aboutsummaryrefslogtreecommitdiff
path: root/src/Assembly/Pseudize.v
blob: ea14dc52ecc8fba2de44e20dc63ea5aa139ce1dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
Require Export Bedrock.Word Bedrock.Nomega.
Require Import Coq.NArith.NArith Coq.Numbers.Natural.Peano.NPeano Coq.Lists.List Coq.Bool.Sumbool Coq.Arith.Compare_dec Coq.omega.Omega.
Require Import Crypto.Assembly.QhasmCommon Crypto.Assembly.QhasmEvalCommon Crypto.Assembly.QhasmUtil Crypto.Assembly.Pseudo Crypto.Assembly.State.
Require Export Crypto.Assembly.Wordize Crypto.Assembly.Vectorize.
Require Export Crypto.Util.FixCoqMistakes.

Import Pseudo ListNotations StateCommon EvalUtil ListState.

Section Conversion.

  Hint Unfold setList getList getVar setCarry setCarryOpt getCarry
       getMem setMem overflows.

  Lemma eval_in_length: forall {w s n m} p x M c x' M' c',
      @pseudoEval n m w s p (x, M, c) = Some (x', M', c')
    -> Datatypes.length x = n.
  Proof. Admitted.

  Lemma eval_out_length: forall {w s n m} x M c x' M' c' p,
      @pseudoEval n m w s p (x, M, c) = Some (x', M', c')
    -> Datatypes.length x' = m.
  Proof. Admitted.

  Lemma pseudo_var: forall {w s n} b k x v m c,
      (k < n)%nat
    -> nth_error x k = Some v
    -> pseudoEval (@PVar w s n b (indexize k)) (x, m, c) = Some ([v], m, c).
  Proof.
    intros; autounfold; simpl; unfold indexize.
    destruct (le_dec n 0); simpl. {
      replace k with 0 in * by omega; autounfold; simpl in *.
      rewrite H0; simpl; intuition.
    }

    replace (k mod n) with k by (
      assert (n <> 0) as NZ by omega;
      pose proof (Nat.div_mod k n NZ);
      replace (k mod n) with (k - n * (k / n)) by intuition auto with zarith;
      rewrite (Nat.div_small k n); intuition auto with zarith).

    autounfold; simpl.
    destruct (nth_error x k); simpl; try inversion H0; intuition.
  Qed.

  Lemma pseudo_mem: forall {w s} n v m c x name len index,
      TripleM.find (w, name mod n, index mod len)%nat m = Some (@wordToN w v)
    -> pseudoEval (@PMem w s n len (indexize name) (indexize index)) (x, m, c) = Some ([v], m, c).
  Proof.
    intros; autounfold; simpl.
    unfold indexize;
      destruct (le_dec n 0), (le_dec len 0);
      try replace n with 0 in * by intuition auto with zarith;
      try replace len with 0 in * by intuition auto with zarith;
      autounfold; simpl in *; rewrite H;
      autounfold; simpl; rewrite NToWord_wordToN;
      intuition.
  Qed.

  Lemma pseudo_const: forall {w s n} x v m c,
      pseudoEval (@PConst w s n v) (x, m, c) = Some ([v], m, c).
  Proof. intros; simpl; intuition. Qed.

  Lemma pseudo_plus:
    forall {w s n} (p: @Pseudo w s n 2) x out0 out1 m0 m1 c0 c1,
      pseudoEval p (x, m0, c0) = Some ([out0; out1], m1, c1)
    -> pseudoEval (PBin n IAdd p) (x, m0, c0) =
        Some ([out0 ^+ out1], m1,
          Some (proj1_sig (bool_of_sumbool
               (overflows w (&out0 + &out1)%N)%w))).
  Proof.
    intros; simpl; rewrite H; simpl.

    pose proof (wordize_plus out0 out1).
    destruct (overflows w _); autounfold; simpl; try rewrite H0;
      try rewrite <- (@Npow2_ignore w (out0 ^+ out1));
      try rewrite NToWord_wordToN; intuition.
  Qed.

  Lemma pseudo_bin:
    forall {w s n} (p: @Pseudo w s n 2) x out0 out1 m0 m1 c0 c1 op,
      op <> IAdd
    -> pseudoEval p (x, m0, c0) = Some ([out0; out1], m1, c1)
    -> pseudoEval (PBin n op p) (x, m0, c0) =
        Some ([fst (evalIntOp op out0 out1)], m1, c1).
  Proof.
    intros; simpl; rewrite H0; simpl.

    induction op;
      try (contradict H; reflexivity);
      unfold evalIntOp; autounfold; simpl;
      reflexivity.
  Qed.

  Lemma pseudo_and:
    forall {w s n} (p: @Pseudo w s n 2) x out0 out1 m0 m1 c0 c1,
      pseudoEval p (x, m0, c0) = Some ([out0; out1], m1, c1)
    -> pseudoEval (PBin n IAnd p) (x, m0, c0) =
        Some ([out0 ^& out1], m1, c1).
  Proof.
    intros.
    replace (out0 ^& out1) with (fst (evalIntOp IAnd out0 out1)).
    - apply pseudo_bin; intuition; inversion H0.
    - unfold evalIntOp; simpl; intuition.
  Qed.

  Lemma pseudo_awc:
    forall {w s n} (p: @Pseudo w s n 2) x out0 out1 m0 m1 c0 c,
      pseudoEval p (x, m0, c0) = Some ([out0; out1], m1, Some c)
    -> pseudoEval (PCarry n AddWithCarry p) (x, m0, c0) =
        Some ([addWithCarry out0 out1 c], m1,
          Some (proj1_sig (bool_of_sumbool (overflows w
          (&out0 + &out1 + (if c then 1 else 0))%N)%w))).
  Proof.
    intros; simpl; rewrite H; simpl.

    pose proof (wordize_awc out0 out1); unfold evalCarryOp.
    destruct (overflows w ((& out0)%w + (& out1)%w +
                           (if c then 1%N else 0%N)));
      autounfold; simpl; try rewrite H0; intuition.
  Qed.

  Lemma pseudo_shiftr:
    forall {w s n} (p: @Pseudo w s n 1) x out m0 m1 c0 c1 k,
      pseudoEval p (x, m0, c0) = Some ([out], m1, c1)
    -> pseudoEval (PShift n Shr k p) (x, m0, c0) =
        Some ([shiftr out k], m1, c1).
  Proof.
    intros; simpl; rewrite H; autounfold; simpl.
    rewrite wordize_shiftr; rewrite NToWord_wordToN; intuition.
  Qed.

  Lemma pseudo_comb:
    forall {w s n a b} (p0: @Pseudo w s n a) (p1: @Pseudo w s n b)
      input out0 out1 m0 m1 m2 c0 c1 c2,
      pseudoEval p0 (input, m0, c0) = Some (out0, m1, c1)
    -> pseudoEval p1 (input, m1, c1) = Some (out1, m2, c2)
    -> pseudoEval (@PComb w s n _ _ p0 p1) (input, m0, c0) =
        Some (out0 ++ out1, m2, c2).
  Proof.
    intros; autounfold; simpl.
    rewrite H; autounfold; simpl.
    rewrite H0; autounfold; simpl; intuition.
  Qed.

  Lemma pseudo_cons:
    forall {w s n b} (p0: @Pseudo w s n 1) (p1: @Pseudo w s n b)
        (p2: @Pseudo w s n (S b)) input x xs m0 m1 m2 c0 c1 c2,
      pseudoEval p0 (input, m0, c0) = Some ([x], m1, c1)
    -> pseudoEval p1 (input, m1, c1) = Some (xs, m2, c2)
    -> p2 = (@PComb w s n _ _ p0 p1)
    -> pseudoEval p2 (input, m0, c0) = Some (x :: xs, m2, c2).
  Proof.
    intros.
    replace (x :: xs) with ([x] ++ xs) by (simpl; intuition).
    rewrite H1.
    apply (pseudo_comb p0 p1 input _ _ m0 m1 m2 c0 c1 c2); intuition.
  Qed.

  Lemma pseudo_let:
    forall {w s n k m} (p0: @Pseudo w s n k) (p1: @Pseudo w s (n + k) m)
      input out0 out1 m0 m1 m2 c0 c1 c2,
      pseudoEval p0 (input, m0, c0) = Some (out0, m1, c1)
    -> pseudoEval p1 (input ++ out0, m1, c1) = Some (out1, m2, c2)
    -> pseudoEval (@PLet w s n k m p0 p1) (input, m0, c0) =
        Some (out1, m2, c2).
  Proof.
    intros; autounfold; simpl.
    rewrite H; autounfold; simpl.
    rewrite H0; autounfold; simpl; intuition.
  Qed.

  Lemma pseudo_let_var:
    forall {w s n k m} (p0: @Pseudo w s n k) (p1: @Pseudo w s (n + k) m)
      input a f m0 m1 m2 c0 c1 c2,
      pseudoEval p0 (input, m0, c0) = Some ([a], m1, c1)
    -> pseudoEval p1 (input ++ [a], m1, c1) = Some (f (nth n (input ++ [a]) (wzero _)), m2, c2)
    -> pseudoEval (@PLet w s n k m p0 p1) (input, m0, c0) =
        Some (Let_In a f, m2, c2).
  Proof.
    intros; unfold Let_In; cbv zeta.
    eapply pseudo_let; try eassumption.
    replace (f a) with (f (nth n (input ++ [a]) (wzero w))); try assumption.
    apply f_equal.
    assert (Datatypes.length input = n) as L by (
      eapply eval_in_length; eassumption).

    rewrite app_nth2; try rewrite L; intuition.
    replace (n - n) with 0 by omega; simpl; intuition.
  Qed.

  Lemma pseudo_let_list:
    forall {w s n k m} (p0: @Pseudo w s n k) (p1: @Pseudo w s (n + k) m)
      input lst f m0 m1 m2 c0 c1 c2,
      pseudoEval p0 (input, m0, c0) = Some (lst, m1, c1)
    -> pseudoEval p1 (input ++ lst, m1, c1) = Some (f lst, m2, c2)
    -> pseudoEval (@PLet w s n k m p0 p1) (input, m0, c0) =
        Some (Let_In lst f, m2, c2).
  Proof.
    intros; unfold Let_In; cbv zeta.
    eapply pseudo_let; try eassumption.
  Qed.

  Lemma pseudo_mult_single:
    forall {w s n m} (p0: @Pseudo w s n 2)
                (p1: @Pseudo w s (n + 2) m)
        out0 out1 f x m0 m1 m2 c0 c1 c2,
      pseudoEval p0 (x, m0, c0) = Some ([out0; out1], m1, c1)
    -> pseudoEval p1 (x ++ [out0 ^* out1; multHigh out0 out1], m1, c1) =
        Some (f (nth n (x ++ [out0 ^* out1; multHigh out0 out1]) (wzero _)), m2, c2)
    -> pseudoEval (@PLet w s n 2 m (PDual n Mult p0) p1) (x, m0, c0) =
      Some (Let_In (out0 ^* out1) f, m2, c2).
  Proof.
    intros; simpl; rewrite H; autounfold; simpl; rewrite H0; simpl; intuition.
    replace (nth n (x ++ _) _) with (out0 ^* out1); simpl; intuition.
    assert (Datatypes.length x = n) as L by (
      eapply eval_in_length; eassumption).
    rewrite app_nth2; try rewrite L; intuition.
    replace (n - n) with 0 by omega.
    simpl; intuition.
  Qed.

  Lemma pseudo_mult_dual:
    forall {w s n m} (p0: @Pseudo w s n 2)
                (p1: @Pseudo w s (n + 2) m)
        out0 out1 f x m0 m1 m2 c0 c1 c2,
      pseudoEval p0 (x, m0, c0) = Some ([out0; out1], m1, c1)
    -> pseudoEval p1 (x ++ [out0 ^* out1; multHigh out0 out1], m1, c1) =
      Some (f (nth n (x ++ [out0 ^* out1; multHigh out0 out1]) (wzero _))
              (nth (S n) (x ++ [out0 ^* out1; multHigh out0 out1]) (wzero _)),
            m2, c2)
    -> pseudoEval (@PLet w s n 2 m (PDual n Mult p0) p1) (x, m0, c0) =
      Some (Let_In (multHigh out0 out1) (fun x =>
            Let_In (out0 ^* out1) (fun y =>
            f y x)), m2, c2).
  Proof.
    intros; simpl; rewrite H; autounfold; simpl; rewrite H0; simpl; intuition.
    assert (Datatypes.length x = n) as L by (eapply eval_in_length; eassumption).

    replace (nth n (x ++ _) _) with (out0 ^* out1); simpl; intuition.
    replace (nth (S n) (x ++ _) _) with (multHigh out0 out1); simpl; intuition.

    - rewrite app_nth2; try rewrite L; intuition.
      replace (S n - n) with 1 by omega.
      simpl; intuition.

    - rewrite app_nth2; try rewrite L; intuition.
      replace (n - n) with 0 by omega.
      simpl; intuition.
  Qed.

  Definition pseudeq {w s} (n m: nat) (f: list (word w) -> list (word w)) : Type :=
    {p: @Pseudo w s n m | forall x: (list (word w)),
      List.length x = n -> exists m' c',
      pseudoEval p (x, TripleM.empty N, None) = Some (f x, m', c')}.
End Conversion.

Ltac autodestruct :=
  repeat match goal with
  | [H: context[Datatypes.length (cons _ _)] |- _] => simpl in H
  | [H: context[Datatypes.length nil] |- _] => simpl in H
  | [H: S ?a = S ?b |- _] => inversion H; clear H
  | [H: (S ?a) = 0 |- _] => contradict H; intuition
  | [H: 0 = (S ?a) |- _] => contradict H; intuition
  | [H: 0 = 0 |- _] => clear H
  | [x: list ?T |- _] =>
    match goal with
    | [H: context[Datatypes.length x] |- _] => destruct x
    end
  end.

Ltac pseudo_step :=
  match goal with
  | [ |- pseudoEval ?p _ = Some ((
            Let_In (multHigh ?a ?b) (fun x =>
            Let_In (?a ^* ?b) (fun y => _))), _, _) ] =>
    is_evar p; eapply pseudo_mult_dual

  | [ |- pseudoEval ?p _ = Some (Let_In (?a ^* ?b) _, _, _) ] =>
    is_evar p; eapply pseudo_mult_single

  | [ |- pseudoEval ?p _ = Some ([?x ^& ?y], _, _) ] =>
    is_evar p; eapply pseudo_and

  | [ |- pseudoEval ?p _ = Some ([?x ^+ ?y], _, _) ] =>
    is_evar p; eapply pseudo_plus

  | [ |- pseudoEval ?p _ = Some (cons ?x (cons _ _), _, _) ] =>
    is_evar p; eapply pseudo_cons; try reflexivity

  | [ |- pseudoEval ?p _ = Some ([natToWord _ ?x], _, _)%p ] =>
    is_evar p; eapply pseudo_const

  | [ |- pseudoEval ?p _ = Some ((Let_In ?a ?f), _, _) ] =>
    is_evar p;
    match (type of a) with
    | list _ => eapply pseudo_let_list
    | word _ => eapply pseudo_let_var
    | (_ * _)%type => rewrite detuple_let
    end

  | [ |- @pseudoEval ?n _ _ _ ?P _ =
        Some ([nth ?i ?lst _], _, _)%p ] =>
    eapply (pseudo_var None i); simpl; intuition
  end.

Ltac pseudo_solve :=
  repeat eexists;
  autounfold;
  autodestruct;
  repeat pseudo_step.