aboutsummaryrefslogtreecommitdiff
path: root/src/Assembly/Pseudize.v
blob: 3a66484eed6fada2aaac5a67e7323aaf94bf64fa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
Require Export Bedrock.Word Bedrock.Nomega.
Require Import NArith NPeano List Sumbool Compare_dec.
Require Import QhasmCommon QhasmEvalCommon QhasmUtil Pseudo State.
Require Export Wordize Vectorize.

Module Conversion.
  Import Pseudo ListNotations StateCommon EvalUtil ListState.

  Hint Unfold setList getList getVar setCarry setCarryOpt getCarry
       getMem setMem overflows.

  Lemma pseudo_var: forall {w s n} b k x v m c,
      (k < n)%nat
    -> nth_error x k = Some v
    -> pseudoEval (@PVar w s n b (indexize k)) (x, m, c) = Some ([v], m, c).
  Proof.
    intros; autounfold; simpl; unfold indexize.
    destruct (le_dec n 0); simpl. {
      replace k with 0 in * by omega; autounfold; simpl in *.
      rewrite H0; simpl; intuition.
    }

    replace (k mod n) with k by admit. (* TODO (rsloan): find lemma name *)

    autounfold; simpl.
    destruct (nth_error x k); simpl; try inversion H0; intuition.
  Qed.

  Lemma pseudo_mem: forall {w s} n v m c x name len index,
      TripleM.find (w, name mod n, index mod len)%nat m = Some (@wordToN w v)
    -> pseudoEval (@PMem w s n len (indexize name) (indexize index)) (x, m, c) = Some ([v], m, c).
  Proof.
    intros; autounfold; simpl.
    unfold indexize;
      destruct (le_dec n 0), (le_dec len 0);
      try replace n with 0 in * by intuition;
      try replace len with 0 in * by intuition;
      autounfold; simpl in *; rewrite H;
      autounfold; simpl; rewrite NToWord_wordToN;
      intuition.
  Qed.

  Lemma pseudo_const: forall {w s n} x v m c,
      pseudoEval (@PConst w s n v) (x, m, c) = Some ([v], m, c).
  Proof. intros; simpl; intuition. Qed.

  Lemma pseudo_plus:
    forall {w s n} (p: @Pseudo w s n 2) x out0 out1 m0 m1 c0 c1,
      pseudoEval p (x, m0, c0) = Some ([out0; out1], m1, c1)
    -> pseudoEval (PBin n Add p) (x, m0, c0) =
        Some ([out0 ^+ out1], m1,
          Some (proj1_sig (bool_of_sumbool
               (overflows w (&out0 + &out1)%N)%w))).
  Proof.
    intros; simpl; rewrite H; simpl.

    pose proof (wordize_plus out0 out1).
    destruct (overflows w _); autounfold; simpl; try rewrite H0;
      try rewrite <- (@Npow2_ignore w (out0 ^+ out1));
      try rewrite NToWord_wordToN; intuition.
  Qed.

  Lemma pseudo_bin:
    forall {w s n} (p: @Pseudo w s n 2) x out0 out1 m0 m1 c0 c1 op,
      op <> Add
    -> pseudoEval p (x, m0, c0) = Some ([out0; out1], m1, c1)
    -> pseudoEval (PBin n op p) (x, m0, c0) =
        Some ([fst (evalIntOp op out0 out1)], m1, c1).
  Proof.
    intros; simpl; rewrite H0; simpl.

    induction op;
      try (contradict H; reflexivity);
      unfold evalIntOp; autounfold; simpl;
      reflexivity.
  Qed.

  Lemma pseudo_and:
    forall {w s n} (p: @Pseudo w s n 2) x out0 out1 m0 m1 c0 c1,
      pseudoEval p (x, m0, c0) = Some ([out0; out1], m1, c1)
    -> pseudoEval (PBin n And p) (x, m0, c0) =
        Some ([out0 ^& out1], m1, c1).
  Proof.
    intros.
    replace (out0 ^& out1) with (fst (evalIntOp And out0 out1)).
    - apply pseudo_bin; intuition; inversion H0.
    - unfold evalIntOp; simpl; intuition.
  Qed.

  Lemma pseudo_awc:
    forall {w s n} (p: @Pseudo w s n 2) x out0 out1 m0 m1 c0 c,
      pseudoEval p (x, m0, c0) = Some ([out0; out1], m1, Some c)
    -> pseudoEval (PCarry n AddWithCarry p) (x, m0, c0) =
        Some ([addWithCarry out0 out1 c], m1,
          Some (proj1_sig (bool_of_sumbool (overflows w
          (&out0 + &out1 + (if c then 1 else 0))%N)%w))).
  Proof.
    intros; simpl; rewrite H; simpl.

    pose proof (wordize_awc out0 out1); unfold evalCarryOp.
    destruct (overflows w ((& out0)%w + (& out1)%w +
                           (if c then 1%N else 0%N)));
      autounfold; simpl; try rewrite H0; intuition.
  Qed.

  Lemma pseudo_shiftr:
    forall {w s n} (p: @Pseudo w s n 1) x out m0 m1 c0 c1 k,
      pseudoEval p (x, m0, c0) = Some ([out], m1, c1)
    -> pseudoEval (PShift n Shr k p) (x, m0, c0) =
        Some ([shiftr out k], m1, c1).
  Proof.
    intros; simpl; rewrite H; autounfold; simpl.
    rewrite wordize_shiftr; rewrite NToWord_wordToN; intuition.
  Qed.

  Lemma pseudo_mult:
    forall {w s n} (p: @Pseudo w s n 2) x out0 out1 m0 m1 c0 c1,
      pseudoEval p (x, m0, c0) = Some ([out0; out1], m1, c1)
    -> pseudoEval (PDual n Mult p) (x, m0, c0) =
      Some ([out0 ^* out1; multHigh out0 out1], m1, c1).
  Proof.
    intros; simpl; rewrite H; autounfold; simpl; intuition.
  Qed.

  Lemma pseudo_comb:
    forall {w s n a b} (p0: @Pseudo w s n a) (p1: @Pseudo w s n b)
      input out0 out1 m0 m1 m2 c0 c1 c2,
      pseudoEval p0 (input, m0, c0) = Some (out0, m1, c1)
    -> pseudoEval p1 (input, m1, c1) = Some (out1, m2, c2)
    -> pseudoEval (@PComb w s n _ _ p0 p1) (input, m0, c0) =
        Some (out0 ++ out1, m2, c2).
  Proof.
    intros; autounfold; simpl.
    rewrite H; autounfold; simpl.
    rewrite H0; autounfold; simpl; intuition.
  Qed.

  Lemma pseudo_cons:
    forall {w s n b} (p0: @Pseudo w s n 1) (p1: @Pseudo w s n b)
        (p2: @Pseudo w s n (S b)) input x xs m0 m1 m2 c0 c1 c2,
      pseudoEval p0 (input, m0, c0) = Some ([x], m1, c1)
    -> pseudoEval p1 (input, m1, c1) = Some (xs, m2, c2)
    -> p2 = (@PComb w s n _ _ p0 p1)
    -> pseudoEval p2 (input, m0, c0) = Some (x :: xs, m2, c2).
  Proof.
    intros.
    replace (x :: xs) with ([x] ++ xs) by (simpl; intuition).
    rewrite H1.
    apply (pseudo_comb p0 p1 input _ _ m0 m1 m2 c0 c1 c2); intuition.
  Qed.

  Lemma pseudo_let:
    forall {w s n k m} (p0: @Pseudo w s n k) (p1: @Pseudo w s (n + k) m)
      input out0 out1 m0 m1 m2 c0 c1 c2,
      pseudoEval p0 (input, m0, c0) = Some (out0, m1, c1)
    -> pseudoEval p1 (input ++ out0, m1, c1) = Some (out1, m2, c2)
    -> pseudoEval (@PLet w s n k m p0 p1) (input, m0, c0) =
        Some (out1, m2, c2).
  Proof.
    intros; autounfold; simpl.
    rewrite H; autounfold; simpl.
    rewrite H0; autounfold; simpl; intuition.
  Qed.

  Lemma pseudo_let_var:
    forall {w s n k m} (p0: @Pseudo w s n k) (p1: @Pseudo w s (n + k) m)
      input out0 out1 m0 m1 m2 c0 c1 c2,
      pseudoEval p0 (input, m0, c0) = Some ([a], m1, c1)
    -> pseudoEval p1 (input ++ [a], m1, c1) = Some (f (nth n (input ++ [a]) (wzero _)), m2, c2)
    -> pseudoEval (@PLet w s n k m p0 p1) (input, m0, c0) =
        Some (let x := a in f a, m2, c2).
  Proof.
    intros; cbv beta; simpl in *; apply pseudo_let.
  Qed.

  Lemma pseudo_let_list:
    forall {w s n k m} (p0: @Pseudo w s n k) (p1: @Pseudo w s (n + k) m)
      input out0 out1 m0 m1 m2 c0 c1 c2,
      pseudoEval p0 (input, m0, c0) = Some (lst, m1, c1)
    -> pseudoEval p1 (input ++ lst, m1, c1) = Some (f lst, m2, c2)
    -> pseudoEval (@PLet w s n k m p0 p1) (input, m0, c0) =
        Some (let x := lst in f a, m2, c2).
  Proof.
    intros; cbv beta; simpl in *; apply pseudo_let.
  Qed.

  Definition pseudeq {w s} (n m: nat) (f: list (word w) -> list (word w)) : Type := 
    {p: @Pseudo w s n m | forall x: (list (word w)),
      List.length x = n -> exists m' c',
      pseudoEval p (x, TripleM.empty N, None) = Some (f x, m', c')}.

  Ltac autodestruct :=
    repeat match goal with
    | [H: context[Datatypes.length (cons _ _)] |- _] => simpl in H
    | [H: context[Datatypes.length nil] |- _] => simpl in H
    | [H: S ?a = S ?b |- _] => inversion H; clear H
    | [H: (S ?a) = 0 |- _] => contradict H; intuition
    | [H: 0 = (S ?a) |- _] => contradict H; intuition
    | [H: 0 = 0 |- _] => clear H
    | [x: list ?T |- _] =>
      match goal with
      | [H: context[Datatypes.length x] |- _] => destruct x
      end
    end.

  Ltac pseudo_step :=
    match goal with
    | [ |- pseudoEval ?p _ = Some ([?x ^& ?y], _, _) ] =>
      is_evar p; eapply pseudo_and
    | [ |- pseudoEval ?p _ = Some ([?x ^+ ?y], _, _) ] =>
      is_evar p; eapply pseudo_plus
    | [ |- pseudoEval ?p _ = Some (cons ?x (cons _ _), _, _) ] =>
      is_evar p; eapply pseudo_cons; try reflexivity
    | [ |- pseudoEval ?p _ = Some ([natToWord _ ?x], _, _)%p ] =>
      is_evar p; eapply pseudo_const
    | [ |- @pseudoEval ?n _ _ _ ?P (?lst, _, _) =
            Some ([nth ?i ?lst _], _, _)%p ] =>
      eapply (pseudo_var None); simpl; intuition
    end.

  Ltac pseudo_solve :=
    repeat eexists;
    autounfold;
    autodestruct;
    repeat pseudo_step.

  Definition convert_example: @pseudeq 32 W32 1 1 (fun v =>
      let a := natToWord _ 1 in
      let b := nth 0 v (wzero _) in
      [a ^& b]).

    cbv zeta; pseudo_solve.

  Defined.

  Eval simpl in (proj1_sig convert_example).

End Conversion.