aboutsummaryrefslogtreecommitdiff
path: root/src/Assembly/PseudoConversion.v
blob: 9959e5319ad8398a7d18948aa54d708b2be36f32 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
Require Export Language Conversion QhasmCommon QhasmEvalCommon QhasmUtil.
Require Export Pseudo AlmostQhasm State.
Require Import Bedrock.Word NArith NPeano Euclid.
Require Import List Sumbool Vector.

Module PseudoConversion <: Conversion Pseudo AlmostQhasm.
  Import AlmostQhasm EvalUtil ListState Pseudo ListNotations.

  Section Conv.
    Variable w: nat.
    Variable s: Width w.

    Definition MMap := NatM.t (Mapping w).
    Definition mempty := NatM.empty (Mapping w).

    Definition FMap := NatM.t (AlmostProgram * (list (Mapping w))).
    Definition fempty := NatM.empty (AlmostProgram * (list (Mapping w))).

    Transparent MMap FMap.

    Definition getStart {n m} (prog: @Pseudo w s n m) :=
      let ns := (fix getStart' {n' m'} (prog': @Pseudo w s n' m') :=
        match prog' with
        | PVar _ _ i => [proj1_sig i]
        | PBin _ _ p => getStart' p
        | PDual _ _ p => getStart' p
        | PCarry _ _ p => getStart' p
        | PShift _ _ _ p => getStart' p
        | PFunExp _ p _ => getStart' p
        | PCall _ _ _ p => getStart' p
        | PIf _ _ _ _ _ l r => (getStart' l) ++ (getStart' r)
        | PLet _ k _ a b => (n + k) :: (getStart' a) ++ (getStart' b)
        | PComb _ _ _ a b => (getStart' a) ++ (getStart' b)
        | _ => []
        end) _ _ prog in

      (fix maxN (lst: list nat) :=
        match lst with
        | [] => O
        | x :: xs => max x (maxN xs)
        end) (n :: m :: ns).

    Definition addMap {T} (a b: (NatM.t T)) : NatM.t T :=
      (fix add' (m: NatM.t T) (elts: list (nat * T)%type) :=
        match elts with
        | [] => m
        | (k, v) :: elts' => add' (NatM.add k v m) elts'
        end) a (NatM.elements b).

    Fixpoint convertProgram' {n m} (prog: @Pseudo w s n m) (start: nat) (M: MMap) (F: FMap) :
        option (AlmostProgram * (list (Mapping w)) * MMap * FMap) :=

      let rM := fun (x: nat) => regM _ (reg s x) in
      let sM := fun (x: nat) => stackM _ (stack s x) in
      let reg' := reg s in
      let stack' := stack s in
      let const' := constant s in

      let get := fun (k: nat) (default: nat -> Mapping w) (M': MMap) =>
        match (NatM.find k M') with
        | Some v => v
        | _ => default k
        end in

      let madd := fun (a: nat) (default: nat -> Mapping w) (M': MMap) =>
        NatM.add a (get a default M') M' in

      let fadd := fun (k: nat) (f: AlmostProgram) (r: list (Mapping w)) =>
        NatM.add k (f, r) in

      let updateM := (
        fix updateM' (k: nat) (mtmp: list (Mapping w)) (Miter: MMap) : MMap :=
        match mtmp with
        | [] => Miter
        | a :: mtmp' => NatM.add k a (updateM' (S k) mtmp' Miter)
        end) in

      match prog with
      | PVar n (Some true) i =>
        Some (ASkip, [get i rM M], madd i rM M, F)

      | PVar n (Some false) i =>
        Some (ASkip, [get i sM M], madd i sM M, F)

      | PVar n None i => (* assign to register by default *)
        Some (ASkip, [get i rM M], madd i rM M, F) 

      | PConst n c =>
        Some (AAssign (AConstInt (reg' start) (const' c)),
              [get start rM M], madd start rM M, F)

      | PMem n m v i =>
        Some (AAssign (ARegMem (reg' start) (mem s v) i),
              [get start rM M], madd start rM M, F)

      | PBin n o p =>
        match (convertProgram' p start M F) with
        | Some (p', [regM (reg _ _ a); regM (reg _ _ b)], M', F') =>
            Some (ASeq p' (AOp (IOpReg o (reg' a) (reg' b))),
                [get a rM M'], madd a rM (madd b rM M'), F')

        | Some (p', [regM (reg _ _ a); constM c], M', F') =>
            Some (ASeq p' (AOp (IOpConst o (reg' a) c)),
                [get a rM M'], madd a rM M', F')

        | Some (p', [regM (reg _ _ a); memM _ b i], M', F') =>
            Some (ASeq p' (AOp (IOpMem o (reg' a) b i)),
                [get a rM M'], madd a rM M', F')

        | Some (p', [regM (reg _ _ a); stackM (stack _ _ b)], M', F') =>
            Some (ASeq p' (AOp (IOpStack o (reg' a) (stack' b))),
                [get a rM M'], madd a rM (madd b sM M'), F')

        | _ => None
        end

      | PCarry n o p =>
        match (convertProgram' p start M F) with
        | Some (p', [regM (reg _ _ a); regM (reg _ _ b)], M', F') =>
            Some (ASeq p' (AOp (COp o (reg' a) (reg' b))),
                [get a rM M'], madd a rM (madd b rM M'), F')

        | _ => None
        end

      | PDual n o p =>
        match (convertProgram' p (S start) M F) with
        | Some (p', [regM (reg _ _ a); regM (reg _ _ b)], M', F') =>
            Some (ASeq p' (AOp (DOp o (reg' a) (reg' b) (Some (reg' start)))),
                  [get a rM M'; get start rM M'],
                  madd a rM (madd b rM (madd start rM M')), F')

        | _ => None
        end

      | PShift n o x p =>
        match (convertProgram' p start M F) with
        | Some (p', [regM (reg _ _ a)], M', F') =>
            Some (ASeq p' (AOp (ROp o (reg' a) x)),
                [get a rM M'], madd a rM M', F')

        | _ => None
        end

      | PLet n k m f g =>
        match (convertProgram' f start M F) with
        | None => None
        | Some (fp, fm, M', F') =>

          (* Make sure all of the new variables are bound to their results *)
          let M'' := updateM start fm M' in

          (* Then convert the second program *)
          match (convertProgram' g (start + (length fm)) M'' F') with
          | None => None
          | Some (gp, gm, M''', F'') => Some (ASeq fp gp, gm, M''', F'')
          end
        end

      | PComb n a b f g => 
        match (convertProgram' f start M F) with
        | None => None
        | Some (fp, fm, M', F') =>
            match (convertProgram' g (start + (length fm)) M' F') with
            | None => None
            | Some (gp, gm, M'', F'') => Some (ASeq fp gp, fm ++ gm, M'', F'')
            end
        end

      | PIf n m o i0 i1 l r => 
        match (convertProgram' l start M F) with
        | None => None
        | Some (lp, lr, lM, lF) =>

            match (convertProgram' r start lM lF) with
            | None => None
            | Some (rp, rr, M', F') =>

            if (list_eq_dec mapping_dec lr rr)
            then
                match (get (proj1_sig i0) rM M, get (proj1_sig i1) rM M) with
                | (regM r0, regM r1) => Some (ACond (CReg _ o r0 r1) lp rp, lr, M', F')
                | (regM r, constM c) => Some (ACond (CConst _ o r c) lp rp, lr, M', F')
                | _ => None
                end
            else None
            end
        end

      | PFunExp n f e => 
        match (convertProgram' f (S start) M F) with
        | Some (fp, fr, M', F') => 
            let a := start in
            Some (ASeq
            (AAssign (AConstInt (reg' a) (const' (natToWord _ O))))
            (AWhile (CConst _ TLt (reg' a) (const' (natToWord _ e)))
                (ASeq fp (AOp (IOpConst IAdd (reg' a) (const' (natToWord _ 1)))))),
            fr, madd a rM M', F')

        | _ => None
        end

      | PCall n m lbl f =>
        match (convertProgram' f start M F) with
        | Some (fp, fr, M', F') =>
            let F'' := NatM.add lbl (fp, fr) F' in
            Some (ACall lbl, fr, M', F'')
        | None => None
      end
    end.

  End Conv.

  Definition convertProgram x y (prog: Program x) : option (AlmostQhasm.Program y) := 
    let vs := max (inputs x) (outputs x) in
    let M0 := mempty (width x) in
    let F0 := fempty (width x) in

    match (convertProgram' (width x) (spec x) prog vs M0 F0) with
    | Some (prog', _, M, F) =>
      Some (fold_left
           (fun p0 t => match t with | (k, (v, _)) => ADef k v p0 end)
           prog'
           (of_list (NatM.elements F)))
    | _ => None
    end.

  Fixpoint convertState x y (st: AlmostQhasm.State y) : option (State x) :=
    let vars := max (inputs x) (outputs x) in

    let try_cons := fun {T} (x: option T) (l: list T) =>
      match x with | Some x' => x' :: l | _ => l end in

    let get := fun i =>
      match (FullState.getReg (reg (spec x) i) st,
             FullState.getStack (stack (spec x) i) st) with
      | (Some v, _) => Some v
      | (_, Some v) => Some v
      | _ => None
      end in

    let varList := (fix cs' (n: nat) :=
      try_cons (get (vars - n)) (match n with | O => [] | S m => cs' m end)) vars in

    match st with
    | FullState.fullState _ _ memState _ carry =>
      if (Nat.eq_dec (length varList) vars)
      then Some (varList, memState, carry)
      else None
    end.

  Lemma convert_spec: forall pa pb a a' b b' prog prog',
    convertProgram pa pb prog = Some prog' ->
    convertState pa pb a = Some a' ->
    convertState pa pb b = Some b' ->
    AlmostQhasm.evaluatesTo pb prog' a b <-> evaluatesTo pa prog a' b'.
  Admitted.
End PseudoConversion.