aboutsummaryrefslogtreecommitdiff
path: root/src/Assembly/GF25519.v
blob: a21b54cf095a0a04de04ed785ee01ea3d51e1eca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
Require Import Crypto.Assembly.Pipeline.

Require Import Crypto.Spec.ModularArithmetic.
Require Import Crypto.ModularArithmetic.ModularBaseSystem.
Require Import Crypto.Specific.GF25519.
Require Import Crypto.Util.Tuple.

Module GF25519.
  Definition bits: nat := 64.
  Definition width: Width bits := W64.

  Instance ZE : Evaluable Z := @ZEvaluable bits.
  Existing Instance ZE.

  Fixpoint makeBoundList {n} k (b: @BoundedWord n) :=
    match k with
    | O => nil
    | S k' => cons b (makeBoundList k' b)
    end.

  Section DefaultBounds.
    Import ListNotations.
    Local Notation rr exp := (2^exp + 2^exp/10)%Z.

    Definition feBound: list Z :=
      [rr 26; rr 27; rr 26; rr 27; rr 26;
       rr 27; rr 26; rr 27; rr 26; rr 27].
  End DefaultBounds.

  Definition FE: type.
  Proof.
    let T := eval vm_compute in fe25519 in
    let t := HL.reify_type T in
    exact t.
  Defined.

  Definition liftFE {T} (F: @interp_type Z FE -> T) :=
    fun (a b c d e f g h i j: Z) => F (a, b, c, d, e, f, g, h, i, j).

  Module AddExpr <: Expression.
    Definition bits: nat := bits.
    Definition inputs: nat := 20.
    Definition width: Width bits := width.
    Definition ResultType := FE.
    Definition inputBounds := feBound ++ feBound.

    Definition ge25519_add_expr :=
        Eval cbv beta delta [fe25519 add mul sub Let_In] in add.

    Definition ge25519_add' (P Q: @interp_type Z FE) :
        { r: @HL.expr Z (@interp_type Z) FE | HL.interp (t := FE) r = ge25519_add_expr P Q }.
    Proof.
      vm_compute in P, Q; repeat
        match goal with
        | [x:?T |- _] =>
          lazymatch T with
          | Z => fail
          | prod _ _ => destruct x
          | _ => clear x
          end
        end.

      eexists.
      cbv beta delta [ge25519_add_expr].

      let R := HL.rhs_of_goal in
      let X := HL.reify (@interp_type Z) R in
      transitivity (HL.interp (t := ResultType) X); [reflexivity|].

      cbv iota beta delta [
            interp_type interp_binop HL.interp
            Z.land ZEvaluable eadd esub emul eshiftr eand].
      reflexivity.
    Defined.

    Definition ge25519_add (P Q: @interp_type Z ResultType) :=
        proj1_sig (ge25519_add' P Q).

    Definition hlProg: NAry 20 Z (@HL.expr Z (@interp_type Z) ResultType) :=
        liftFE (fun p => (liftFE (fun q => ge25519_add p q))).
  End AddExpr.

  Module OppExpr <: Expression.
    Definition bits: nat := bits.
    Definition inputs: nat := 10.
    Definition width: Width bits := width.
    Definition ResultType := FE.
    Definition inputBounds := feBound.

    Definition ge25519_opp_expr :=
        Eval cbv beta delta [fe25519 add mul sub opp Let_In] in opp.

    Definition ge25519_opp' (P: @interp_type Z FE) :
        { r: @HL.expr Z (@interp_type Z) FE
        | HL.interp (E := @ZEvaluable bits) (t := FE) r = ge25519_opp_expr P }.
    Proof.
      vm_compute in P; repeat
        match goal with
        | [x:?T |- _] =>
          lazymatch T with
          | Z => fail
          | prod _ _ => destruct x
          | _ => clear x
          end
        end.

      eexists.
      cbv beta delta [ge25519_opp_expr zero_].

      let R := HL.rhs_of_goal in
      let X := HL.reify (@interp_type Z) R in
      transitivity (HL.interp (E := @ZEvaluable bits) (t := ResultType) X);
        [reflexivity|].

      cbv iota beta delta [
        interp_type interp_binop HL.interp
        Z.land ZEvaluable eadd esub emul eshiftr eand].
      reflexivity.
    Defined.

    Definition ge25519_opp (P: @interp_type Z ResultType) :=
        proj1_sig (ge25519_opp' P).

    Definition hlProg: NAry 10 Z (@HL.expr Z (@interp_type Z) ResultType) :=
        liftFE (fun p => ge25519_opp p).
  End OppExpr.

  Module Add := Pipeline AddExpr.
  Module Opp := Pipeline OppExpr.

  Section Operations.
    Definition wfe: Type := @interp_type (word bits) FE.

    Definition ExprBinOp : Type := NAry 20 Z (@CompileLL.WExpr bits FE).
    Definition ExprUnOp : Type := NAry 10 Z (@CompileLL.WExpr bits FE).

    Existing Instance WordEvaluable.

    Definition interp_bexpr (op: ExprBinOp) (x y: tuple (word bits) 10): tuple (word bits) 10 :=
      let '(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) := x in 
      let '(y0, y1, y2, y3, y4, y5, y6, y7, y8, y9) := y in
      let op' := NArgMap (fun v => Z.of_N (@wordToN bits v)) op in
      let z := LL.interp (op' x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9) in
        z.

    Definition interp_uexpr (op: ExprUnOp) (x: tuple (word bits) 10): tuple (word bits) 10 :=
      let '(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) := x in 
      let op' := NArgMap (fun v => Z.of_N (@wordToN bits v)) op in
      let z := LL.interp (op' x0 x1 x2 x3 x4 x5 x6 x7 x8 x9) in
        z.
 
    Definition radd : ExprBinOp := Add.wordProg.
    Definition ropp : ExprUnOp := Opp.wordProg.
  End Operations.
End GF25519.

Extraction "GF25519Add" GF25519.Add.
Extraction "GF25519Sub" GF25519.Sub.
Extraction "GF25519Mul" GF25519.Mul.
Extraction "GF25519Opp" GF25519.Opp.