aboutsummaryrefslogtreecommitdiff
path: root/src/Assembly/Conversions.v
blob: 436a6639b2f31bac59a0747631e352318eaaa5d6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
Require Import Crypto.Assembly.PhoasCommon.

Require Export Crypto.Assembly.QhasmUtil.
Require Export Crypto.Assembly.QhasmEvalCommon.
Require Export Crypto.Assembly.WordizeUtil.
Require Export Crypto.Assembly.Evaluables.
Require Export Crypto.Assembly.HL.
Require Export Crypto.Assembly.LL.

Require Export FunctionalExtensionality.

Require Import Bedrock.Nomega.

Require Import Coq.ZArith.ZArith_dec.
Require Import Coq.ZArith.Znat.

Require Import Coq.NArith.Nnat Coq.NArith.Ndigits.

Require Import Coq.Bool.Sumbool.

Definition typeMap {A B t} (f: A -> B) (x: @interp_type A t): @interp_type B t.
Proof.
  induction t; [refine (f x)|].
  destruct x as [x1 x2].
  refine (IHt1 x1, IHt2 x2).
Defined.

Module HLConversions.
  Import HL.

  Fixpoint mapVar {A: Type} {t V0 V1} (f: forall t, V0 t -> V1 t) (g: forall t, V1 t -> V0 t) (a: expr (T := A) (var := V0) t): expr (T := A) (var := V1) t :=
    match a with
    | Const x => Const x
    | Var t x => Var (f _ x)
    | Binop t1 t2 t3 o e1 e2 => Binop o (mapVar f g e1) (mapVar f g e2)
    | Let tx e tC h => Let (mapVar f g e) (fun x => mapVar f g (h (g _ x)))
    | Pair t1 e1 t2 e2 => Pair (mapVar f g e1) (mapVar f g e2)
    | MatchPair t1 t2 e tC h => MatchPair (mapVar f g e) (fun x y => mapVar f g (h (g _ x) (g _ y)))
    end.

  Definition convertVar {A B: Type} {EA: Evaluable A} {EB: Evaluable B} {t} (a: interp_type (T := A) t): interp_type (T := B) t.
  Proof.
    induction t as [| t3 IHt1 t4 IHt2].

    - refine (@toT B EB (@fromT A EA _)); assumption.

    - destruct a as [a1 a2]; constructor;
        [exact (IHt1 a1) | exact (IHt2 a2)].
  Defined.

  Fixpoint convertExpr {A B: Type} {EA: Evaluable A} {EB: Evaluable B} {t v} (a: expr (T := A) (var := v) t): expr (T := B) (var := v) t :=
    match a with
    | Const x => Const (@toT B EB (@fromT A EA x))
    | Var t x => @Var B _ t x
    | Binop t1 t2 t3 o e1 e2 =>
      @Binop B _ t1 t2 t3 o (convertExpr e1) (convertExpr e2)
    | Let tx e tC f =>
      Let (convertExpr e) (fun x => convertExpr (f x))
    | Pair t1 e1 t2 e2 => Pair (convertExpr e1) (convertExpr e2)
    | MatchPair t1 t2 e tC f => MatchPair (convertExpr e) (fun x y =>
        convertExpr (f x y))
    end.

  Definition convertZToWord {t} n v a :=
    @convertExpr Z (word n) (@ZEvaluable n) (@WordEvaluable n) t v a.

  Definition convertZToBounded {t} n v a :=
    @convertExpr Z (option (@BoundedWord n))
                 (@ZEvaluable n) (@BoundedEvaluable n) t v a.

  Definition ZToWord {t} n (a: @Expr Z t): @Expr (word n) t :=
    fun v => convertZToWord n v (a v).

  Definition ZToRange {t} n (a: @Expr Z t): @Expr (option (@BoundedWord n)) t :=
    fun v => convertZToBounded n v (a v).

  Definition BInterp {n t} E: @interp_type (option (@BoundedWord n)) t :=
    @Interp (option (@BoundedWord n)) (@BoundedEvaluable n) t E.

  Example example_Expr : Expr TT := fun var => (
    Let (Const 7) (fun a =>
      Let (Let (Binop OPadd (Var a) (Var a)) (fun b => Pair (Var b) (Var b))) (fun p =>
        MatchPair (Var p) (fun x y =>
          Binop OPadd (Var x) (Var y)))))%Z.

  Example interp_example_range :
    option_map bw_high (BInterp (ZToRange 32 example_Expr)) = Some 28%N.
  Proof. cbv; reflexivity. Qed.
End HLConversions.

Module LLConversions.
  Import LL.

  Section VarConv.
    Context {A B: Type} {EA: Evaluable A} {EB: Evaluable B}.

    Definition convertVar {t} (a: interp_type (T := A) t): interp_type (T := B) t.
    Proof.
      induction t as [| t3 IHt1 t4 IHt2].

      - refine (@toT B EB (@fromT A EA _)); assumption.

      - destruct a as [a1 a2]; constructor;
          [exact (IHt1 a1) | exact (IHt2 a2)].
    Defined.
  End VarConv.

  Section ArgConv.
    Context {A B: Type} {EA: Evaluable A} {EB: Evaluable B}.

    Fixpoint convertArg {V} t {struct t}: @arg A V t -> @arg B V t :=
      match t as t' return @arg A V t' -> @arg B V t' with
      | TT => fun x =>
        match x with
        | Const c => Const (convertVar (t := TT) c)
        | Var v => Var v
        end
      | Prod t0 t1 => fun x =>
        match (match_arg_Prod x) with
        | (a, b) => Pair ((convertArg t0) a) ((convertArg t1) b)
        end
      end.
  End ArgConv.

  Section ExprConv.
    Context {A B: Type} {EA: Evaluable A} {EB: Evaluable B}.

    Fixpoint convertExpr {t V} (a: @expr A V t): @expr B V t :=
        match a with
        | LetBinop _ _ out op a b _ eC =>
          LetBinop (T := B) op (convertArg _ a) (convertArg _ b) (fun x: (arg out) =>
            convertExpr (eC (convertArg _ x)))

        | Return _ a => Return (convertArg _ a)
        end.
  End ExprConv.

  Section Defaults.
    Context {t: type} {n: nat}.

    Definition Word := word n.
    Definition Bounded := option (@BoundedWord n).
    Definition RWV := option (RangeWithValue).

    Transparent Word Bounded RWV.

    Instance RWVEvaluable' : Evaluable RWV := @RWVEvaluable n.
    Instance ZEvaluable' : Evaluable Z := @ZEvaluable n.

    Existing Instance ZEvaluable'.
    Existing Instance WordEvaluable.
    Existing Instance BoundedEvaluable.
    Existing Instance RWVEvaluable'.

    Definition ZToWord a := @convertExpr Z Word _ _ t a.
    Definition ZToBounded a := @convertExpr Z Bounded _ _ t a.
    Definition ZToRWV a := @convertExpr Z RWV _ _ t a.

    Definition varZToWord a := @convertVar Z Word _ _ t a.
    Definition varZToBounded a := @convertVar Z Bounded _ _ t a.
    Definition varZToRWV a := @convertVar Z RWV _ _ t a.

    Definition varWordToZ a := @convertVar Word Z _ _ t a.
    Definition varBoundedToZ a := @convertVar Bounded Z _ _ t a.
    Definition varRWVToZ a := @convertVar RWV Z _ _ t a.

    Definition zinterp E := @interp Z _ t E.
    Definition wordInterp E := @interp' Word _ _ t (fun x => NToWord n (Z.to_N x)) E.
    Definition boundedInterp E := @interp Bounded _ t E.
    Definition rwvInterp E := @interp RWV _ t E.

    Section Operations.
      Context {tx ty tz: type}.

      Definition opZ (op: binop tx ty tz)
                 (x: @interp_type Z tx) (y: @interp_type Z ty): @interp_type Z tz :=
        @interp_binop Z _ _ _ _ op x y.

      Definition opBounded (op: binop tx ty tz)
                 (x: @interp_type Bounded tx) (y: @interp_type Bounded ty): @interp_type Bounded tz :=
        @interp_binop Bounded _ _ _ _ op x y.

      Definition opWord (op: binop tx ty tz)
                 (x: @interp_type Word tx) (y: @interp_type Word ty): @interp_type Word tz :=
        @interp_binop Word _ _ _ _ op x y.

      Definition opRWV (op: binop tx ty tz)
                 (x: @interp_type RWV tx) (y: @interp_type RWV ty): @interp_type RWV tz :=
        @interp_binop RWV _ _ _ _ op x y.
    End Operations.
  End Defaults.

  Section Correctness.
    Context {n: nat}.

    Definition W := (word n).
    Definition B := (@Bounded n).
    Definition R := (option RangeWithValue).

    Instance RE : Evaluable R := @RWVEvaluable n.
    Instance ZE : Evaluable Z := @ZEvaluable n.
    Instance WE : Evaluable W := @WordEvaluable n.
    Instance BE : Evaluable B := @BoundedEvaluable n.

    Transparent ZE RE WE BE W B R.

    Existing Instance ZE.
    Existing Instance RE.
    Existing Instance WE.
    Existing Instance BE.

    Ltac kill_dec :=
      repeat match goal with
      | [|- context[Nge_dec ?a ?b] ] => destruct (Nge_dec a b)
      | [H : context[Nge_dec ?a ?b] |- _ ] => destruct (Nge_dec a b)
      end.

    Section BoundsChecking.
      Context {T: Type} {E: Evaluable T}.

      Definition boundVarInterp := fun x => bwFromRWV (n := n) (rwv 0%N (Z.to_N x) (Z.to_N x)).

      Definition getBounds {t} (e : @expr T Z t): @interp_type B t :=
        interp' boundVarInterp (@convertExpr T B _ _ t _ e).

      Fixpoint bcheck' {t} (x: @interp_type B t) :=
        match t as t' return (interp_type t') -> bool with
        | TT => fun x' =>
          match x' with
          | Some _ => true
          | None => false
          end
        | Prod t0 t1 => fun x' =>
          match x' with
          | (x0, x1) => andb (bcheck' x0) (bcheck' x1)
          end
        end x.

      Definition bcheck {t} (e : expr t): bool := bcheck' (getBounds e).
    End BoundsChecking.

    Section UtilityLemmas.
      Context {A B} {EA: Evaluable A} {EB: Evaluable B}.

      Lemma convertArg_interp' : forall {t V} f (x: @arg A V t),
          (interp_arg' (fun z => toT (fromT (f z))) (@convertArg A B EA EB _ t x))
            = @convertVar A B EA EB t (interp_arg' f x).
      Proof.
        intros.
        induction x as [| |t0 t1 i0 i1]; simpl; [reflexivity|reflexivity|].
        induction EA, EB; simpl; f_equal; assumption.
      Qed.

      Lemma convertArg_var: forall {A B EA EB t} V (x: @interp_type A t),
          @convertArg A B EA EB V t (uninterp_arg x) = uninterp_arg (var := V) (@convertVar A B EA EB t x).
      Proof.
        induction t as [|t0 IHt_0 t1 IHt_1]; simpl; intros; [reflexivity|].
        induction x as [a b]; simpl; f_equal;
            induction t0 as [|t0a IHt0_0 t0b IHt0_1],
                    t1 as [|t1a IHt1_0]; simpl in *;
            try rewrite IHt_0;
            try rewrite IHt_1;
            reflexivity.
      Qed.

      Lemma ZToBounded_binop_correct : forall {tx ty tz} (op: binop tx ty tz) (x: @arg Z Z tx) (y: @arg Z Z ty) e,
          bcheck (t := tz) (LetBinop op x y e) = true
        -> opZ (n := n) op (interp_arg x) (interp_arg y) =
          varBoundedToZ (n := n) (opBounded op
             (interp_arg' boundVarInterp (convertArg _ x))
             (interp_arg' boundVarInterp (convertArg _ y))).
      Proof.
      Admitted.

      Lemma ZToWord_binop_correct : forall {tx ty tz} (op: binop tx ty tz) (x: arg tx) (y: arg ty) e,
          bcheck (t := tz) (LetBinop op x y e) = true
        -> opZ (n := n) op (interp_arg x) (interp_arg y) =
            varWordToZ (opWord (n := n) op (varZToWord (interp_arg x)) (varZToWord (interp_arg y))).
      Proof.
      Admitted.

      Lemma roundTrip_0 : @toT Correctness.B BE (@fromT Z ZE 0%Z) <> None.
      Proof.
        intros; unfold toT, fromT, BE, ZE, BoundedEvaluable, ZEvaluable, bwFromRWV;
          kill_dec; simpl; kill_dec; simpl; try abstract (intro Z; inversion Z);
          pose proof (Npow2_gt0 n); simpl in *; nomega.
      Qed.

      Lemma double_conv_var: forall t x,
        @convertVar R Z _ _ t (@convertVar B R _ _ t x) =
          @convertVar B Z _ _ t x.
      Proof.
        intros.
      Admitted.

      Lemma double_conv_arg: forall V t a,
        @convertArg R B _ _ V t (@convertArg Z R _ _ V t a) =
          @convertArg Z B _ _ V t a.
      Proof.
        intros.
      Admitted.
    End UtilityLemmas.


    Section Spec.
      Ltac kill_just n :=
        match goal with
        | [|- context[just ?x] ] =>
            let Hvalue := fresh in let Hvalue' := fresh in
            let Hlow := fresh in let Hlow' := fresh in
            let Hhigh := fresh in let Hhigh' := fresh in
            let Hnone := fresh in let Hnone' := fresh in

            let B := fresh in

            pose proof (just_value_spec (n := n) x) as Hvalue;
            pose proof (just_low_spec (n := n) x) as Hlow;
            pose proof (just_high_spec (n := n) x) as Hhigh;
            pose proof (just_None_spec (n := n) x) as Hnone;

            destruct (just x);

            try pose proof (Hlow _ eq_refl) as Hlow';
            try pose proof (Hvalue _ eq_refl) as Hvalue';
            try pose proof (Hhigh _ eq_refl) as Hhigh';
            try pose proof (Hnone eq_refl) as Hnone';

            clear Hlow Hhigh Hvalue Hnone
        end.

      Lemma RangeInterp_bounded_spec: forall {t} (E: expr t),
          bcheck (@convertExpr Z R _ _ _ _ E) = true
        -> typeMap (fun x => NToWord n (Z.to_N x)) (zinterp (n := n) E) = wordInterp (ZToWord _ E).
      Proof.
        intros t E S.
        unfold zinterp, ZToWord, wordInterp.

        induction E as [tx ty tz op x y z|]; simpl; try reflexivity.

        - repeat rewrite convertArg_var in *.
          repeat rewrite convertArg_interp in *.

          rewrite H; clear H; repeat f_equal.

          + pose proof (ZToWord_binop_correct op x y) as C;
              unfold opZ, opWord, varWordToZ, varZToWord in C;
              simpl in C.

            assert (N.pred (Npow2 n) >= 0)%N. {
              apply N.le_ge.
              rewrite <- (N.pred_succ 0).
              apply N.le_pred_le_succ.
              rewrite N.succ_pred; [| apply N.neq_0_lt_0; apply Npow2_gt0].
              apply N.le_succ_l.
              apply Npow2_gt0.
            }

            admit. (*
            induction op; rewrite (C (fun _ => Return (Const 0%Z))); clear C;
              unfold bcheck, getBounds, boundedInterp, bwFromRWV in *; simpl in *;
              kill_dec; simpl in *; kill_dec; first [reflexivity|nomega]. *)

          + unfold bcheck, getBounds in *.
            replace (interp_binop op _ _)
                with (varBoundedToZ (n := n) (opBounded op
                        (interp_arg' boundVarInterp (convertArg _ x))
                        (interp_arg' boundVarInterp (convertArg _ y)))).

            * rewrite <- S; f_equal; clear S.
              simpl; repeat f_equal.
              unfold varBoundedToZ, opBounded.
              repeat rewrite convertArg_var.
              Arguments convertArg _ _ _ _ _ _ _ : clear implicits.
              rewrite double_conv_var.
              repeat rewrite double_conv_arg.
              reflexivity.

            * pose proof (ZToBounded_binop_correct op x y) as C;
                unfold opZ, opWord, varZToBounded,
                    varBoundedToZ in *;
                simpl in C.

              Local Opaque boundVarInterp toT fromT.

              induction op; rewrite (C (fun _ => Return (Const 0%Z))); clear C; try reflexivity;
                unfold bcheck, getBounds; simpl;
                pose proof roundTrip_0 as H;
                induction (toT (fromT _)); first [reflexivity|contradict H; reflexivity].

              Local Transparent boundVarInterp toT fromT.

        - simpl in S.
          induction a as [| |t0 t1 a0 IHa0 a1 IHa1]; simpl in *; try reflexivity.
          admit.

          (*
          + f_equal.
            unfold bcheck, getBounds, boundedInterp in S; simpl in S.
            kill_dec; simpl; [reflexivity|simpl in S; inversion S].

          + f_equal.
            unfold bcheck, getBounds, boundedInterp, boundVarInterp in S; simpl in S;
              kill_dec; simpl; try reflexivity; try nomega.
            inversion S.
            admit.
            admit.

          + unfold bcheck in S; simpl in S;
              apply andb_true_iff in S; destruct S as [S0 S1];
              rewrite IHa0, IHa1; [reflexivity| |];
              unfold bcheck, getBounds; simpl; assumption. *)
      Admitted.
    End Spec.

    Section RWVSpec.
      Definition rangeOf := fun x =>
        Some (rwv 0%N (Z.to_N x) (Z.to_N x)).

      Definition getRWV {t} (e : @expr R Z t): @interp_type R t :=
        interp' rangeOf e.

      Definition getRanges {t} (e : @expr R Z t): @interp_type (option (Range N)) t :=
        typeMap (option_map rwvToRange) (getRWV e).

      Fixpoint check' {t} (x: @interp_type (option RangeWithValue) t) :=
        match t as t' return (interp_type t') -> bool with
        | TT => fun x' =>
            match omap x' (bwFromRWV (n := n)) with
            | Some _ => true
            | None => false
            end
        | Prod t0 t1 => fun x' =>
            match x' with
            | (x0, x1) => andb (check' x0) (check' x1)
            end
        end x.

      Definition check {t} (e : @expr R Z t): bool := check' (getRWV e).

      Ltac kill_dec :=
        repeat match goal with
        | [|- context[Nge_dec ?a ?b] ] => destruct (Nge_dec a b)
        | [H : context[Nge_dec ?a ?b] |- _ ] => destruct (Nge_dec a b)
        end.

      Lemma check_spec' : forall {rangeF wordF} (op: @validBinaryWordOp n rangeF wordF) x y,
        @convertVar B R _ _ TT (
          omap (interp_arg' boundVarInterp (convertArg TT x)) (fun X =>
            omap (interp_arg' boundVarInterp (convertArg TT y)) (fun Y =>
              bapp op X Y))) =
          omap (interp_arg' rangeOf x) (fun X =>
            omap (interp_arg' rangeOf y) (fun Y =>
              rwv_app (n := n) op X Y)).
      Proof.
      Admitted.

      Lemma check_spec: forall {t} (E: @expr R Z t), check E = true -> bcheck E = true.
      Proof.
        intros t E H.
        induction E as [tx ty tz op x y z eC IH| t a].

        - unfold bcheck, getBounds, check, getRWV in *.

          simpl; apply IH; clear IH; rewrite <- H; clear H.
          simpl; rewrite convertArg_var; repeat f_equal.

          unfold interp_binop, RE, WE, BE, ZE,
              BoundedEvaluable, RWVEvaluable, ZEvaluable,
              eadd, emul, esub, eshiftr, eand.

          induction op; rewrite check_spec'; reflexivity.

        - unfold bcheck, getBounds, check, getRWV in *.

          induction a as [a|a|t0 t1 a0 IHa0 a1 IHa1].

          + induction a as [a|]; [| inversion H]; simpl in *.

            assert (Z : (exists a', bwFromRWV (n := n) a = Some a')
                  \/ bwFromRWV (n := n) a = None) by (
              destruct (bwFromRWV a);
              [left; eexists; reflexivity | right; reflexivity]).

            destruct Z as [aSome|aNone]; [destruct aSome as [a' aSome] |].

            * rewrite aSome; simpl; rewrite aSome; reflexivity.
            * rewrite aNone in H; inversion H.

          + unfold boundVarInterp, rangeOf in *.
            simpl in *; kill_dec; try reflexivity; try inversion H.

          + simpl in *; rewrite IHa0, IHa1; simpl; [reflexivity | | ];
              apply andb_true_iff in H; destruct H as [H1 H2];
              assumption.
      Qed.

      Lemma RangeInterp_spec: forall {t} (E: expr t),
          check (convertExpr E) = true
        -> typeMap (fun x => NToWord n (Z.to_N x)) (zinterp (n := n) E)
            = wordInterp (ZToWord _ E).
      Proof.
        intros.
        apply RangeInterp_bounded_spec.
        apply check_spec.
        assumption.
      Qed.
    End RWVSpec.
  End Correctness.
End LLConversions.

Section ConversionTest.
  Import HL HLConversions.

  Fixpoint keepAddingOne {var} (x : @expr Z var TT) (n : nat) : @expr Z var TT :=
    match n with
    | O => x
    | S n' => Let (Binop OPadd x (Const 1%Z)) (fun y => keepAddingOne (Var y) n')
    end.

  Definition KeepAddingOne (n : nat) : Expr (T := Z) TT :=
    fun var => keepAddingOne (Const 1%Z) n.

  Definition testCase := Eval vm_compute in KeepAddingOne 4000.

  Eval vm_compute in (typeMap (option_map bwToRange) (BInterp (ZToRange 0 testCase))).
  Eval vm_compute in (typeMap (option_map bwToRange) (BInterp (ZToRange 1 testCase))).
  Eval vm_compute in (typeMap (option_map bwToRange) (BInterp (ZToRange 10 testCase))).
  Eval vm_compute in (typeMap (option_map bwToRange) (BInterp (ZToRange 32 testCase))).
  Eval vm_compute in (typeMap (option_map bwToRange) (BInterp (ZToRange 64 testCase))).
  Eval vm_compute in (typeMap (option_map bwToRange) (BInterp (ZToRange 128 testCase))).

  Definition nefarious : Expr (T := Z) TT :=
    fun var => Let (Binop OPadd (Const 10%Z) (Const 20%Z))
                   (fun y => Binop OPmul (Var y) (Const 0%Z)).

  Eval vm_compute in (typeMap (option_map bwToRange) (BInterp (ZToRange 0 nefarious))).
  Eval vm_compute in (typeMap (option_map bwToRange) (BInterp (ZToRange 1 nefarious))).
  Eval vm_compute in (typeMap (option_map bwToRange) (BInterp (ZToRange 4 nefarious))).
  Eval vm_compute in (typeMap (option_map bwToRange) (BInterp (ZToRange 5 nefarious))).
  Eval vm_compute in (typeMap (option_map bwToRange) (BInterp (ZToRange 32 nefarious))).
  Eval vm_compute in (typeMap (option_map bwToRange) (BInterp (ZToRange 64 nefarious))).
  Eval vm_compute in (typeMap (option_map bwToRange) (BInterp (ZToRange 128 nefarious))).
End ConversionTest.