aboutsummaryrefslogtreecommitdiff
path: root/src/Assembly/QhasmCommon.v
blob: aeeb0746f5a0ca06eabf227b98072b8772b61fd1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
Require Export String List NPeano NArith.
Require Export Bedrock.Word.

(* A formalization of x86 qhasm *)
Definition Label := nat.
Definition Index (limit: nat) := {x: nat | (x < limit)%nat}.
Definition Invert := bool.

(* Sugar and Tactics *)

Definition convert {A B: Type} (x: A) (H: A = B): B :=
  eq_rect A (fun B0 : Type => B0) x B H.

Notation "'always' A" := (fun _ => A) (at level 90) : state_scope.
Notation "'cast' e" := (convert e _) (at level 20) : state_scope.
Notation "'lift' e" := (exist _ e _) (at level 20) : state_scope.
Notation "'contra'" := (False_rec _ _) : state_scope.

Obligation Tactic := abstract intuition.

(* Float Datatype *)

Record Float (floatBits: nat) (fractionBits: nat) := mkFloat {
  validFloat: word floatBits -> Prop;

  wordToFloat: word fractionBits -> {w: word floatBits | validFloat w};
  floatToWord: {w: word floatBits | validFloat w} -> word fractionBits;

  wordToFloat_spec : forall x, floatToWord (wordToFloat x) = x;

  serialize: {w: word floatBits | validFloat w} -> N;
  deserialize: N -> {w: word floatBits | validFloat w};

  serialize_spec1 : forall x, serialize (deserialize x) = x;
  serialize_spec2 : forall x, deserialize (serialize x) = x;

  floatPlus: {w: word floatBits | validFloat w}
          ->  {w: word floatBits | validFloat w}
          ->  {w: word floatBits | validFloat w};

  floatPlus_wordToFloat : forall n m,
      (wordToN n < (Npow2 (fractionBits - 1)))%N ->
      (wordToN m < (Npow2 (fractionBits - 1)))%N ->
      floatPlus (wordToFloat n) (wordToFloat m)
        = wordToFloat (wplus n m);

  floatMult: {w: word floatBits | validFloat w}
          ->  {w: word floatBits | validFloat w}
          ->  {w: word floatBits | validFloat w};

  floatMult_wordToFloat : forall n m,
      (wordToN n < (Npow2 (fractionBits / 2)%nat))%N ->
      (wordToN m < (Npow2 (fractionBits / 2)%nat))%N ->
      floatMult (wordToFloat n) (wordToFloat m)
        = wordToFloat (wmult n m);

  floatAnd:  {w: word floatBits | validFloat w}
          ->  {w: word floatBits | validFloat w}
          ->  {w: word floatBits | validFloat w};

  floatAnd_wordToFloat : forall n m,
    floatAnd (wordToFloat n) (wordToFloat m) = wordToFloat (wand n m)
}.

Parameter Float32: Float 32 23.

Parameter Float64: Float 64 52.

(* Asm Types *)
Inductive IConst: nat -> Type :=
  | constInt32: word 32 -> IConst 32.

Inductive FConst: nat -> Type :=
  | constFloat32: word 32 -> FConst 32
  | constFloat64: word 64 -> FConst 64.

Inductive IReg: nat -> Type :=
  | regInt32: nat -> IReg 32.

Inductive FReg: nat -> Type :=
  | regFloat32: nat -> FReg 32
  | regFloat64: nat -> FReg 64.

Inductive Stack: nat -> Type :=
  | stack32: nat -> Stack 32
  | stack64: nat -> Stack 64
  | stack128: nat -> Stack 128.

Definition CarryState := option bool.

(* Assignments *)
Inductive Assignment : Type :=
  | ARegStackInt: forall n, IReg n -> Stack n -> Assignment
  | ARegStackFloat: forall n, FReg n -> Stack n -> Assignment

  | AStackRegInt: forall n, Stack n -> IReg n -> Assignment
  | AStackRegFloat: forall n, Stack n -> FReg n -> Assignment

  | ARegRegInt: forall n, IReg n -> IReg n -> Assignment
  | ARegRegFloat: forall n, FReg n -> FReg n -> Assignment

  | AConstInt: forall n, IReg n -> IConst n -> Assignment
  | AConstFloat: forall n, FReg n -> FConst n -> Assignment

  | AIndex: forall n m, IReg n -> IReg m -> Index (n/m)%nat -> Assignment
  | APtr: forall n, IReg 32 -> Stack n -> Assignment.

Hint Constructors Assignment.

(* Operations *)

Inductive IntOp :=
  | IPlus: IntOp | IMinus: IntOp
  | IXor: IntOp  | IAnd: IntOp | IOr: IntOp.

Inductive FloatOp :=
  | FPlus: FloatOp | FMult: FloatOp | FAnd: FloatOp.

Inductive RotOp :=
  | Shl: RotOp | Shr: RotOp.

Inductive Operation :=
  | IOpConst: IntOp -> IReg 32 -> IConst 32 -> Operation
  | IOpReg: IntOp -> IReg 32 -> IReg 32 -> Operation

  | FOpConst32: FloatOp -> FReg 32 -> FConst 32 -> Operation
  | FOpReg32: FloatOp -> FReg 32 -> FReg 32 -> Operation

  | FOpConst64: FloatOp -> FReg 64 -> FConst 64 -> Operation
  | FOpReg64: FloatOp -> FReg 64 -> FReg 64 -> Operation

  | OpRot: RotOp -> IReg 32 -> Index 32 -> Operation.

Hint Constructors Operation.

(* Control Flow *)

Inductive TestOp :=
  | TEq: TestOp   | TLt: TestOp  | TLe: TestOp
  | TGt: TestOp   | TGe: TestOp.

Inductive Conditional :=
  | TestTrue: Conditional
  | TestFalse: Conditional
  | TestInt: forall n, TestOp -> IReg n -> IReg n -> Conditional
  | TestFloat: forall n, TestOp -> FReg n -> FReg n -> Conditional.

Hint Constructors Conditional.

(* Reg, Stack, Const Utilities *)

Definition getIRegWords {n} (x: IReg n) :=
  match x with
  | regInt32 loc => 1
  end.

Definition getFRegWords {n} (x: FReg n) :=
  match x with
  | regFloat32 loc => 1
  | regFloat64 loc => 2
  end.

Definition getStackWords {n} (x: Stack n) :=
  match x with
  | stack32 loc => 1
  | stack64 loc => 2
  | stack128 loc => 4
  end.

Definition getIRegIndex {n} (x: IReg n): nat :=
  match x with
  | regInt32 loc => loc
  end.

Definition getFRegIndex {n} (x: FReg n): nat :=
  match x with
  | regFloat32 loc => loc
  | regFloat64 loc => loc
  end.

Definition getStackIndex {n} (x: Stack n): nat :=
  match x with
  | stack32 loc => loc
  | stack64 loc => loc
  | stack128 loc => loc
  end.

(* For register allocation checking *)
Definition intRegCount (base: nat): nat :=
  match base with
  | 32 => 7
  | _ => 0
  end.

Definition floatRegCount (base: nat): nat :=
  match base with
  | 32 => 8
  | 64 => 8
  | _ => 0
  end.