aboutsummaryrefslogtreecommitdiff
path: root/src/Assembly/MultiBoundedWord.v
blob: add2aa1a220b6f157cf3dcf4d4b554b81cef9947 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

Require Import Bedrock.Word Bedrock.Nomega.
Require Import NArith PArith Ndigits Compare_dec Arith.
Require Import ProofIrrelevance Ring.
Require Import BoundedWord.

Import BoundedWord.

(* Parameters of boundedness calculations *)
Notation "A <= B" := (wordLeN A B) (at level 70).
Notation "$" := (natToWord _).

(* Hypothesis-based word-bound tactic *)
Ltac multi_apply0 A L := pose proof (L A).

Ltac multi_apply1 A L :=
  match goal with
  | [ H: A <= ?b |- _] => pose proof (L A b H)
  end.

Ltac multi_apply2 A B L :=
  match goal with
  | [ H1: A <= ?b1, H2: B <= ?b2 |- _] => pose proof (L A B b1 b2 H1 H2)
  end.

Ltac multi_recurse n T :=
  match goal with
  | [ H: T <= _ |- _] => idtac
  | _ =>
    is_var T;
    let T' := (eval cbv delta [T] in T) in multi_recurse n T';
    match goal with
    | [ H : T' <= ?x |- _ ] =>
    pose proof (H : T <= x)
    end

  | _ =>
    match T with
    | ?W1 ^+ ?W2 =>
      multi_recurse n W1; multi_recurse n W2;
      multi_apply2 W1 W2 (@wplus_bound n)

    | ?W1 ^* ?W2 =>
      multi_recurse n W1; multi_recurse n W2;
      multi_apply2 W1 W2 (@wmult_bound n)

    | mask ?m ?w =>
      multi_recurse n w;
      multi_apply1 w (fun b => @mask_update_bound n w b)

    | mask ?m ?w =>
      multi_recurse n w;
      pose proof (@mask_bound n w m)

    | ?x ^& (@NToWord _ (N.ones ?m)) =>
      multi_recurse n (mask (N.to_nat m) x);
      match goal with
      | [ H: (mask (N.to_nat m) x) <= ?b |- _] =>
        pose proof (@mask_wand n x m b H)
      end

    | shiftr ?w ?bits =>
      multi_recurse n w;
      match goal with
      | [ H: w <= ?b |- _] =>
        pose proof (@shiftr_bound n w b bits H)
      end

    | NToWord _ ?k => pose proof (@constant_bound_N n k)
    | natToWord _ ?k => pose proof (@constant_bound_nat n k)
    | ($ ?k) => pose proof (@constant_bound_nat n k)
    | _ => pose proof (@word_size_bound n T)
    end
  end.

Lemma unwrap_let: forall {n} (y: word n) (f: word n -> word n) (b: N),
    (let x := y in f x) <= b <-> let x := y in (f x <= b).
Proof. intuition. Qed.

Ltac multi_bound n :=
  match goal with
  | [|- let A := ?B in _] =>
    multi_recurse n B; intro; multi_bound n
  | [|- (let A := _ in _) <= _] =>
    apply unwrap_let; multi_bound n
  | [|- ?W <= _ ] =>
    multi_recurse n W
  end.

(* Examples *)
Lemma example1 : forall {n} (w1 w2 w3 w4 : word n) b1 b2 b3 b4,
    w1 <= b1
    -> w2 <= b2
    -> w3 <= b3
    -> w4 <= b4
    -> { b | let w5 := w2 ^* w3 in w1 ^+ w5 ^* w4 <= b }.    
Proof.
  eexists.
  multi_bound n.
  eassumption.
Defined.

Lemma example2 : forall {n} (w1 w2 w3 w4 : word n) b1 b2 b3 b4,
    w1 <= b1
    -> w2 <= b2
    -> w3 <= b3
    -> w4 <= b4
    -> { b | (let w5 := (w2 ^* $7 ^* w3) in w1 ^+ w5 ^* w4 ^+ $8 ^+ w2) <= b }.
Proof.
  eexists.
  multi_bound n.
  eassumption.
Defined.

Lemma example3 : forall {n} (w1 w2 w3 w4 : word n),
    w1 <= Npow2 3
    -> w2 <= Npow2 4
    -> w3 <= Npow2 8
    -> w4 <= Npow2 16
    -> { b | w1 ^+ (w2 ^* $7 ^* w3) ^* w4 ^+ $8 ^+ w2 <= b }.
Proof.
  eexists.
  multi_bound n.
  eassumption.
Defined.

Section MulmodExamples.

  Notation "A <= B" := (wordLeN A B) (at level 70).
  Notation "$" := (natToWord 32).

  Lemma example_and : forall x : word 32, wand x (NToWord 32 (N.ones 10)) <= 1023.
    intros.
    replace (wand x (NToWord 32 (N.ones 10))) with (mask 10 x) by admit.
    multi_bound 32; eassumption.
  Qed.

  Lemma example_shiftr : forall x : word 32, shiftr x 30 <= 3.
    intros.
    replace 3%N with (N.shiftr (Npow2 32 - 1) (N.of_nat 30)) by (simpl; intuition).
    multi_bound 32; eassumption.
  Qed.

  Lemma example_shiftr2 : forall x : word 32, x <= 1023 -> shiftr x 5 <= 31.
    intros.
    replace 31%N with (N.shiftr 1023%N 5%N) by (simpl; intuition).
    multi_bound 32; eassumption.
  Qed.

  Variable f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 : word 32.
  Variable g0 g1 g2 g3 g4 g5 g6 g7 g8 g9 : word 32.
  Hypothesis Hf0 : f0 <= 2^26.
  Hypothesis Hf1 : f1 <= 2^25.
  Hypothesis Hf2 : f2 <= 2^26.
  Hypothesis Hf3 : f3 <= 2^25.
  Hypothesis Hf4 : f4 <= 2^26.
  Hypothesis Hf5 : f5 <= 2^25.
  Hypothesis Hf6 : f6 <= 2^26.
  Hypothesis Hf7 : f7 <= 2^25.
  Hypothesis Hf8 : f8 <= 2^26.
  Hypothesis Hf9 : f9 <= 2^25.
  Hypothesis Hg0 : g0 <= 2^26.
  Hypothesis Hg1 : g1 <= 2^25.
  Hypothesis Hg2 : g2 <= 2^26.
  Hypothesis Hg3 : g3 <= 2^25.
  Hypothesis Hg4 : g4 <= 2^26.
  Hypothesis Hg5 : g5 <= 2^25.
  Hypothesis Hg6 : g6 <= 2^26.
  Hypothesis Hg7 : g7 <= 2^25.
  Hypothesis Hg8 : g8 <= 2^26.
  Hypothesis Hg9 : g9 <= 2^25.

  Lemma example_mulmod_s_ppt : { b | f0 ^* g0  <= b}.
    eexists.
    multi_bound 32; eassumption.
  Defined.

  Lemma example_mulmod_s_pp :  { b | f0 ^* g0 ^+ $19 ^* (f9 ^* g1 ^* $2 ^+ f8 ^* g2 ^+ f7 ^* g3 ^* $2 ^+ f6 ^* g4 ^+ f5 ^* g5 ^* $2 ^+ f4 ^* g6 ^+ f3 ^* g7 ^* $2 ^+ f2 ^* g8 ^+  f1 ^* g9 ^* $2) <= b}.
    eexists.
    multi_bound 32; eassumption.
  Defined.

  Lemma example_mulmod_s_pp_shiftr :
    { b | shiftr (f0 ^* g0 ^+  $19 ^* (f9 ^* g1 ^* $2 ^+ f8 ^* g2 ^+ f7 ^* g3 ^* $2 ^+ f6 ^* g4 ^+ f5 ^* g5 ^* $2 ^+ f4 ^* g6 ^+ f3 ^* g7 ^* $2 ^+ f2 ^* g8 ^+  f1 ^* g9 ^* $2)) 26 <= b}.
    eexists.
    multi_bound 32; eassumption.
  Defined.

  Lemma example_mulmod_u_fg1 :  { b |
      (let y : word 32 := 
        (f0 ^* g0 ^+
            $19 ^*
            (f9 ^* g1 ^* $2 ^+ f8 ^* g2 ^+ f7 ^* g3 ^* $2 ^+ f6 ^* g4 ^+ f5 ^* g5 ^* $2 ^+ f4 ^* g6 ^+ f3 ^* g7 ^* $2 ^+ f2 ^* g8 ^+
            f1 ^* g9 ^* $2)) in
        let y0 : word 32 :=
        (shiftr y 26 ^+
            (f1 ^* g0 ^+ f0 ^* g1 ^+
            $19 ^* (f9 ^* g2 ^+ f8 ^* g3 ^+ f7 ^* g4 ^+ f6 ^* g5 ^+ f5 ^* g6 ^+ f4 ^* g7 ^+ f3 ^* g8 ^+ f2 ^* g9))) in
        let y1 : word 32 :=
        (shiftr y0 25 ^+
            (f2 ^* g0 ^+ f1 ^* g1 ^* $2 ^+ f0 ^* g2 ^+
            $19 ^* (f9 ^* g3 ^* $2 ^+ f8 ^* g4 ^+ f7 ^* g5 ^* $2 ^+ f6 ^* g6 ^+ f5 ^* g7 ^* $2 ^+ f4 ^* g8 ^+ f3 ^* g9 ^* $2))) in
        let y2 : word 32 :=
        (shiftr y1 26 ^+
            (f3 ^* g0 ^+ f2 ^* g1 ^+ f1 ^* g2 ^+ f0 ^* g3 ^+
            $19 ^* (f9 ^* g4 ^+ f8 ^* g5 ^+ f7 ^* g6 ^+ f6 ^* g7 ^+ f5 ^* g8 ^+ f4 ^* g9))) in
        let y3 : word 32 :=
        (shiftr y2 25 ^+
            (f4 ^* g0 ^+ f3 ^* g1 ^* $2 ^+ f2 ^* g2 ^+ f1 ^* g3 ^* $2 ^+ f0 ^* g4 ^+
            $19 ^* (f9 ^* g5 ^* $2 ^+ f8 ^* g6 ^+ f7 ^* g7 ^* $2 ^+ f6 ^* g8 ^+ f5 ^* g9 ^* $2))) in
        let y4 : word 32 :=
        (shiftr y3 26 ^+
            (f5 ^* g0 ^+ f4 ^* g1 ^+ f3 ^* g2 ^+ f2 ^* g3 ^+ f1 ^* g4 ^+ f0 ^* g5 ^+
            $19 ^* (f9 ^* g6 ^+ f8 ^* g7 ^+ f7 ^* g8 ^+ f6 ^* g9))) in
        let y5 : word 32 :=
        (shiftr y4 25 ^+
            (f6 ^* g0 ^+ f5 ^* g1 ^* $2 ^+ f4 ^* g2 ^+ f3 ^* g3 ^* $2 ^+ f2 ^* g4 ^+ f1 ^* g5 ^* $2 ^+ f0 ^* g6 ^+
            $19 ^* (f9 ^* g7 ^* $2 ^+ f8 ^* g8 ^+ f7 ^* g9 ^* $2))) in
        let y6 : word 32 :=
        (shiftr y5 26 ^+
            (f7 ^* g0 ^+ f6 ^* g1 ^+ f5 ^* g2 ^+ f4 ^* g3 ^+ f3 ^* g4 ^+ f2 ^* g5 ^+ f1 ^* g6 ^+ f0 ^* g7 ^+
            $19 ^* (f9 ^* g8 ^+ f8 ^* g9))) in
        let y7 : word 32 :=
        (shiftr y6 25 ^+
            (f8 ^* g0 ^+ f7 ^* g1 ^* $2 ^+ f6 ^* g2 ^+ f5 ^* g3 ^* $2 ^+ f4 ^* g4 ^+ f3 ^* g5 ^* $2 ^+ f2 ^* g6 ^+ f1 ^* g7 ^* $2 ^+
            f0 ^* g8 ^+ $19 ^* f9 ^* g9 ^* $2)) in
        let y8 : word 32 :=
        (shiftr y7 26 ^+
            (f9 ^* g0 ^+ f8 ^* g1 ^+ f7 ^* g2 ^+ f6 ^* g3 ^+ f5 ^* g4 ^+ f4 ^* g5 ^+ f3 ^* g6 ^+ f2 ^* g7 ^+ f1 ^* g8 ^+
            f0 ^* g9)) in
        let y9 : word 32 :=
        ($19 ^* shiftr y8 25 ^+
            wand
            (f0 ^* g0 ^+
            $19 ^*
            (f9 ^* g1 ^* $2 ^+ f8 ^* g2 ^+ f7 ^* g3 ^* $2 ^+ f6 ^* g4 ^+ f5 ^* g5 ^* $2 ^+ f4 ^* g6 ^+ f3 ^* g7 ^* $2 ^+
                f2 ^* g8 ^+ f1 ^* g9 ^* $2)) (@NToWord 32 (N.ones 26%N))) in
        let fg1 : word 32 := (shiftr y9 26 ^+
        wand
            (shiftr y 26 ^+
            (f1 ^* g0 ^+ f0 ^* g1 ^+
            $19 ^* (f9 ^* g2 ^+ f8 ^* g3 ^+ f7 ^* g4 ^+ f6 ^* g5 ^+ f5 ^* g6 ^+ f4 ^* g7 ^+ f3 ^* g8 ^+ f2 ^* g9)))
            (@NToWord 32 (N.ones 26%N))) in
        fg1) <= b }.
  Proof.
    eexists; multi_bound 32; eassumption.

  Defined.

  Eval simpl in (proj1_sig example_mulmod_u_fg1).

End MulmodExamples.