aboutsummaryrefslogtreecommitdiff
path: root/src/Assembly/Conversions.v
blob: 593aa06a45314df8c93e9dddbe02ff507bb3755a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
Require Import Crypto.Assembly.PhoasCommon.

Require Export Crypto.Assembly.QhasmUtil.
Require Export Crypto.Assembly.QhasmEvalCommon.
Require Export Crypto.Assembly.WordizeUtil.
Require Export Crypto.Assembly.Evaluables.
Require Export Crypto.Assembly.HL.
Require Export Crypto.Assembly.LL.

Require Export FunctionalExtensionality.

Require Import Bedrock.Nomega.

Require Import Coq.ZArith.ZArith_dec.
Require Import Coq.ZArith.Znat.

Require Import Coq.NArith.Nnat Coq.NArith.Ndigits.

Require Import Coq.Bool.Sumbool.

Definition typeMap {A B t} (f: A -> B) (x: @interp_type A t): @interp_type B t.
Proof.
  induction t; [refine (f x)|].
  destruct x as [x1 x2].
  refine (IHt1 x1, IHt2 x2).
Defined.

Module HLConversions.
  Import HL.

  Fixpoint mapVar {A: Type} {t V0 V1} (f: forall t, V0 t -> V1 t) (g: forall t, V1 t -> V0 t) (a: expr (T := A) (var := V0) t): expr (T := A) (var := V1) t :=
    match a with
    | Const x => Const x
    | Var t x => Var (f _ x)
    | Binop t1 t2 t3 o e1 e2 => Binop o (mapVar f g e1) (mapVar f g e2)
    | Let tx e tC h => Let (mapVar f g e) (fun x => mapVar f g (h (g _ x)))
    | Pair t1 e1 t2 e2 => Pair (mapVar f g e1) (mapVar f g e2)
    | MatchPair t1 t2 e tC h => MatchPair (mapVar f g e) (fun x y => mapVar f g (h (g _ x) (g _ y)))
    end.

  Definition convertVar {A B: Type} {EA: Evaluable A} {EB: Evaluable B} {t} (a: interp_type (T := A) t): interp_type (T := B) t.
  Proof.
    induction t as [| t3 IHt1 t4 IHt2].

    - refine (@toT B EB (@fromT A EA _)); assumption.

    - destruct a as [a1 a2]; constructor;
        [exact (IHt1 a1) | exact (IHt2 a2)].
  Defined.

  Fixpoint convertExpr {A B: Type} {EA: Evaluable A} {EB: Evaluable B} {t v} (a: expr (T := A) (var := v) t): expr (T := B) (var := v) t :=
    match a with
    | Const x => Const (@toT B EB (@fromT A EA x))
    | Var t x => @Var B _ t x
    | Binop t1 t2 t3 o e1 e2 =>
      @Binop B _ t1 t2 t3 o (convertExpr e1) (convertExpr e2)
    | Let tx e tC f =>
      Let (convertExpr e) (fun x => convertExpr (f x))
    | Pair t1 e1 t2 e2 => Pair (convertExpr e1) (convertExpr e2)
    | MatchPair t1 t2 e tC f => MatchPair (convertExpr e) (fun x y =>
        convertExpr (f x y))
    end.

  Fixpoint convertExpr' {A B: Type} {EA: Evaluable A} {EB: Evaluable B} {t} (a: expr (T := A) (var := @interp_type A) t): expr (T := B) (var := @interp_type B) t :=
    match a with
    | Const x => Const (@toT B EB (@fromT A EA x))
    | Var t x => @Var B _ t (convertVar x)
    | Binop t1 t2 t3 o e1 e2 =>
      @Binop B _ t1 t2 t3 o (convertExpr' e1) (convertExpr' e2)
    | Let tx e tC f =>
      Let (convertExpr' e) (fun x => convertExpr' (f (convertVar x)))
    | Pair t1 e1 t2 e2 => Pair (convertExpr' e1) (convertExpr' e2)
    | MatchPair t1 t2 e tC f => MatchPair (convertExpr' e) (fun x y =>
        convertExpr' (f (convertVar x) (convertVar y)))
    end.

  Definition convertZToWord {t} n v a :=
    @convertExpr Z (word n) ZEvaluable (@WordEvaluable n) t v a.

  Definition convertZToBounded {t} n v a :=
    @convertExpr Z (option (@BoundedWord n))
                 ZEvaluable (@BoundedEvaluable n) t v a.

  Definition ZToWord {t} n (a: @Expr Z t): @Expr (word n) t :=
    fun v => convertZToWord n v (a v).

  Definition ZToRange {t} n (a: @Expr Z t): @Expr (option (@BoundedWord n)) t :=
    fun v => convertZToBounded n v (a v).

  Definition BInterp {n t} E: @interp_type (option (@BoundedWord n)) t :=
    @Interp (option (@BoundedWord n)) (@BoundedEvaluable n) t E.

  Example example_Expr : Expr TT := fun var => (
    Let (Const 7) (fun a =>
      Let (Let (Binop OPadd (Var a) (Var a)) (fun b => Pair (Var b) (Var b))) (fun p =>
        MatchPair (Var p) (fun x y =>
          Binop OPadd (Var x) (Var y)))))%Z.

  Example interp_example_range :
    option_map high (BInterp (ZToRange 32 example_Expr)) = Some 28%N.
  Proof. cbv; reflexivity. Qed.
End HLConversions.

Module LLConversions.
  Import LL.

  Definition convertVar {A B: Type} {EA: Evaluable A} {EB: Evaluable B} {t} (a: interp_type (T := A) t): interp_type (T := B) t.
  Proof.
    induction t as [| t3 IHt1 t4 IHt2].

    - refine (@toT B EB (@fromT A EA _)); assumption.

    - destruct a as [a1 a2]; constructor;
        [exact (IHt1 a1) | exact (IHt2 a2)].
  Defined.

  Fixpoint convertArg {A B: Type} {EA: Evaluable A} {EB: Evaluable B} t {struct t}: @arg A A t -> @arg B B t :=
    match t as t' return @arg A A t' -> @arg B B t' with
    | TT => fun x =>
      match x with
      | Const c => Const (convertVar (t := TT) c)
      | Var v => Var (convertVar (t := TT) v)
      end
    | Prod t0 t1 => fun x =>
      match (match_arg_Prod x) with
      | (a, b) => Pair ((convertArg t0) a) ((convertArg t1) b)
      end
    end.

  Arguments convertArg [_ _ _ _ _ _].

  Fixpoint convertExpr {A B: Type} {EA: Evaluable A} {EB: Evaluable B} {t} (a: expr (T := A) t): expr (T := B) t :=
    match a with
    | LetBinop _ _ out op a b _ eC =>
      LetBinop (T := B) op (convertArg a) (convertArg b) (fun x: (arg out) => convertExpr (eC (convertArg x)))
    | Return _ a => Return (convertArg a)
    end.

  Definition convertZToWord {t} n a :=
    @convertExpr Z (word n) ZEvaluable (@WordEvaluable n) t a.

  Definition convertZToBounded {t} n a :=
    @convertExpr Z (option (@BoundedWord n)) ZEvaluable (@BoundedEvaluable n) t a.

  Definition zinterp {t} E := @interp Z ZEvaluable t E.

  Definition wordInterp {n t} E := @interp (word n) (@WordEvaluable n) t E.

  Definition boundedInterp {n t} E: @interp_type (option (@BoundedWord n)) t :=
    @interp (option (@BoundedWord n)) (@BoundedEvaluable n) t E.

  Section Correctness.
    (* Aliases to make the proofs easier to read. *)

    Definition varZToBounded {n t} (v: @interp_type Z t): @interp_type (option (@BoundedWord n)) t :=
      @convertVar Z (option (@BoundedWord n)) ZEvaluable BoundedEvaluable t v.

    Definition varBoundedToZ {n t} (v: @interp_type _ t): @interp_type Z t :=
      @convertVar (option (@BoundedWord n)) Z BoundedEvaluable ZEvaluable t v.

    Definition varZToWord {n t} (v: @interp_type Z t): @interp_type (@word n) t :=
      @convertVar Z (@word n) ZEvaluable (@WordEvaluable n) t v.

    Definition varWordToZ {n t} (v: @interp_type (@word n) t): @interp_type Z t :=
      @convertVar (word n) Z (@WordEvaluable n) ZEvaluable t v.

    Definition zOp {tx ty tz: type} (op: binop tx ty tz)
               (x: @interp_type Z tx) (y: @interp_type Z ty): @interp_type Z tz :=
      @interp_binop Z ZEvaluable _ _ _ op x y.

    Definition wOp {n} {tx ty tz: type} (op: binop tx ty tz)
               (x: @interp_type _ tx) (y: @interp_type _ ty): @interp_type _ tz :=
      @interp_binop (word n) (@WordEvaluable n) _ _ _ op x y.

    Definition bOp {n} {tx ty tz: type} (op: binop tx ty tz)
               (x: @interp_type _ tx) (y: @interp_type _ ty): @interp_type _ tz :=
      @interp_binop (option (@BoundedWord n)) BoundedEvaluable _ _ _ op x y.

    Definition boundedArg {n t} (x: @arg (option (@BoundedWord n)) (option (@BoundedWord n)) t) :=
      @interp_arg _ _ x.

    Definition wordArg {n t} (x: @arg (word n) (word n) t) := @interp_arg _ _ x.

    (* BoundedWord-based Bounds-checking fixpoint *)

    Definition getBounds {n t} T (E: Evaluable T) (e : @expr T T t): @interp_type (option (@BoundedWord n)) t :=
      interp (E := BoundedEvaluable) (@convertExpr T (option (@BoundedWord n)) E BoundedEvaluable t e).

    Fixpoint bcheck' {n t} (x: @interp_type (option (@BoundedWord n)) t) :=
      match t as t' return (interp_type t') -> bool with
      | TT => fun x' =>
        match x' with
        | Some _ => true
        | None => false
        end
      | Prod t0 t1 => fun x' =>
        match x' with
        | (x0, x1) => andb (bcheck' x0) (bcheck' x1)
        end
      end x.

    Definition bcheck {n t} T (E: Evaluable T) (e : @expr T T t): bool := bcheck' (n := n) (getBounds T E e).

    (* Utility Lemmas *)

    Lemma convertArg_interp: forall {A B t} {EA: Evaluable A} {EB: Evaluable B} (x: @arg A A t),
        (interp_arg (@convertArg A B EA EB t x)) = @convertVar A B EA EB t (interp_arg x).
    Proof.
      induction x as [| |t0 t1 i0 i1]; [reflexivity|reflexivity|].
      induction EA, EB; simpl; f_equal; assumption.
    Qed.

    Lemma convertArg_var: forall {A B EA EB t} (x: @interp_type A t),
        @convertArg A B EA EB t (uninterp_arg x) = uninterp_arg (@convertVar A B EA EB t x).
    Proof.
      induction t as [|t0 IHt_0 t1 IHt_1]; simpl; intros; [reflexivity|].
      induction x as [a b]; simpl; f_equal;
        induction t0 as [|t0a IHt0_0 t0b IHt0_1],
                  t1 as [|t1a IHt1_0]; simpl in *;
        try rewrite IHt_0;
        try rewrite IHt_1;
        reflexivity.
    Qed.

    Ltac kill_just n :=
      match goal with
      | [|- context[just ?x] ] =>
        let Hvalue := fresh in let Hvalue' := fresh in
        let Hlow := fresh in let Hlow' := fresh in
        let Hhigh := fresh in let Hhigh' := fresh in
        let Hnone := fresh in let Hnone' := fresh in

        let B := fresh in

        pose proof (just_value_spec (n := n) x) as Hvalue;
        pose proof (just_low_spec (n := n) x) as Hlow;
        pose proof (just_high_spec (n := n) x) as Hhigh;
        pose proof (just_None_spec (n := n) x) as Hnone;

        destruct (just x);

        try pose proof (Hlow _ eq_refl) as Hlow';
        try pose proof (Hvalue _ eq_refl) as Hvalue';
        try pose proof (Hhigh _ eq_refl) as Hhigh';
        try pose proof (Hnone eq_refl) as Hnone';

        clear Hlow Hhigh Hvalue Hnone
      end.

    Ltac kill_dec :=
      repeat match goal with
      | [|- context[Nge_dec ?a ?b] ] => destruct (Nge_dec a b)
      | [H : context[Nge_dec ?a ?b] |- _ ] => destruct (Nge_dec a b)
      end.

    Lemma ZToBounded_binop_correct : forall {n tx ty tz} (op: binop tx ty tz) (x: arg tx) (y: arg ty) e,
        bcheck (n := n) (t := tz) Z ZEvaluable (LetBinop op x y e) = true
      -> zOp op (interp_arg x) (interp_arg y) =
          varBoundedToZ (bOp (n := n) op (varZToBounded (interp_arg x)) (varZToBounded (interp_arg y))).
    Proof.
    Admitted.

    Lemma ZToWord_binop_correct : forall {n tx ty tz} (op: binop tx ty tz) (x: arg tx) (y: arg ty) e,
        bcheck (n := n) (t := tz) Z ZEvaluable (LetBinop op x y e) = true
      -> zOp op (interp_arg x) (interp_arg y) =
          varWordToZ (wOp (n := n) op (varZToWord (interp_arg x)) (varZToWord (interp_arg y))).
    Proof.
    Admitted.

    Lemma just_zero: forall n, exists x, just (n := n) 0 = Some x.
    Proof.
    Admitted.

    (* Main correctness guarantee *)

    Lemma RangeInterp_bounded_spec: forall {n t} (E: expr t),
        bcheck (n := n) Z ZEvaluable E = true
      -> typeMap (fun x => NToWord n (Z.to_N x)) (zinterp E) = wordInterp (convertZToWord n E).
    Proof.
      intros n t E S.
      unfold convertZToBounded, zinterp, convertZToWord, wordInterp.

      induction E as [tx ty tz op x y z|]; simpl; try reflexivity.

      - repeat rewrite convertArg_var in *.
        repeat rewrite convertArg_interp in *.

        rewrite H; clear H; repeat f_equal.

        + pose proof (ZToWord_binop_correct (n := n) op x y) as C;
            unfold zOp, wOp, varWordToZ, varZToWord in C;
            simpl in C.

          induction op; apply (C (fun _ => Return (Const 0%Z))); clear C;
            unfold bcheck, getBounds; simpl;
            destruct (@just_zero n) as [j p]; rewrite p; reflexivity.

        + unfold bcheck, getBounds in *; simpl in *.
          replace (interp_binop op _ _)
             with (varBoundedToZ (n := n) (bOp (n := n) op
                    (boundedArg (@convertArg _ _ ZEvaluable (@BoundedEvaluable n) _ x))
                    (boundedArg (@convertArg _ _ ZEvaluable (@BoundedEvaluable n) _ y))));
            [unfold varBoundedToZ, boundedArg; rewrite <- convertArg_var; assumption |].

          pose proof (ZToBounded_binop_correct (n := n) op x y) as C;
            unfold boundedArg, zOp, wOp, varZToBounded,
                   varBoundedToZ, convertZToBounded in *;
            simpl in C.

          repeat rewrite convertArg_interp; symmetry.

          induction op; apply (C (fun _ => Return (Const 0%Z))); clear C;
            unfold bcheck, getBounds; simpl;
            destruct (@just_zero n) as [j p]; rewrite p; reflexivity.

      - simpl in S.
        induction a as [| |t0 t1 a0 IHa0 a1 IHa1]; simpl in *; try reflexivity.
        apply andb_true_iff in S; destruct S; rewrite IHa0, IHa1; try reflexivity; assumption.
    Qed.
  End Correctness.

  Section FastCorrect.
    Context {n: nat}.

    Record RangeWithValue := rwv {
      low: N;
      value: N;
      high: N;
    }.

    Definition rwv_app {rangeF wordF}
      (op: @validBinaryWordOp n rangeF wordF)
      (X Y: RangeWithValue): option (RangeWithValue) :=
      omap (rangeF (range N (low X) (high X)) (range N (low Y) (high Y))) (fun r' =>
        match r' with
        | range l h => Some (
          rwv l (wordToN (wordF (NToWord n (value X)) (NToWord n (value Y)))) h)
        end).

    Definition proj (x: RangeWithValue): Range N := range N (low x) (high x).

    Definition from_range (x: Range N): RangeWithValue :=
      match x with
      | range l h => rwv l h h
      end.

    Instance RWVEval : Evaluable (option RangeWithValue) := {
      ezero := None;

      toT := fun x => 
        if (Nge_dec (N.pred (Npow2 n)) (Z.to_N x))
        then Some (rwv (Z.to_N x) (Z.to_N x) (Z.to_N x))
        else None;

      fromT := fun x => orElse 0%Z (option_map Z.of_N (option_map value x));

      eadd := fun x y => omap x (fun X => omap y (fun Y =>
        rwv_app range_add_valid X Y));

      esub := fun x y => omap x (fun X => omap y (fun Y =>
        rwv_app range_sub_valid X Y));

      emul := fun x y => omap x (fun X => omap y (fun Y =>
        rwv_app range_mul_valid X Y));

      eshiftr := fun x y => omap x (fun X => omap y (fun Y =>
        rwv_app range_shiftr_valid X Y));

      eand := fun x y => omap x (fun X => omap y (fun Y =>
        rwv_app range_and_valid X Y));

      eltb := fun x y =>
        match (x, y) with
        | (Some (rwv xlow xv xhigh), Some (rwv ylow yv yhigh)) =>
            N.ltb xv yv

        | _ => false 
        end;

      eeqb := fun x y =>
        match (x, y) with
        | (Some (rwv xlow xv xhigh), Some (rwv ylow yv yhigh)) =>
            andb (andb (N.eqb xlow ylow) (N.eqb xhigh yhigh)) (N.eqb xv yv)

        | _ => false
        end;
    }.

    Definition getRWV {t} T (E: Evaluable T) (e : @expr T T t): @interp_type (option RangeWithValue) t :=
      interp (@convertExpr T (option RangeWithValue) E RWVEval t e).

    Definition getRanges {t} T (E: Evaluable T) (e : @expr T T t): @interp_type (option (Range N)) t :=
      typeMap (option_map proj) (getRWV T E e).

    Fixpoint check' {t} (x: @interp_type (option RangeWithValue) t) :=
      match t as t' return (interp_type t') -> bool with
      | TT => fun x' =>
        match x' with
        | Some _ => true
        | None => false
        end
      | Prod t0 t1 => fun x' =>
        match x' with
        | (x0, x1) => andb (check' x0) (check' x1)
        end
      end x.

    Definition check {t} T (E: Evaluable T) (e : @expr T T t): bool :=
      check' (getRWV T E e).

    Ltac kill_dec :=
      repeat match goal with
      | [|- context[Nge_dec ?a ?b] ] => destruct (Nge_dec a b)
      | [H : context[Nge_dec ?a ?b] |- _ ] => destruct (Nge_dec a b)
      end.

    Lemma check_spec: forall {t} (E: expr t),
         check Z ZEvaluable E = true
      -> bcheck (n := n) Z ZEvaluable E = true.
    Proof.
      intros t E H.
      induction E as [tx ty tz op x y z eC IH| t a].

      - unfold bcheck, getBounds, check, getRWV in *.
        apply IH; simpl in *; revert H; clear IH.
        repeat rewrite convertArg_interp.
        generalize (interp_arg x) as X; intro X; clear x.
        generalize (interp_arg y) as Y; intro Y; clear y.
        intro H; rewrite <- H; clear H; repeat f_equal.

        induction op; unfold ZEvaluable, BoundedEvaluable, RWVEval, just in *;
          simpl in *; kill_dec; simpl in *; try reflexivity;
          try rewrite (bapp_value_spec _ _ _ (fun x => Z.of_N (@wordToN n x)));
          unfold vapp, rapp, rwv_app, overflows in *; kill_dec; simpl in *;
          try reflexivity; try nomega.

      - induction a as [c|v|t0 t1 a0 IHa0 a1 IHa1];
          unfold bcheck, getBounds, check, getRWV in *; simpl in *; unfold just.

        + induction (Nge_dec (N.pred (Npow2 n)) (Z.to_N c));
            simpl in *; [reflexivity|inversion H].

        + induction (Nge_dec (N.pred (Npow2 n)) (Z.to_N v));
            simpl in *; [reflexivity|inversion H].

        + apply andb_true_iff; apply andb_true_iff in H;
            destruct H as [H0 H1]; split;
            [apply IHa0|apply IHa1]; assumption.
    Qed.

    Lemma RangeInterp_spec: forall {t} (E: expr t),
        check Z ZEvaluable E = true
      -> typeMap (fun x => NToWord n (Z.to_N x)) (zinterp E) = wordInterp (convertZToWord n E).
    Proof.
      intros.
      apply RangeInterp_bounded_spec.
      apply check_spec.
      assumption.
    Qed.

    Lemma getRanges_spec: forall {t} T E (e: @expr T T t),
      getRanges T E e = typeMap (t := t) (option_map (toRange (n := n))) (getBounds T E e).
    Proof.
      intros; induction e as [tx ty tz op x y z eC IH| t a];
        unfold getRanges, getRWV, option_map, toRange, getBounds in *;
        simpl in *.

      - rewrite <- IH; clear IH; simpl.
        repeat f_equal.
        repeat rewrite (convertArg_interp x); generalize (interp_arg x) as X; intro; clear x.
        repeat rewrite (convertArg_interp y); generalize (interp_arg y) as Y; intro; clear y.

        (* induction op;
          unfold RWVEval, BoundedEvaluable, bapp, rwv_app,
                 overflows, omap, option_map, just; simpl;
          kill_dec; simpl in *. *)
    Admitted.
  End FastCorrect.
End LLConversions.

Section ConversionTest.
  Import HL HLConversions.

  Fixpoint keepAddingOne {var} (x : @expr Z var TT) (n : nat) : @expr Z var TT :=
    match n with
    | O => x
    | S n' => Let (Binop OPadd x (Const 1%Z)) (fun y => keepAddingOne (Var y) n')
    end.

  Definition KeepAddingOne (n : nat) : Expr (T := Z) TT :=
    fun var => keepAddingOne (Const 1%Z) n.

  Definition testCase := Eval vm_compute in KeepAddingOne 4000.

  Eval vm_compute in (typeMap (option_map toRange) (BInterp (ZToRange 0 testCase))).
  Eval vm_compute in (typeMap (option_map toRange) (BInterp (ZToRange 1 testCase))).
  Eval vm_compute in (typeMap (option_map toRange) (BInterp (ZToRange 10 testCase))).
  Eval vm_compute in (typeMap (option_map toRange) (BInterp (ZToRange 32 testCase))).
  Eval vm_compute in (typeMap (option_map toRange) (BInterp (ZToRange 64 testCase))).
  Eval vm_compute in (typeMap (option_map toRange) (BInterp (ZToRange 128 testCase))).

  Definition nefarious : Expr (T := Z) TT :=
    fun var => Let (Binop OPadd (Const 10%Z) (Const 20%Z))
                   (fun y => Binop OPmul (Var y) (Const 0%Z)).

  Eval vm_compute in (typeMap (option_map toRange) (BInterp (ZToRange 0 nefarious))).
  Eval vm_compute in (typeMap (option_map toRange) (BInterp (ZToRange 1 nefarious))).
  Eval vm_compute in (typeMap (option_map toRange) (BInterp (ZToRange 4 nefarious))).
  Eval vm_compute in (typeMap (option_map toRange) (BInterp (ZToRange 5 nefarious))).
  Eval vm_compute in (typeMap (option_map toRange) (BInterp (ZToRange 32 nefarious))).
  Eval vm_compute in (typeMap (option_map toRange) (BInterp (ZToRange 64 nefarious))).
  Eval vm_compute in (typeMap (option_map toRange) (BInterp (ZToRange 128 nefarious))).
End ConversionTest.