aboutsummaryrefslogtreecommitdiff
path: root/src/Assembly/BoundedWord.v
blob: 744c107550b5aebdcfd5a149e0fe5fbd46cec7dc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

Require Import Bedrock.Word Bedrock.Nomega.
Require Import NArith PArith Ndigits Compare_dec Arith.
Require Import ProofIrrelevance.
Require Import Ring.

Section BoundedWord.

  Delimit Scope Bounded_scope with bounded.

  Open Scope Bounded_scope.

  Context {n: nat}.

  (* Word Operations *)

  Definition shiftr (w: word n) (bits: nat): word n.
    destruct (le_dec bits n).

    - replace n with (bits + (n - bits)) in * by (abstract intuition).
      refine (zext (split1 bits (n - bits) w) (n - bits)).

    - exact (wzero n).
  Defined.

  Lemma shiftr_spec: forall (w : word n) (bits: nat),
      wordToN (shiftr w bits) = N.shiftr (wordToN w) (N.of_nat bits).
    intros; unfold shiftr; destruct (le_dec bits n).

    - admit.

    - replace (wordToN (wzero n)) with 0%N by admit.
      unfold N.shiftr.
      induction bits.

      + replace (N.of_nat 0) with 0%N by intuition.
        assert (n = 0) by intuition; clear n0; subst.
        replace w with WO; intuition.

      + induction bits; admit.
  Qed.

  Definition mask (m: nat) (w: word n): word n.
    destruct (le_dec m n).

    - replace n with (m + (n - m)) in * by (abstract intuition).
      refine (w ^& (zext (wones m) (n - m))).

    - exact w.
  Defined.

  (* Definitions of Inequality and simple bounds. *)
  Definition wordLeN {n: nat} (a: word n) (b: N): Prop :=
    (wordToN a <= b)%N.

  Notation "A <= B" := (wordLeN A B) (at level 70) : Bounded_scope.

  Lemma le_ge : forall n m, (n <= m -> m >= n)%nat.
  Proof.
    intros; omega.
  Qed.

  Lemma ge_le : forall n m, (n >= m -> m <= n)%nat.
  Proof.
    intros; omega.
  Qed.

  Ltac ge_to_le :=
    try apply N.ge_le;
    repeat match goal with
           | [ H : _ |- _ ] => apply N.le_ge in H
           end.

  Ltac ge_to_le_nat :=
    try apply le_ge;
    repeat match goal with
           | [ H : _ |- _ ] => apply ge_le in H
           end.

  Ltac preomega := unfold wordLeN; intros; ge_to_le; pre_nomega.

  Hint Rewrite wordToN_nat Nat2N.inj_add N2Nat.inj_add Nat2N.inj_mul N2Nat.inj_mul Npow2_nat : N.

  Theorem word_size_bound : forall (w: word n),
    w <= Npow2 n - 1.
  Proof.
    intros; unfold wordLeN; rewrite wordToN_nat.

    assert (B := wordToNat_bound w);
      rewrite <- Npow2_nat in B;
      apply nat_compare_lt in B.

    unfold N.le; intuition;
      rewrite N2Nat.inj_compare in H;
      rewrite Nat2N.id in H.

    apply nat_compare_lt in B.
    apply nat_compare_gt in H.

    replace (N.to_nat (Npow2 n)) with (S (N.to_nat (Npow2 n - 1))) in * by admit.
    intuition.
  Qed.

  Theorem constant_bound_N : forall k,
    NToWord n k <= k.
  Proof.
    preomega.
    rewrite NToWord_nat.
    destruct (le_lt_dec (pow2 n) (N.to_nat k)).

    specialize (wordToNat_bound (natToWord n (N.to_nat k))); nomega.

    rewrite wordToNat_natToWord_idempotent; nomega.
  Qed.

  Theorem constant_bound_nat : forall k,
    natToWord n k <= N.of_nat k.
  Proof.
    preomega.
    destruct (le_lt_dec (pow2 n) k).

    specialize (wordToNat_bound (natToWord n k)); nomega.

    rewrite wordToNat_natToWord_idempotent; nomega.
  Qed.

  Lemma let_bound : forall (x: word n) (f: word n -> word n) xb fb, x <= xb
    -> (forall x', x' <= xb -> f x' <= fb)
    -> (let k := x in f k) <= fb.
    eauto.
  Qed.

  Theorem wplus_bound : forall (w1 w2 : word n) b1 b2,
    w1 <= b1
    -> w2 <= b2
    -> w1 ^+ w2 <= b1 + b2.
  Proof.
    preomega.
    destruct (le_lt_dec (pow2 n) (N.to_nat b1 + N.to_nat b2)).

    specialize (wordToNat_bound (w1 ^+ w2)); nomega.

    rewrite wplus_alt.
    unfold wplusN, wordBinN.
    rewrite wordToNat_natToWord_idempotent; nomega.
  Qed.

  Theorem wmult_bound : forall (w1 w2 : word n) b1 b2,
    w1 <= b1
    -> w2 <= b2
    -> w1 ^* w2 <= b1 * b2.
  Proof.
    preomega.
    destruct (le_lt_dec (pow2 n) (N.to_nat b1 * N.to_nat b2)).

    specialize (wordToNat_bound (w1 ^* w2)); nomega.

    rewrite wmult_alt.
    unfold wmultN, wordBinN.
    rewrite wordToNat_natToWord_idempotent.
    ge_to_le_nat.

    apply Mult.mult_le_compat; nomega.
    pre_nomega.
    apply Lt.le_lt_trans with (N.to_nat b1 * N.to_nat b2); auto.
    apply Mult.mult_le_compat; nomega.
  Qed.

  Theorem shiftr_bound : forall (w : word n) b bits,
    w <= b
    -> shiftr w bits <= N.shiftr b (N.of_nat bits).
  Proof.
    admit.
  Qed.

  Theorem mask_bound : forall (w : word n) m,
    mask m w <= Npow2 m - 1.
  Proof.
    admit.
  Qed.

  Theorem mask_update_bound : forall (w : word n) b m,
    w <= b
    -> mask m w <= (N.min b (Npow2 m - 1)).
  Proof.
    admit.
  Qed.


  Ltac word_bound :=
    repeat (
       eassumption
       || apply wplus_bound
       || apply wmult_bound
       || apply mask_update_bound
       || apply mask_bound
       || apply shiftr_bound
       || apply constant_bound_N
       || apply constant_bound_nat
       || apply word_size_bound
      ).

  Notation "$" := (natToWord _).

  Lemma example1 : forall (w1 w2 w3 w4 : word n) b1 b2 b3 b4,
    w1 <= b1
    -> w2 <= b2
    -> w3 <= b3
    -> w4 <= b4
    -> { b | w1 ^+ (w2 ^* w3) ^* w4 <= b }.    
  Proof.
    eexists.
    word_bound.
  Defined.

  (* Eval simpl in fun (w1 w2 w3 w4 : word n) (b1 b2 b3 b4 : N)
                    (H1 : w1 <= b1) (H2 : w2 <= b2) (H3 : w3 <= b3) (H4 : w4 <= b4) =>
                  projT1 (example1 H1 H2 H3 H4). *)

  Lemma example2 : forall (w1 w2 w3 w4 : word n) b1 b2 b3 b4,
    w1 <= b1
    -> w2 <= b2
    -> w3 <= b3
    -> w4 <= b4
    -> { b | w1 ^+ (w2 ^* $7 ^* w3) ^* w4 ^+ $8 ^+ w2 <= b }.
  Proof.
    eexists.
    word_bound.
  Defined.

  (*Eval simpl in fun (w1 w2 w3 w4 : word n) (b1 b2 b3 b4 : N)
                    (H1 : w1 <= b1) (H2 : w2 <= b2) (H3 : w3 <= b3) (H4 : w4 <= b4) =>
                  projT1 (example2 H1 H2 H3 H4). *)

  Lemma example3 : forall (w1 w2 w3 w4 : word n),
    w1 <= Npow2 3
    -> w2 <= Npow2 4
    -> w3 <= Npow2 8
    -> w4 <= Npow2 16
    -> { b | w1 ^+ (w2 ^* $7 ^* w3) ^* w4 ^+ $8 ^+ w2 <= b }.
  Proof.
    eexists.
    word_bound.
  Defined.

  (* Eval simpl in fun (w1 w2 w3 w4 : word n)
                    (H1 : w1 <= _) (H2 : w2 <= _) (H3 : w3 <= _) (H4 : w4 <= _) =>
                  projT1 (example3 H1 H2 H3 H4). *)

End BoundedWord.

Section MulmodExamples.

  Notation "A <= B" := (wordLeN A B) (at level 70).
  Notation "$" := (natToWord _).

  Lemma mask_wand : forall (n: nat) (x: word n) m b,
    mask (N.to_nat m) x <= b
    -> x ^& (@NToWord n (N.ones m)) <= b.
  Proof.
  Admitted.

  Ltac word_bound_step :=
    idtac; match goal with
    | [ H: ?x <= _ |- ?x <= _] => eexact H
    | [|- (let x := ?y in @?z x) <= ?b ] => refine (@let_bound _ y z _ b _ _); [ | intros ? ? ]
    | [|- (let x := ?y in (?a <= ?b)) ] => change ((let x := y in a) <= b)
    | [|- (let x := ?y in (?a <= @?b x)) ] => change ((let x := y in a) <= b y); cbv beta
    | [|- mask _ _ <= _] => apply mask_bound
    | [|- _ ^+ _ <= _] => apply wplus_bound
    | [|- _ ^* _ <= _] => apply wmult_bound
    | [|- shiftr _ _ <= _] => apply shiftr_bound
    | [|- $ _ <= _] => apply constant_bound_nat
    | [|- NToWord _ _ <= _] => apply constant_bound_N
    | [|- _ <= Npow2 _ - 1] => apply word_size_bound 
    | [|- _ ^& (@NToWord _ (N.ones _)) <= _] => apply mask_wand
    end.

  Ltac simpl_hyps :=
    match goal with
    | [ H: ?x <= _ |- context[?x]] =>
      unfold Npow, Pos.pow, Npow2, N.shiftr in H;
      simpl in H
    | [ H: _ |- _ ] => clear H
    | _ => idtac
    end.

  Ltac word_bound := repeat (word_bound_step; simpl_hyps).

  Ltac word_bound_danger :=
    word_bound; try eassumption; try apply word_size_bound.
 
  Lemma example_and : forall x : word 32,
      wand x (NToWord 32 (N.ones 10)) <= 1023.
    intros.
    replace (wand x (NToWord 32 (N.ones 10))) with (mask 10 x) by admit.
    word_bound.
  Qed.
 
  Lemma example_shiftr : forall x : word 32, shiftr x 30 <= 3.
    intros.
    replace 3%N with (N.shiftr (Npow2 32 - 1) (N.of_nat 30)) by (simpl; intuition).
    word_bound.
  Qed.

  Lemma example_shiftr2 : forall x : word 32, x <= 1023 -> shiftr x 5 <= 31.
    intros.
    replace 31%N with (N.shiftr 1023%N 5%N) by (simpl; intuition).
    word_bound.
  Qed.
    
  Variable f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 : word 32.
  Variable g0 g1 g2 g3 g4 g5 g6 g7 g8 g9 : word 32.
  Hypothesis Hf0 : f0 <= 2^26.
  Hypothesis Hf1 : f1 <= 2^25.
  Hypothesis Hf2 : f2 <= 2^26.
  Hypothesis Hf3 : f3 <= 2^25.
  Hypothesis Hf4 : f4 <= 2^26.
  Hypothesis Hf5 : f5 <= 2^25.
  Hypothesis Hf6 : f6 <= 2^26.
  Hypothesis Hf7 : f7 <= 2^25.
  Hypothesis Hf8 : f8 <= 2^26.
  Hypothesis Hf9 : f9 <= 2^25.
  Hypothesis Hg0 : g0 <= 2^26.
  Hypothesis Hg1 : g1 <= 2^25.
  Hypothesis Hg2 : g2 <= 2^26.
  Hypothesis Hg3 : g3 <= 2^25.
  Hypothesis Hg4 : g4 <= 2^26.
  Hypothesis Hg5 : g5 <= 2^25.
  Hypothesis Hg6 : g6 <= 2^26.
  Hypothesis Hg7 : g7 <= 2^25.

  Hypothesis Hg8 : g8 <= 2^26.
  Hypothesis Hg9 : g9 <= 2^25.
    
  Lemma example_mulmod_s_ppt : { b | f0 ^* g0  <= b}.
    eexists.
    word_bound.
  Defined.

  Lemma example_mulmod_s_pp :  { b | f0 ^* g0 ^+ $19 ^* (f9 ^* g1 ^* $2 ^+ f8 ^* g2 ^+ f7 ^* g3 ^* $2 ^+ f6 ^* g4 ^+ f5 ^* g5 ^* $2 ^+ f4 ^* g6 ^+ f3 ^* g7 ^* $2 ^+ f2 ^* g8 ^+  f1 ^* g9 ^* $2) <= b}.
    eexists.
    word_bound.
  Defined.

  Lemma example_mulmod_s_pp_shiftr :
      { b | shiftr (f0 ^* g0 ^+  $19 ^* (f9 ^* g1 ^* $2 ^+ f8 ^* g2 ^+ f7 ^* g3 ^* $2 ^+ f6 ^* g4 ^+ f5 ^* g5 ^* $2 ^+ f4 ^* g6 ^+ f3 ^* g7 ^* $2 ^+ f2 ^* g8 ^+  f1 ^* g9 ^* $2)) 26 <= b}.
    eexists.
    word_bound.
  Defined.

  Lemma example_mulmod_u_fg1 :  { b |
        (let y : word 32 := (* the type declarations on the let-s make type inference not take forever *)
           (f0 ^* g0 ^+
            $19 ^*
            (f9 ^* g1 ^* $2 ^+ f8 ^* g2 ^+ f7 ^* g3 ^* $2 ^+ f6 ^* g4 ^+ f5 ^* g5 ^* $2 ^+ f4 ^* g6 ^+ f3 ^* g7 ^* $2 ^+ f2 ^* g8 ^+
             f1 ^* g9 ^* $2)) in
         let y0 : word 32 :=
           (shiftr y 26 ^+
            (f1 ^* g0 ^+ f0 ^* g1 ^+
             $19 ^* (f9 ^* g2 ^+ f8 ^* g3 ^+ f7 ^* g4 ^+ f6 ^* g5 ^+ f5 ^* g6 ^+ f4 ^* g7 ^+ f3 ^* g8 ^+ f2 ^* g9))) in
         let y1 : word 32 :=
           (shiftr y0 25 ^+
            (f2 ^* g0 ^+ f1 ^* g1 ^* $2 ^+ f0 ^* g2 ^+
             $19 ^* (f9 ^* g3 ^* $2 ^+ f8 ^* g4 ^+ f7 ^* g5 ^* $2 ^+ f6 ^* g6 ^+ f5 ^* g7 ^* $2 ^+ f4 ^* g8 ^+ f3 ^* g9 ^* $2))) in
         let y2 : word 32 :=
           (shiftr y1 26 ^+
            (f3 ^* g0 ^+ f2 ^* g1 ^+ f1 ^* g2 ^+ f0 ^* g3 ^+
             $19 ^* (f9 ^* g4 ^+ f8 ^* g5 ^+ f7 ^* g6 ^+ f6 ^* g7 ^+ f5 ^* g8 ^+ f4 ^* g9))) in
         let y3 : word 32 :=
           (shiftr y2 25 ^+
            (f4 ^* g0 ^+ f3 ^* g1 ^* $2 ^+ f2 ^* g2 ^+ f1 ^* g3 ^* $2 ^+ f0 ^* g4 ^+
             $19 ^* (f9 ^* g5 ^* $2 ^+ f8 ^* g6 ^+ f7 ^* g7 ^* $2 ^+ f6 ^* g8 ^+ f5 ^* g9 ^* $2))) in
         let y4 : word 32 :=
           (shiftr y3 26 ^+
            (f5 ^* g0 ^+ f4 ^* g1 ^+ f3 ^* g2 ^+ f2 ^* g3 ^+ f1 ^* g4 ^+ f0 ^* g5 ^+
             $19 ^* (f9 ^* g6 ^+ f8 ^* g7 ^+ f7 ^* g8 ^+ f6 ^* g9))) in
         let y5 : word 32 :=
           (shiftr y4 25 ^+
            (f6 ^* g0 ^+ f5 ^* g1 ^* $2 ^+ f4 ^* g2 ^+ f3 ^* g3 ^* $2 ^+ f2 ^* g4 ^+ f1 ^* g5 ^* $2 ^+ f0 ^* g6 ^+
             $19 ^* (f9 ^* g7 ^* $2 ^+ f8 ^* g8 ^+ f7 ^* g9 ^* $2))) in
         let y6 : word 32 :=
           (shiftr y5 26 ^+
            (f7 ^* g0 ^+ f6 ^* g1 ^+ f5 ^* g2 ^+ f4 ^* g3 ^+ f3 ^* g4 ^+ f2 ^* g5 ^+ f1 ^* g6 ^+ f0 ^* g7 ^+
             $19 ^* (f9 ^* g8 ^+ f8 ^* g9))) in
         let y7 : word 32 :=
           (shiftr y6 25 ^+
            (f8 ^* g0 ^+ f7 ^* g1 ^* $2 ^+ f6 ^* g2 ^+ f5 ^* g3 ^* $2 ^+ f4 ^* g4 ^+ f3 ^* g5 ^* $2 ^+ f2 ^* g6 ^+ f1 ^* g7 ^* $2 ^+
             f0 ^* g8 ^+ $19 ^* f9 ^* g9 ^* $2)) in
         let y8 : word 32 :=
           (shiftr y7 26 ^+
            (f9 ^* g0 ^+ f8 ^* g1 ^+ f7 ^* g2 ^+ f6 ^* g3 ^+ f5 ^* g4 ^+ f4 ^* g5 ^+ f3 ^* g6 ^+ f2 ^* g7 ^+ f1 ^* g8 ^+
             f0 ^* g9)) in
         let y9 : word 32 :=
           ($19 ^* shiftr y8 25 ^+
            wand
              (f0 ^* g0 ^+
               $19 ^*
               (f9 ^* g1 ^* $2 ^+ f8 ^* g2 ^+ f7 ^* g3 ^* $2 ^+ f6 ^* g4 ^+ f5 ^* g5 ^* $2 ^+ f4 ^* g6 ^+ f3 ^* g7 ^* $2 ^+
                f2 ^* g8 ^+ f1 ^* g9 ^* $2)) (@NToWord 32 (N.ones 26%N))) in
         let fg1 : word 32 := (shiftr y9 26 ^+
          wand
            (shiftr y 26 ^+
             (f1 ^* g0 ^+ f0 ^* g1 ^+
              $19 ^* (f9 ^* g2 ^+ f8 ^* g3 ^+ f7 ^* g4 ^+ f6 ^* g5 ^+ f5 ^* g6 ^+ f4 ^* g7 ^+ f3 ^* g8 ^+ f2 ^* g9)))
            (@NToWord 32 (N.ones 26%N))) in
         fg1) <= b }.
  Proof.
    eexists.
    (* Time word_bound. *) (* <- It works, but don't do this in the build! *)
  Abort.

  Require Import ZArith.
  Variable shiftra : forall {l}, word l -> nat -> word l. (* "arithmetic" aka "signed" bitshift *)
  Hypothesis shiftra_spec : forall {l} (w : word l) (n:nat), wordToZ (shiftra l w n) = Z.shiftr (wordToZ w) (Z.of_nat n).

  Lemma example_shiftra : forall x : word 4, shiftra 4 x 2 <= 15.
  Abort.

  Lemma example_shiftra : forall x : word 4, x <= 7 -> shiftra 4 x 2 <= 1.
  Abort.

  Lemma example_mulmod_s_pp_shiftra :
      { b | shiftra 32 (f0 ^* g0 ^+  $19 ^* (f9 ^* g1 ^* $2 ^+ f8 ^* g2 ^+ f7 ^* g3 ^* $2 ^+ f6 ^* g4 ^+ f5 ^* g5 ^* $2 ^+ f4 ^* g6 ^+ f3 ^* g7 ^* $2 ^+ f2 ^* g8 ^+  f1 ^* g9 ^* $2)) 26 <= b}.
  Abort.
End MulmodExamples.