init: list Entry): list Entry :=
      let f := fun rs => filter (fun x => proj1_sig (bool_of_sumbool (in_dec entry_dec x init))) rs in
      match prog with
      | [] => []
      | cons p ps =>
        let requiredCommaUsed := match p with
        | QAssign a =>
          match a with
          | ARegStackInt n r s =>
            let re := intEntry n r in
            let se := stackEntry n s in
            ([se], [re; se])

          | AStackRegInt n s r =>
            let re := intEntry n r in
            let se := stackEntry n s in
            ([re], [re; se])

          | ARegRegInt n a b =>
            let ae := intEntry n a in
            let be := intEntry n b in
            ([be], [ae; be])

          | AConstInt n r c =>
            let re := intEntry n r in
            ([], [re])

          | AIndex n m a b i =>
            let ae := intEntry n a in
            let be := stackEntry m b in
            ([be], [ae; be])

          | APtr n r s =>
            let re := intEntry 32 r in
            let se := stackEntry n s in
            ([se], [re; se])
          end
        | QOp o =>
          match o with
          | IOpConst n o r c =>
            let re := intEntry n r in
            ([re], [re])

          | IOpReg n o a b =>
            let ae := intEntry n a in
            let be := intEntry n b in
            ([ae; be], [ae; be])

          | DOpReg n o a b x =>
            let ae := intEntry n a in
            let be := intEntry n b in

            match x with
            | Some r =>
              let xe := intEntry n r in
              ([ae; be], [ae; be; xe])
            | None => ([ae; be], [ae; be])
            end

          | OpRot n o r i =>
            let re := intEntry n r in
            ([re], [re])
          end
        | QJmp c _ =>
          match c with
          | TestInt n o a b =>
            let ae := intEntry n a in
            let be := intEntry n b in
            ([ae; be], [])

          | _ => ([], [])
          end
        | QLabel _ => ([], [])
        end in
        match requiredCommaUsed with
        | (r, u) =>
          ((f r) ++ (getUsedBeforeInit' ps ((f u) ++ init)))
        end
      end.

    Definition getUsedBeforeInit (prog: list QhasmStatement) := getUsedBeforeInit' prog [].

    Definition entryToString (e: Entry) :=
      match e with
      | intEntry n i => intRegToString i
      | stackEntry n s => stackToString s
      end.
  End Parsing.

  (* Macroscopic Conversion Methods *)
  Definition optionToList {A} (o: option A): list A :=
    match o with
    | Some a => [a]
    | None => []
    end.

  Definition convertStatement (statement: QhasmStatement): list string :=
    match statement with
    | QAssign a => optionToList (assignmentToString a)
    | QOp o => optionToList (operationToString o)
    | QJmp c l =>
      match (conditionalToString c) with
      | (s1, s2) =>
        let s' := ("goto lbl" ++ l ++ " if " ++ s2)%string in
        [s1; s']
      end
    | QLabel l => [("lbl" ++ l ++ ": ")%string]
    end.

  Definition convertProgram (prog: Qhasm.Program): option string :=
    let es := (entries prog) in

    let ireg32s :=
        (map (fun x => "int32 " ++ (intRegToString x))%string
             (everyIReg32 es)) in
    let ireg64s :=
        (map (fun x => "int64 " ++ (intRegToString x))%string
             (everyIReg64 es)) in

    let stack32s :=
        (map (fun x => "stack32 " ++ (stackToString x))%string
             (everyStack 32 es)) in
    let stack64s := 
        (map (fun x => "stack64 " ++ (stackToString x))%string
             (everyStack 64 es)) in
    let stack128s := 
        (map (fun x => "stack128 " ++ (stackToString x))%string
             (everyStack 128 es)) in

    let inputs :=
        (map (fun x => "input " ++ (entryToString x))%string
             (getUsedBeforeInit prog)) in

    let stmts := (flatMapList prog convertStatement) in

    let enter := [("enter prog")%string] in
    let leave := [("leave")%string] in

    let blank := [EmptyString] in
    let newline := String (ascii_of_nat 10) EmptyString in

    Some (fold_left (fun x y => (x ++ newline ++ y)%string)
      (ireg32s ++ blank ++
       ireg64s ++ blank ++
       stack32s ++ blank ++
       stack64s ++ blank ++
       stack128s ++ blank ++
       inputs ++ blank ++ blank ++
       enter ++ blank ++
       stmts ++ blank ++ blank ++
       leave) EmptyString).

  Lemma convert_spec: forall a a' b b' prog prog',
    convertProgram prog = Some prog' ->
    convertState a = Some a' -> convertState b = Some b' ->
    QhasmString.evaluatesTo prog' a b <-> Qhasm.evaluatesTo prog a' b'.
  Admitted.

End StringConversion.