aboutsummaryrefslogtreecommitdiff
path: root/src/Arithmetic/Saturated.v
blob: c0fe26a4304cd46262304c9937d3e292fe4e7670 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

(* TODO: prune these *)
Require Import Crypto.Algebra.Nsatz.
Require Import Coq.ZArith.ZArith Coq.micromega.Lia Crypto.Algebra.Nsatz.
Require Import Coq.Sorting.Mergesort Coq.Structures.Orders.
Require Import Coq.Sorting.Permutation.
Require Import Coq.derive.Derive.
Require Import Crypto.Arithmetic.MontgomeryReduction.Definition. (* For MontgomeryReduction *)
Require Import Crypto.Arithmetic.MontgomeryReduction.Proofs. (* For MontgomeryReduction *)
Require Import Crypto.Util.Tactics.UniquePose Crypto.Util.Decidable.
Require Import Crypto.Util.Tuple Crypto.Util.Prod Crypto.Util.LetIn.
Require Import Crypto.Util.ListUtil Coq.Lists.List Crypto.Util.NatUtil.
Require Import QArith.QArith_base QArith.Qround Crypto.Util.QUtil.
Require Import Crypto.Algebra.Ring Crypto.Util.Decidable.Bool2Prop.
Require Import Crypto.Arithmetic.BarrettReduction.Generalized.
Require Import Crypto.Arithmetic.ModularArithmeticTheorems.
Require Import Crypto.Arithmetic.PrimeFieldTheorems.
Require Import Crypto.Util.ZUtil.Tactics.PullPush.Modulo.
Require Import Crypto.Util.Tactics.RunTacticAsConstr.
Require Import Crypto.Util.Tactics.Head.
Require Import Crypto.Util.Option.
Require Import Crypto.Util.OptionList.
Require Import Crypto.Util.Prod.
Require Import Crypto.Util.Sum.
Require Import Crypto.Util.Bool.
Require Import Crypto.Util.Sigma.
Require Import Crypto.Util.ZUtil.Modulo Crypto.Util.ZUtil.Div Crypto.Util.ZUtil.Hints.Core.
Require Import Crypto.Util.ZUtil.Tactics.RewriteModSmall.
Require Import Crypto.Util.ZUtil.Tactics.PeelLe.
Require Import Crypto.Util.ZUtil.Tactics.LinearSubstitute.
Require Import Crypto.Util.ZUtil.Tactics.ZeroBounds.
Require Import Crypto.Util.ZUtil.Modulo.PullPush.
Require Import Crypto.Util.ZUtil.Opp.
Require Import Crypto.Util.ZUtil.Log2.
Require Import Crypto.Util.ZUtil.Le.
Require Import Crypto.Util.ZUtil.Hints.PullPush.
Require Import Crypto.Util.ZUtil.AddGetCarry Crypto.Util.ZUtil.MulSplit.
Require Import Crypto.Util.ZUtil.Tactics.LtbToLt.
Require Import Crypto.Util.ZUtil.Tactics.PullPush.Modulo.
Require Import Crypto.Util.ZUtil.Tactics.DivModToQuotRem.
Require Import Crypto.Util.Tactics.SpecializeBy.
Require Import Crypto.Util.Tactics.SplitInContext.
Require Import Crypto.Util.Tactics.SubstEvars.
Require Import Crypto.Util.Notations.
Require Import Crypto.Util.ZUtil.Definitions.
Require Import Crypto.Util.ZUtil.Sorting.
Require Import Crypto.Util.ZUtil.CC Crypto.Util.ZUtil.Rshi.
Require Import Crypto.Util.ZUtil.Zselect Crypto.Util.ZUtil.AddModulo.
Require Import Crypto.Util.ZUtil.AddGetCarry Crypto.Util.ZUtil.MulSplit.
Require Import Crypto.Util.ZUtil.Hints.Core.
Require Import Crypto.Util.ZUtil.Modulo Crypto.Util.ZUtil.Div.
Require Import Crypto.Util.ZUtil.Hints.PullPush.
Require Import Crypto.Util.ZUtil.EquivModulo.
Require Import Crypto.Util.Prod.
Require Import Crypto.Util.CPSNotations.
Require Import Crypto.Util.Equality.
Require Import Crypto.Util.Tactics.SetEvars.
Import Coq.Lists.List ListNotations. Local Open Scope Z_scope.

Module Saturated.
  Module Associational.
    Section Associational.

      Definition sat_multerm s (t t' : (Z * Z)) : list (Z * Z) :=
        dlet_nd xy := Z.mul_split s (snd t) (snd t') in
              [(fst t * fst t', fst xy); (fst t * fst t' * s, snd xy)].

      Definition sat_mul s (p q : list (Z * Z)) : list (Z * Z) :=
        flat_map (fun t => flat_map (fun t' => sat_multerm s t t') q) p.

      Lemma eval_map_sat_multerm s a q (s_nonzero:s<>0):
        Associational.eval (flat_map (sat_multerm s a) q) = fst a * snd a * Associational.eval q.
      Proof using Type.
        cbv [sat_multerm Let_In]; induction q;
          repeat match goal with
                 | _ => progress autorewrite with cancel_pair push_eval to_div_mod in *
                 | _ => progress simpl flat_map
                 | _ => rewrite IHq
                 | _ => rewrite Z.mod_eq by assumption
                 | _ => ring_simplify; omega
                 end.
      Qed.
      Hint Rewrite eval_map_sat_multerm using (omega || assumption) : push_eval.

      Lemma eval_sat_mul s p q (s_nonzero:s<>0):
        Associational.eval (sat_mul s p q) = Associational.eval p * Associational.eval q.
      Proof using Type.
        cbv [sat_mul]; induction p; [reflexivity|].
        repeat match goal with
               | _ => progress (autorewrite with push_flat_map push_eval in * )
               | _ => rewrite IHp
               | _ => ring_simplify; omega
               end.
      Qed.
      Hint Rewrite eval_sat_mul : push_eval.

      Definition sat_multerm_const s (t t' : (Z * Z)) : list (Z * Z) :=
        if snd t =? 1
        then [(fst t * fst t', snd t')]
        else if snd t =? -1
             then [(fst t * fst t', - snd t')]
             else if snd t =? 0
                  then nil
                  else dlet_nd xy := Z.mul_split s (snd t) (snd t') in
              [(fst t * fst t', fst xy); (fst t * fst t' * s, snd xy)].

      Definition sat_mul_const s (p q : list (Z * Z)) : list (Z * Z) :=
        flat_map (fun t => flat_map (fun t' => sat_multerm_const s t t') q) p.

      Lemma eval_map_sat_multerm_const s a q (s_nonzero:s<>0):
        Associational.eval (flat_map (sat_multerm_const s a) q) = fst a * snd a * Associational.eval q.
      Proof using Type.
        cbv [sat_multerm_const Let_In]; induction q;
          repeat match goal with
                 | _ => progress autorewrite with cancel_pair push_eval to_div_mod in *
                 | _ => progress simpl flat_map
                 | H : _ = 1 |- _ => rewrite H
                 | H : _ = -1 |- _ => rewrite H
                 | H : _ = 0 |- _ => rewrite H
                 | _ => progress break_match; Z.ltb_to_lt
                 | _ => rewrite IHq
                 | _ => rewrite Z.mod_eq by assumption
                 | _ => ring_simplify; omega
                 end.
      Qed.
      Hint Rewrite eval_map_sat_multerm_const using (omega || assumption) : push_eval.

      Lemma eval_sat_mul_const s p q (s_nonzero:s<>0):
        Associational.eval (sat_mul_const s p q) = Associational.eval p * Associational.eval q.
      Proof using Type.
        cbv [sat_mul_const]; induction p; [reflexivity|].
        repeat match goal with
               | _ => progress (autorewrite with push_flat_map push_eval in * )
               | _ => rewrite IHp
               | _ => ring_simplify; omega
               end.
      Qed.
      Hint Rewrite eval_sat_mul_const : push_eval.
    End Associational.
  End Associational.
End Saturated.

Module Columns.
  Import Saturated. Import Partition. Import Weight.
  Section Columns.
    Context weight {wprops : @weight_properties weight}.

    Definition eval n (x : list (list Z)) : Z := Positional.eval weight n (map sum x).

    Lemma eval_nil n : eval n [] = 0.
    Proof using Type. cbv [eval]; simpl. apply Positional.eval_nil. Qed.
    Hint Rewrite eval_nil : push_eval.
    Lemma eval_snoc n x y : n = length x -> eval (S n) (x ++ [y]) = eval n x + weight n * sum y.
    Proof using Type.
      cbv [eval]; intros; subst. rewrite map_app. simpl map.
      apply Positional.eval_snoc; distr_length.
    Qed. Hint Rewrite eval_snoc using (solve [distr_length]) : push_eval.

    Ltac cases :=
      match goal with
      | |- _ /\ _ => split
      | H: _ /\ _ |- _ => destruct H
      | H: _ \/ _ |- _ => destruct H
      | _ => progress break_match; try discriminate
      end.

    Section Flatten.
      Section flatten_column.
        Context (fw : Z). (* maximum size of the result *)

        (* Outputs (sum, carry) *)
        Definition flatten_column (digit: list Z) : (Z * Z) :=
          list_rect (fun _ => (Z * Z)%type) (0,0)
                    (fun xx tl flatten_column_tl =>
                       list_case
                         (fun _ => (Z * Z)%type) (xx mod fw, xx / fw)
                         (fun yy tl' =>
                            list_case
                              (fun _ => (Z * Z)%type) (dlet_nd x := xx in dlet_nd y := yy in Z.add_get_carry_full fw x y)
                              (fun _ _ =>
                                 dlet_nd x := xx in
                                   dlet_nd rec := flatten_column_tl in (* recursively get the sum and carry *)
                                   dlet_nd sum_carry := Z.add_get_carry_full fw x (fst rec) in (* add the new value to the sum *)
                                   dlet_nd carry' := snd sum_carry + snd rec in (* add the two carries together *)
                                   (fst sum_carry, carry'))
                              tl')
                         tl)
                    digit.
      End flatten_column.

      Definition flatten_step (digit:list Z) (acc_carry:list Z * Z) : list Z * Z :=
        dlet sum_carry := flatten_column (weight (S (length (fst acc_carry))) / weight (length (fst acc_carry))) (snd acc_carry::digit) in
              (fst acc_carry ++ fst sum_carry :: nil, snd sum_carry).

      Definition flatten (xs : list (list Z)) : list Z * Z :=
        fold_right (fun a b => flatten_step a b) (nil,0) (rev xs).

      Ltac push_fast :=
        repeat match goal with
               | _ => progress cbv [Let_In list_case]
               | |- context [list_rect _ _ _ ?ls] => rewrite single_list_rect_to_match; destruct ls
               | _ => progress (unfold flatten_step in *; fold flatten_step in * )
               | _ => rewrite Nat.add_1_r
               | _ => rewrite Z.mul_div_eq_full by (auto with zarith; omega)
               | _ => rewrite weight_multiples
               | _ => reflexivity
               | _ => solve [repeat (f_equal; try ring)]
               | _ => congruence
               | _ => progress cases
               end.
      Ltac push :=
        repeat match goal with
               | _ => progress push_fast
               | _ => progress autorewrite with cancel_pair to_div_mod
               | _ => progress autorewrite with push_sum push_fold_right push_nth_default in *
               | _ => progress autorewrite with pull_Zmod pull_Zdiv zsimplify_fast
               | _ => progress autorewrite with list distr_length push_eval
               end.

      Lemma flatten_column_mod fw (xs : list Z) :
        fst (flatten_column fw xs)  = sum xs mod fw.
      Proof using Type.
        induction xs; simpl flatten_column; cbv [Let_In];
          repeat match goal with
                 | _ => rewrite IHxs
                 | _ => progress push
                 end.
      Qed. Hint Rewrite flatten_column_mod : to_div_mod.

      Lemma flatten_column_div fw (xs : list Z) (fw_nz : fw <> 0) :
        snd (flatten_column fw xs)  = sum xs / fw.
      Proof using Type.
        (* this hint is already in the database but Z.div_add_l' is triggered first and that screws things up *)
        Hint Rewrite <- Z.div_add' using zutil_arith : pull_Zdiv.
        induction xs; simpl flatten_column; cbv [Let_In];
          repeat match goal with
                 | _ => rewrite IHxs
                 | _ => rewrite <-Z.div_add' by zutil_arith
                 | _ => rewrite Z.mul_div_eq_full by omega
                 | _ => progress push
                 end.
      Qed. Hint Rewrite flatten_column_div using auto with zarith : to_div_mod.

      Hint Rewrite Positional.eval_nil : push_eval.

      Lemma length_flatten_step digit state :
        length (fst (flatten_step digit state)) = S (length (fst state)).
      Proof using Type. cbv [flatten_step]; push. Qed.
      Hint Rewrite length_flatten_step : distr_length.
      Lemma length_flatten inp : length (fst (flatten inp)) = length inp.
      Proof using Type. cbv [flatten]. induction inp using rev_ind; push. Qed.
      Hint Rewrite length_flatten : distr_length.

      Lemma flatten_snoc x inp : flatten (inp ++ [x]) = flatten_step x (flatten inp).
      Proof using Type. cbv [flatten]. rewrite rev_unit. reflexivity. Qed.

      Lemma flatten_correct inp:
        forall n,
          length inp = n ->
          flatten inp = (partition weight n (eval n inp),
                         eval n inp / (weight n)).
      Proof using wprops.
        induction inp using rev_ind; intros;
          destruct n; distr_length; [ reflexivity | ].
        rewrite flatten_snoc.
        rewrite partition_step.
        erewrite IHinp with (n:=n) by distr_length.
        push.
        pose proof (@weight_positive _ wprops n).
        repeat match goal with
               | |- pair _ _ = pair _ _ => f_equal
               | |- _ ++ _ = _ ++ _ => f_equal
               | |- _ :: _ = _ :: _ => f_equal
               | _ => apply (@partition_eq_mod _ wprops)
               | _ => rewrite length_partition
               | _ => rewrite weight_mod_pull_div by auto
               | _ => rewrite weight_div_pull_div by auto
               | _ => f_equal; ring
               | _ => progress autorewrite with zsimplify
               end.
      Qed.

      Lemma flatten_div_mod n inp :
        length inp = n ->
        (Positional.eval weight n (fst (flatten inp))
         = (eval n inp) mod (weight n))
        /\ (snd (flatten inp) = eval n inp / weight n).
      Proof using wprops.
        intros.
        rewrite flatten_correct with (n:=n) by auto.
        cbn [fst snd].
        rewrite eval_partition; auto.
      Qed.

      Lemma flatten_mod {n} inp :
        length inp = n ->
        (Positional.eval weight n (fst (flatten inp)) = (eval n inp) mod (weight n)).
      Proof using wprops. apply flatten_div_mod. Qed.
      Hint Rewrite @flatten_mod : push_eval.

      Lemma flatten_div {n} inp :
        length inp = n -> snd (flatten inp) = eval n inp / weight n.
      Proof using wprops. apply flatten_div_mod. Qed.
      Hint Rewrite @flatten_div : push_eval.
    End Flatten.

    Section FromAssociational.
      (* nils *)
      Definition nils n : list (list Z) := repeat nil n.
      Lemma length_nils n : length (nils n) = n. Proof using Type. cbv [nils]. distr_length. Qed.
      Hint Rewrite length_nils : distr_length.
      Lemma eval_nils n : eval n (nils n) = 0.
      Proof using Type.
        erewrite <-Positional.eval_zeros by eauto.
        cbv [eval nils]; rewrite List.map_repeat; reflexivity.
      Qed. Hint Rewrite eval_nils : push_eval.

      (* cons_to_nth *)
      Definition cons_to_nth i x (xs : list (list Z)) : list (list Z) :=
        ListUtil.update_nth i (fun y => cons x y) xs.
      Lemma length_cons_to_nth i x xs : length (cons_to_nth i x xs) = length xs.
      Proof using Type. cbv [cons_to_nth]. distr_length. Qed.
      Hint Rewrite length_cons_to_nth : distr_length.
      Lemma cons_to_nth_add_to_nth xs : forall i x,
          map sum (cons_to_nth i x xs) = Positional.add_to_nth i x (map sum xs).
      Proof using Type.
        cbv [cons_to_nth]; induction xs as [|? ? IHxs];
          intros i x; destruct i; simpl; rewrite ?IHxs; reflexivity.
      Qed.
      Lemma eval_cons_to_nth n i x xs : (i < length xs)%nat -> length xs = n ->
                                        eval n (cons_to_nth i x xs) = weight i * x + eval n xs.
      Proof using Type.
        cbv [eval]; intros. rewrite cons_to_nth_add_to_nth.
        apply Positional.eval_add_to_nth; distr_length.
      Qed. Hint Rewrite eval_cons_to_nth using (solve [distr_length]) : push_eval.

      Hint Rewrite Positional.eval_zeros : push_eval.
      Hint Rewrite Positional.eval_add_to_nth using (solve [distr_length]): push_eval.

      (* from_associational *)
      Definition from_associational n (p:list (Z*Z)) : list (list Z) :=
        List.fold_right (fun t ls =>
                           dlet_nd p := Positional.place weight t (pred n) in
                           cons_to_nth (fst p) (snd p) ls ) (nils n) p.
      Lemma length_from_associational n p : length (from_associational n p) = n.
      Proof using Type. cbv [from_associational Let_In]. apply fold_right_invariant; intros; distr_length. Qed.
      Hint Rewrite length_from_associational: distr_length.
      Lemma eval_from_associational n p (n_nonzero:n<>0%nat\/p=nil) :
        eval n (from_associational n p) = Associational.eval p.
      Proof using wprops.
        erewrite <-Positional.eval_from_associational by eauto with zarith.
        induction p; [ autorewrite with push_eval; solve [auto] |].
        cbv [from_associational Positional.from_associational]; autorewrite with push_fold_right.
        fold (from_associational n p); fold (Positional.from_associational weight n p).
        cbv [Let_In].
        match goal with |- context [Positional.place _ ?x ?n] =>
                        pose proof (Positional.place_in_range weight x n) end.
        repeat match goal with
               | _ => rewrite Nat.succ_pred in * by auto
               | _ => rewrite IHp by auto
               | _ => progress autorewrite with push_eval
               | _ => progress cases
               | _ => congruence
               end.
      Qed.

      Lemma from_associational_step n t p :
        from_associational n (t :: p) =
        cons_to_nth (fst (Positional.place weight t (Nat.pred n)))
                    (snd (Positional.place weight t (Nat.pred n)))
                    (from_associational n p).
      Proof using Type. reflexivity. Qed.
    End FromAssociational.
  End Columns.
End Columns.

Module Rows.
  Import Saturated. Import Partition. Import Weight.
  Section Rows.
    Context weight {wprops : @weight_properties weight}.
    Hint Resolve Z.positive_is_nonzero Z.lt_gt.
    Local Notation rows := (list (list Z)) (only parsing).
    Local Notation cols := (list (list Z)) (only parsing).

    Hint Rewrite Positional.eval_nil Positional.eval0 @Positional.eval_snoc
         Positional.eval_to_associational
         Columns.eval_nil Columns.eval_snoc using (auto; solve [distr_length]) : push_eval.
    Hint Resolve in_eq in_cons.

    Definition eval n (inp : rows) :=
      sum (map (Positional.eval weight n) inp).
    Lemma eval_nil n : eval n nil = 0.
    Proof using Type. cbv [eval]. rewrite map_nil, sum_nil; reflexivity. Qed.
    Hint Rewrite eval_nil : push_eval.
    Lemma eval0 x : eval 0 x = 0.
    Proof using Type. cbv [eval]. induction x; autorewrite with push_map push_sum push_eval; omega. Qed.
    Hint Rewrite eval0 : push_eval.
    Lemma eval_cons n r inp : eval n (r :: inp) = Positional.eval weight n r + eval n inp.
    Proof using Type. cbv [eval]; autorewrite with push_map push_sum; reflexivity. Qed.
    Hint Rewrite eval_cons : push_eval.
    Lemma eval_app n x y : eval n (x ++ y) = eval n x + eval n y.
    Proof using Type. cbv [eval]; autorewrite with push_map push_sum; reflexivity. Qed.
    Hint Rewrite eval_app : push_eval.

    Ltac In_cases :=
      repeat match goal with
             | H: In _ (_ ++ _) |- _ => apply in_app_or in H; destruct H
             | H: In _ (_ :: _) |- _ => apply in_inv in H; destruct H
             | H: In _ nil |- _ => contradiction H
             | H: forall x, In x (?y :: ?ls) -> ?P |- _ =>
               unique pose proof (H y ltac:(apply in_eq));
               unique assert (forall x, In x ls -> P) by auto
             | H: forall x, In x (?ls ++ ?y :: nil) -> ?P |- _ =>
               unique pose proof (H y ltac:(auto using in_or_app, in_eq));
               unique assert (forall x, In x ls -> P) by eauto using in_or_app
             end.

    Section FromAssociational.
      (* extract row *)
      Definition extract_row (inp : cols) : cols * list Z := (map (fun c => tl c) inp, map (fun c => hd 0 c) inp).

      Lemma eval_extract_row (inp : cols): forall n,
          length inp = n ->
          Positional.eval weight n (snd (extract_row inp)) = Columns.eval weight n inp - Columns.eval weight n (fst (extract_row inp)) .
      Proof using Type.
        cbv [extract_row].
        induction inp using rev_ind; [ | destruct n ];
          repeat match goal with
                 | _ => progress intros
                 | _ => progress distr_length
                 | _ => rewrite Positional.eval_snoc with (n:=n) by distr_length
                 | _ => progress autorewrite with cancel_pair push_eval push_map in *
                 | _ => ring
                 end.
        rewrite IHinp by distr_length.
        destruct x; cbn [hd tl]; rewrite ?sum_nil, ?sum_cons; ring.
      Qed. Hint Rewrite eval_extract_row using (solve [distr_length]) : push_eval.

      Lemma length_fst_extract_row (inp : cols) :
        length (fst (extract_row inp)) = length inp.
      Proof using Type. cbv [extract_row]; autorewrite with cancel_pair; distr_length. Qed.
      Hint Rewrite length_fst_extract_row : distr_length.

      Lemma length_snd_extract_row (inp : cols) :
        length (snd (extract_row inp)) = length inp.
      Proof using Type. cbv [extract_row]; autorewrite with cancel_pair; distr_length. Qed.
      Hint Rewrite length_snd_extract_row : distr_length.

      (* max column size *)
      Definition max_column_size (x:cols) := fold_right (fun a b => Nat.max a b) 0%nat (map (fun c => length c) x).

      (* TODO: move to where list is defined *)
      Hint Rewrite @app_nil_l : list.
      Hint Rewrite <-@app_comm_cons: list.

      Lemma max_column_size_nil : max_column_size nil = 0%nat.
      Proof using Type. reflexivity. Qed. Hint Rewrite max_column_size_nil : push_max_column_size.
      Lemma max_column_size_cons col (inp : cols) :
        max_column_size (col :: inp) = Nat.max (length col) (max_column_size inp).
      Proof using Type. reflexivity. Qed. Hint Rewrite max_column_size_cons : push_max_column_size.
      Lemma max_column_size_app (x y : cols) :
        max_column_size (x ++ y) = Nat.max (max_column_size x) (max_column_size y).
      Proof using Type. induction x; autorewrite with list push_max_column_size; lia. Qed.
      Hint Rewrite max_column_size_app : push_max_column_size.
      Lemma max_column_size0 (inp : cols) :
        forall n,
          length inp = n -> (* this is not needed to make the lemma true, but prevents reliance on the implementation of Columns.eval*)
          max_column_size inp = 0%nat -> Columns.eval weight n inp = 0.
      Proof using Type.
        induction inp as [|x inp] using rev_ind; destruct n; try destruct x; intros;
          autorewrite with push_max_column_size push_eval push_sum distr_length in *; try lia.
        rewrite IHinp; distr_length; lia.
      Qed.

      (* from_columns *)
      Definition from_columns' n start_state : cols * rows :=
        fold_right (fun _ (state : cols * rows) =>
                      let cols'_row := extract_row (fst state) in
                      (fst cols'_row, snd state ++ [snd cols'_row])
                   ) start_state (repeat 0 n).

      Definition from_columns (inp : cols) : rows := snd (from_columns' (max_column_size inp) (inp, [])).

      Local Ltac eval_from_columns'_with_length_t :=
        cbv [from_columns'];
        first [ intros; apply fold_right_invariant; intros
              | apply fold_right_invariant ];
        repeat match goal with
               | _ => progress (intros; subst)
               | _ => progress autorewrite with cancel_pair push_eval in *
               | _ => progress In_cases
               | _ => split; try omega
               | H: _ /\ _ |- _ => destruct H
               | _ => progress distr_length
               | _ => solve [auto]
               end.
      Lemma length_from_columns' m st n:
        (length (fst st) = n) ->
        length (fst (from_columns' m st)) = n /\
        ((forall r, In r (snd st) -> length r = n) ->
         forall r, In r (snd (from_columns' m st)) -> length r = n).
      Proof using Type. eval_from_columns'_with_length_t. Qed.
      Lemma eval_from_columns'_with_length m st n:
        (length (fst st) = n) ->
        length (fst (from_columns' m st)) = n /\
        ((forall r, In r (snd st) -> length r = n) ->
         forall r, In r (snd (from_columns' m st)) -> length r = n) /\
        eval n (snd (from_columns' m st)) = Columns.eval weight n (fst st) + eval n (snd st)
                                                                             - Columns.eval weight n (fst (from_columns' m st)).
      Proof using Type. eval_from_columns'_with_length_t. Qed.
      Lemma length_fst_from_columns' m st :
        length (fst (from_columns' m st)) = length (fst st).
      Proof using Type. apply length_from_columns'; reflexivity. Qed.
      Hint Rewrite length_fst_from_columns' : distr_length.
      Lemma length_snd_from_columns' m st :
        (forall r, In r (snd st) -> length r = length (fst st)) ->
        forall r, In r (snd (from_columns' m st)) -> length r = length (fst st).
      Proof using Type. apply length_from_columns'; reflexivity. Qed.
      Hint Rewrite length_snd_from_columns' : distr_length.
      Lemma eval_from_columns' m st n :
        (length (fst st) = n) ->
        eval n (snd (from_columns' m st)) = Columns.eval weight n (fst st) + eval n (snd st)
                                                                             - Columns.eval weight n (fst (from_columns' m st)).
      Proof using Type. apply eval_from_columns'_with_length. Qed.
      Hint Rewrite eval_from_columns' using (auto; solve [distr_length]) : push_eval.

      Lemma max_column_size_extract_row inp :
        max_column_size (fst (extract_row inp)) = (max_column_size inp - 1)%nat.
      Proof using Type.
        cbv [extract_row]. autorewrite with cancel_pair.
        induction inp; [ reflexivity | ].
        autorewrite with push_max_column_size push_map distr_length.
        rewrite IHinp. auto using Nat.sub_max_distr_r.
      Qed.
      Hint Rewrite max_column_size_extract_row : push_max_column_size.

      Lemma max_column_size_from_columns' m st :
        max_column_size (fst (from_columns' m st)) = (max_column_size (fst st) - m)%nat.
      Proof using Type.
        cbv [from_columns']; induction m; intros; cbn - [max_column_size extract_row];
          autorewrite with push_max_column_size; lia.
      Qed.
      Hint Rewrite max_column_size_from_columns' : push_max_column_size.

      Lemma eval_from_columns (inp : cols) :
        forall n, length inp = n -> eval n (from_columns inp) = Columns.eval weight n inp.
      Proof using Type.
        intros; cbv [from_columns];
          repeat match goal with
                 | _ => progress autorewrite with cancel_pair push_eval push_max_column_size
                 | _ => rewrite max_column_size0 with (inp := fst (from_columns' _ _)) by
                       (autorewrite with push_max_column_size; distr_length)
                 | _ => omega
                 end.
      Qed.
      Hint Rewrite eval_from_columns using (auto; solve [distr_length]) : push_eval.

      Lemma length_from_columns inp:
        forall r, In r (from_columns inp) -> length r = length inp.
      Proof using Type.
        cbv [from_columns]; intros.
        change inp with (fst (inp, @nil (list Z))).
        eapply length_snd_from_columns'; eauto.
        autorewrite with cancel_pair; intros; In_cases.
      Qed.
      Hint Rewrite length_from_columns using eassumption : distr_length.

      (* from associational *)
      Definition from_associational n (p : list (Z * Z)) := from_columns (Columns.from_associational weight n p).

      Lemma eval_from_associational n p: (n <> 0%nat \/ p = nil) ->
                                         eval n (from_associational n p) = Associational.eval p.
      Proof using wprops.
        intros. cbv [from_associational].
        rewrite eval_from_columns by auto using Columns.length_from_associational.
        auto using Columns.eval_from_associational.
      Qed.

      Lemma length_from_associational n p :
        forall r, In r (from_associational n p) -> length r = n.
      Proof using Type.
        cbv [from_associational]; intros.
        match goal with H: _ |- _ => apply length_from_columns in H end.
        rewrite Columns.length_from_associational in *; auto.
      Qed.

      Lemma max_column_size_zero_iff x :
        max_column_size x = 0%nat <-> (forall c, In c x -> c = nil).
      Proof using Type.
        cbv [max_column_size]; induction x; intros; [ cbn; tauto | ].
        autorewrite with push_fold_right push_map.
        rewrite max_0_iff, IHx.
        split; intros; [ | rewrite length_zero_iff_nil; solve [auto] ].
        match goal with H : _ /\ _ |- _ => destruct H end.
        In_cases; subst; auto using length0_nil.
      Qed.

      Lemma max_column_size_Columns_from_associational n p :
        n <> 0%nat -> p <> nil ->
        max_column_size (Columns.from_associational weight n p) <> 0%nat.
      Proof using Type.
        intros.
        rewrite max_column_size_zero_iff.
        intro. destruct p; [congruence | ].
        rewrite Columns.from_associational_step in *.
        cbv [Columns.cons_to_nth] in *.
        match goal with H : forall c, In c (update_nth ?n ?f ?ls) -> _ |- _ =>
                        assert (n < length (update_nth n f ls))%nat;
                          [ | specialize (H (nth n (update_nth n f ls) nil) ltac:(auto using nth_In)) ]
        end.
        { distr_length.
          rewrite Columns.length_from_associational.
          remember (Nat.pred n) as m. replace n with (S m) by omega.
          apply Positional.place_in_range. }
        rewrite <-nth_default_eq in *.
        autorewrite with push_nth_default in *.
        rewrite eq_nat_dec_refl in *.
        congruence.
      Qed.

      Lemma from_associational_nonnil n p :
        n <> 0%nat -> p <> nil ->
        from_associational n p <> nil.
      Proof using Type.
        intros; cbv [from_associational from_columns from_columns'].
        pose proof (max_column_size_Columns_from_associational n p ltac:(auto) ltac:(auto)).
        case_eq (max_column_size (Columns.from_associational weight n p)); [omega|].
        intros; cbn.
        rewrite <-length_zero_iff_nil. distr_length.
      Qed.
    End FromAssociational.

    Section Flatten.
      Local Notation fw := (fun i => weight (S i) / weight i) (only parsing).

      Section SumRows.
        Definition sum_rows' start_state (row1 row2 : list Z) : list Z * Z * nat :=
          fold_right (fun next (state : list Z * Z * nat) =>
                        let i := snd state in
                        let low_high' :=
                            let low_high := fst state in
                            let low := fst low_high in
                            let high := snd low_high in
                          dlet_nd sum_carry := Z.add_with_get_carry_full (fw i) high (fst next) (snd next) in
                          (low ++ [fst sum_carry], snd sum_carry) in
                     (low_high', S i)) start_state (rev (combine row1 row2)).
        Definition sum_rows row1 row2 := fst (sum_rows' (nil, 0, 0%nat) row1 row2).

        Ltac push :=
          repeat match goal with
                 | _ => progress intros
                 | _ => progress cbv [Let_In]
                 | _ => rewrite Nat.add_1_r
                 | _ => erewrite Positional.eval_snoc by eauto
                 | H : length _ = _ |- _ => rewrite H
                 | H: 0%nat = _ |- _ => rewrite <-H
                 | [p := _ |- _] => subst p
                 | _ => progress autorewrite with cancel_pair natsimplify push_sum_rows list
                 | _ => progress autorewrite with cancel_pair in *
                 | _ => progress distr_length
                 | _ => progress break_match
                 | _ => ring
                 | _ => solve [ repeat (f_equal; try ring) ]
                 | _ => tauto
                 | _ => solve [eauto]
                 end.

        Lemma sum_rows'_cons state x1 row1 x2 row2 :
          sum_rows' state (x1 :: row1) (x2 :: row2) =
          sum_rows' (fst (fst state) ++ [(snd (fst state) + x1 + x2) mod (fw (snd state))],
                     (snd (fst state) + x1 + x2) / fw (snd state),
                     S (snd state)) row1 row2.
        Proof using Type.
          cbv [sum_rows' Let_In]; autorewrite with push_combine.
          rewrite !fold_left_rev_right. cbn [fold_left].
          autorewrite with cancel_pair to_div_mod. congruence.
        Qed.

        Lemma sum_rows'_nil state :
          sum_rows' state nil nil = state.
        Proof using Type. reflexivity. Qed.

        Hint Rewrite sum_rows'_cons sum_rows'_nil : push_sum_rows.

        Lemma sum_rows'_correct row1 :
          forall start_state nm row2 row1' row2',
            let m := snd start_state in
            let n := length row1 in
            length row2 = n ->
            length row1' = m ->
            length row2' = m ->
            length (fst (fst start_state)) = m ->
            nm = (n + m)%nat ->
            let eval := Positional.eval weight in
            snd (fst start_state) = (eval m row1' + eval m row2') / weight m ->
            (fst (fst start_state) = partition weight m (eval m row1' + eval m row2')) ->
            let sum := eval nm (row1' ++ row1) + eval nm (row2' ++ row2) in
            sum_rows' start_state row1 row2
            = (partition weight nm sum, sum / weight nm, nm) .
        Proof using wprops.
          destruct start_state as [ [acc rem] m].
          cbn [fst snd]. revert acc rem m.
          induction row1 as [|x1 row1];
            destruct row2 as [|x2 row2]; intros;
              subst nm; push; [ congruence | ].
          rewrite (app_cons_app_app _ row1'), (app_cons_app_app _ row2').
          subst rem acc.
          apply IHrow1; clear IHrow1;
            repeat match goal with
                   | _ => rewrite <-(Z.add_assoc _ x1 x2)
                   | _ => rewrite div_step by auto using Z.gt_lt
                   | _ => rewrite Z.mul_div_eq_full by auto
                   | _ => rewrite weight_multiples by auto
                   | _ => rewrite partition_step by auto
                   | _ => rewrite weight_div_pull_div by auto
                   | _ => rewrite weight_mod_pull_div by auto
                   | _ => rewrite <-Z.div_add' by auto
                   | _ => progress push
                   end.
          f_equal; push; [ ].
          apply (@partition_eq_mod _ wprops).
          push_Zmod.
          autorewrite with zsimplify_fast; reflexivity.
        Qed.

        Lemma sum_rows_correct row1: forall row2 n,
            length row1 = n -> length row2 = n ->
            let sum := Positional.eval weight n row1 + Positional.eval weight n row2 in
            sum_rows row1 row2 = (partition weight n sum, sum / weight n).
        Proof using wprops.
          cbv [sum_rows]; intros.
          erewrite sum_rows'_correct with (nm:=n) (row1':=nil) (row2':=nil)by (cbn; distr_length; reflexivity).
          reflexivity.
        Qed.

        Lemma sum_rows_mod n row1 row2 :
          length row1 = n -> length row2 = n ->
          Positional.eval weight n (fst (sum_rows row1 row2))
          = (Positional.eval weight n row1 + Positional.eval weight n row2) mod (weight n).
        Proof using wprops.
          intros; erewrite sum_rows_correct by eauto.
          cbn [fst]. auto using eval_partition.
        Qed.

        Lemma length_sum_rows row1 row2 n:
          length row1 = n -> length row2 = n ->
          length (fst (sum_rows row1 row2)) = n.
        Proof using wprops.
          intros; erewrite sum_rows_correct by eauto.
          cbn [fst]. distr_length.
        Qed. Hint Rewrite length_sum_rows : distr_length.
      End SumRows.
      Hint Resolve length_sum_rows.
      Hint Rewrite sum_rows_mod using (auto; solve [distr_length; auto]) : push_eval.

      Definition flatten' (start_state : list Z * Z) (inp : rows) : list Z * Z :=
        fold_right (fun next_row (state : list Z * Z)=>
                      let out_carry := sum_rows (fst state) next_row in
                      (fst out_carry, snd state + snd out_carry)) start_state inp.

      (* In order for the output to have the right length and bounds,
         we insert rows of zeroes if there are fewer than two rows. *)
      Definition flatten n (inp : rows) : list Z * Z :=
        let default := Positional.zeros n in
        flatten' (hd default inp, 0) (hd default (tl inp) :: tl (tl inp)).

      Lemma flatten'_cons state r inp :
        flatten' state (r :: inp) = (fst (sum_rows (fst (flatten' state inp)) r), snd (flatten' state inp) + snd (sum_rows (fst (flatten' state inp)) r)).
      Proof using Type. cbv [flatten']; autorewrite with list push_fold_right. reflexivity. Qed.
      Lemma flatten'_snoc state r inp :
        flatten' state (inp ++ r :: nil) = flatten' (fst (sum_rows (fst state) r), snd state + snd (sum_rows (fst state) r)) inp.
      Proof using Type. cbv [flatten']; autorewrite with list push_fold_right. reflexivity. Qed.
      Lemma flatten'_nil state : flatten' state [] = state. Proof using Type. reflexivity. Qed.
      Hint Rewrite flatten'_cons flatten'_snoc flatten'_nil : push_flatten.

      Ltac push :=
        repeat match goal with
               | _ => progress intros
               | _ => erewrite sum_rows_correct by (eassumption || distr_length; reflexivity)
               | _ => rewrite eval_partition by auto
               | H: length _ = _ |- _ => rewrite H
               | _ => progress autorewrite with cancel_pair push_flatten push_eval distr_length zsimplify_fast
               | _ => progress In_cases
               | |- _ /\ _ => split
               | |- context [?x mod ?y] => unique pose proof (Z.mul_div_eq_full x y ltac:(auto)); lia
               | _ => apply length_sum_rows
               | _ => solve [repeat (ring_simplify; f_equal; try ring)]
               | _ => congruence
               | _ => solve [eauto]
               end.

      Lemma flatten'_correct n inp : forall start_state,
        length (fst start_state) = n ->
        (forall row, In row inp -> length row = n) ->
        inp <> nil ->
        let sum := Positional.eval weight n (fst start_state) + eval n inp + weight n * snd start_state in
        flatten' start_state inp = (partition weight n sum, sum / weight n).
      Proof using wprops.
        induction inp using rev_ind; push. subst sum.
        destruct (dec (inp = nil)); [ subst inp; cbn | ];
          repeat match goal with
                 | _ => rewrite IHinp by push; clear IHinp
                 | |- pair _ _ = pair _ _ => f_equal
                 | _ => apply (@partition_eq_mod _ wprops)
                 | _ => rewrite <-Z.div_add_l' by auto
                 | _ => rewrite Z.mod_add'_full by omega
                 | _ => rewrite Z.mul_div_eq_full by auto
                 | _ => progress (push_Zmod; pull_Zmod)
                 | _ => progress push
                 end.
      Qed.

      Hint Rewrite (@Positional.length_zeros) : distr_length.
      Hint Rewrite (@Positional.eval_zeros) using auto : push_eval.

      Lemma flatten_correct inp n :
        (forall row, In row inp -> length row = n) ->
        flatten n inp = (partition weight n (eval n inp), eval n inp / weight n).
      Proof using wprops.
        intros; cbv [flatten].
        destruct inp; [|destruct inp]; cbn [hd tl];
          [ | | erewrite ?flatten'_correct ]; push.
      Qed.

      Lemma flatten_mod inp n :
        (forall row, In row inp -> length row = n) ->
        Positional.eval weight n (fst (flatten n inp)) = (eval n inp) mod (weight n).
      Proof using wprops. intros; rewrite flatten_correct; push. Qed.

      Lemma length_flatten n inp :
        (forall row, In row inp -> length row = n) ->
        length (fst (flatten n inp)) = n.
      Proof using wprops. intros; rewrite flatten_correct by assumption; push. Qed.
    End Flatten.
    Hint Rewrite length_flatten : distr_length.

    Section Ops.
      Definition add n p q := flatten n [p; q].

      (* TODO: Although cleaner, using Positional.negate snd inserts
      dlets which prevent add-opp=>sub transformation in partial
      evaluation. Should probably either make partial evaluation
      handle that or remove the dlet in Positional.from_associational.

      NOTE(from jgross): I think partial evaluation now handles that
      fine; we should check this. *)
      Definition sub n p q := flatten n [p; map (fun x => dlet y := x in Z.opp y) q].

      Definition conditional_add n mask cond (p q:list Z) :=
        let qq := Positional.zselect mask cond q in
        add n p qq.

      (* Subtract q if and only if p >= q. *)
      Definition conditional_sub n (p q:list Z) :=
        let '(v, c) := sub n p q in
        Positional.select (-c) v p.

      (* the carry will be 0 unless we underflow--we do the addition only
         in the underflow case *)
      Definition sub_then_maybe_add n mask (p q r:list Z) :=
        let '(p_minus_q, c) := sub n p q in
        let rr := Positional.zselect mask (-c) r in
        let '(res, c') := add n p_minus_q rr in
        (res, c' - c).

      Hint Rewrite eval_cons eval_nil using solve [auto] : push_eval.

      Definition mul base n m (p q : list Z) :=
        let p_a := Positional.to_associational weight n p in
        let q_a := Positional.to_associational weight n q in
        let pq_a := Associational.sat_mul base p_a q_a in
        flatten m (from_associational m pq_a).

      (* if [s] is not exactly equal to a weight, we must adjust it to
         be a weight, so that rather than dividing by s and
         multiplying by c, we divide by w and multiply by c*(w/s).
         See
         https://github.com/mit-plv/fiat-crypto/issues/326#issuecomment-404135131
         for a bit more discussion *)
      Definition adjust_s fuel s : Z * bool :=
        fold_right
          (fun w_i res
           => let '(v, found_adjustment) := res in
              let res := (v, found_adjustment) in
              if found_adjustment:bool
              then res
              else if w_i mod s =? 0
                   then (w_i, true)
                   else res)
          (s, false)
          (map weight (List.rev (seq 0 fuel))).

      (* TODO : move sat_reduce and repeat_sat_reduce to Saturated.Associational *)
      Definition sat_reduce base s c n (p : list (Z * Z)) :=
        let '(s', _) := adjust_s (S (S n)) s in
        let lo_hi := Associational.split s' p in
        fst lo_hi ++ (Associational.sat_mul_const base [(1, s'/s)] (Associational.sat_mul_const base c (snd lo_hi))).

      Definition repeat_sat_reduce base s c (p : list (Z * Z)) n :=
        fold_right (fun _ q => sat_reduce base s c n q) p (seq 0 n).

      Definition mulmod base s c n nreductions (p q : list Z) :=
        let p_a := Positional.to_associational weight n p in
        let q_a := Positional.to_associational weight n q in
        let pq_a := Associational.sat_mul base p_a q_a in
        let r_a := repeat_sat_reduce base s c pq_a nreductions in
        flatten n (from_associational n r_a).

      Hint Rewrite Associational.eval_sat_mul_const Associational.eval_sat_mul Associational.eval_split using solve [auto] : push_eval.
      Hint Rewrite eval_from_associational using solve [auto] : push_eval.
      Ltac solver :=
        intros; cbv [sub add mul mulmod sat_reduce];
        rewrite ?flatten_correct by (intros; In_cases; subst; distr_length; eauto using length_from_associational);
        autorewrite with push_eval; ring_simplify_subterms;
        try reflexivity.

      Lemma add_partitions n p q :
        length p = n -> length q = n ->
        fst (add n p q) = partition weight n (Positional.eval weight n p + Positional.eval weight n q).
      Proof using wprops. solver. Qed.

      Lemma add_div n p q :
        length p = n -> length q = n ->
        snd (add n p q) = (Positional.eval weight n p + Positional.eval weight n q) / weight n.
      Proof using wprops. solver. Qed.

      Lemma conditional_add_partitions n mask cond p q :
        length p = n -> length q = n -> map (Z.land mask) q = q ->
        fst (conditional_add n mask cond p q)
        = partition weight n (Positional.eval weight n p + if dec (cond = 0) then 0 else Positional.eval weight n q).
      Proof using wprops.
        cbv [conditional_add]; intros; rewrite add_partitions by (distr_length; auto).
        autorewrite with push_eval; reflexivity.
      Qed.

      Lemma conditional_add_div n mask cond p q :
        length p = n -> length q = n -> map (Z.land mask) q = q ->
        snd (conditional_add n mask cond p q) = (Positional.eval weight n p + if dec (cond = 0) then 0 else Positional.eval weight n q) / weight n.
      Proof using wprops.
        cbv [conditional_add]; intros; rewrite add_div by (distr_length; auto).
        autorewrite with push_eval; auto.
      Qed.

      Lemma eval_map_opp q :
        forall n, length q = n ->
                  Positional.eval weight n (map Z.opp q) = - Positional.eval weight n q.
      Proof using Type.
        induction q using rev_ind; intros;
          repeat match goal with
                 | _ => progress autorewrite with push_map push_eval
                 | _ => erewrite !Positional.eval_snoc with (n:=length q) by distr_length
                 | _ => rewrite IHq by auto
                 | _ => ring
                 end.
      Qed. Hint Rewrite eval_map_opp using solve [auto]: push_eval.

      Lemma sub_partitions n p q :
        length p = n -> length q = n ->
        fst (sub n p q) = partition weight n (Positional.eval weight n p - Positional.eval weight n q).
      Proof using wprops. solver. Qed.

      Lemma sub_div n p q :
        length p = n -> length q = n ->
        snd (sub n p q) = (Positional.eval weight n p - Positional.eval weight n q) / weight n.
      Proof using wprops. solver. Qed.

      Lemma conditional_sub_partitions n p q
        (Hp : p = partition weight n (Positional.eval weight n p)) :
        length q = n ->
        0 <= Positional.eval weight n q < weight n ->
        conditional_sub n p q = partition weight n (if Positional.eval weight n q <=? Positional.eval weight n p then Positional.eval weight n p - Positional.eval weight n q else Positional.eval weight n p).
      Proof using wprops.
        cbv [conditional_sub]; intros.
        rewrite (surjective_pairing (sub _ _ _)).
        assert (length p = n) by (rewrite Hp; distr_length).
        assert (0 <= Positional.eval weight n p < weight n) by
            (rewrite Hp; autorewrite with push_eval; auto using Z.mod_pos_bound).
        rewrite sub_partitions, sub_div; distr_length.
        erewrite Positional.select_eq by (distr_length; eauto).
        rewrite Z.div_sub_small, Z.ltb_antisym by omega.
        destruct (Positional.eval weight n q <=? Positional.eval weight n p);
          cbn [negb]; autorewrite with zsimplify_fast;
            break_match; congruence.
      Qed.

      Let sub_then_maybe_add_Z a b c :=
        a - b + (if (a - b <? 0) then c else 0).

      Lemma sub_then_maybe_add_partitions n mask p q r :
        length p = n -> length q = n -> length r = n ->
        map (Z.land mask) r = r ->
        0 <= Positional.eval weight n p < weight n ->
        0 <= Positional.eval weight n q < weight n ->
        fst (sub_then_maybe_add n mask p q r) = partition weight n (sub_then_maybe_add_Z (Positional.eval weight n p) (Positional.eval weight n q) (Positional.eval weight n r)).
      Proof using wprops.
        cbv [sub_then_maybe_add]. subst sub_then_maybe_add_Z.
        intros.
        rewrite (surjective_pairing (sub _ _ _)).
        rewrite (surjective_pairing (add _ _ _)).
        cbn [fst snd].
        rewrite sub_partitions, add_partitions, sub_div by distr_length.
        autorewrite with push_eval.
        Z.rewrite_mod_small.
        rewrite Z.div_sub_small by omega.
        break_innermost_match; Z.ltb_to_lt; try omega;
          auto using partition_eq_mod with zarith.
      Qed.

      Lemma mul_partitions base n m p q :
        base <> 0 -> m <> 0%nat -> length p = n -> length q = n ->
        fst (mul base n m p q) = partition weight m (Positional.eval weight n p * Positional.eval weight n q).
      Proof using wprops. solver. Qed.

      Lemma mul_div base n m p q :
        base <> 0 -> m <> 0%nat -> length p = n -> length q = n ->
        snd (mul base n m p q) = (Positional.eval weight n p * Positional.eval weight n q) / weight m.
      Proof using wprops. solver. Qed.

      Lemma length_mul base n m p q :
        length p = n -> length q = n ->
        length (fst (mul base n m p q)) = m.
      Proof using wprops. solver; cbn [fst snd]; distr_length. Qed.

      Lemma adjust_s_invariant fuel s (s_nz:s<>0) :
        fst (adjust_s fuel s) mod s = 0
        /\ fst (adjust_s fuel s) <> 0.
      Proof using wprops.
        cbv [adjust_s]; rewrite fold_right_map; generalize (List.rev (seq 0 fuel)); intro ls; induction ls as [|l ls IHls];
          cbn.
        { rewrite Z.mod_same by assumption; auto. }
        { break_match; cbn in *; auto. }
      Qed.

      Lemma eval_sat_reduce base s c n p :
        base <> 0 -> s - Associational.eval c <> 0 -> s <> 0 ->
        Associational.eval (sat_reduce base s c n p) mod (s - Associational.eval c)
        = Associational.eval p mod (s - Associational.eval c).
      Proof using wprops.
        intros; cbv [sat_reduce].
        lazymatch goal with |- context[adjust_s ?fuel ?s] => destruct (adjust_s_invariant fuel s ltac:(assumption)) as [Hmod ?] end.
        eta_expand; autorewrite with push_eval zsimplify_const; cbn [fst snd].
        rewrite !Z.mul_assoc, <- (Z.mul_comm (Associational.eval c)), <- !Z.mul_assoc, <-Associational.reduction_rule by auto.
        autorewrite with zsimplify_const; rewrite !Z.mul_assoc, Z.mul_div_eq_full, Hmod by auto.
        autorewrite with zsimplify_const push_eval; trivial.
      Qed.
      Hint Rewrite eval_sat_reduce using auto : push_eval.

      Lemma eval_repeat_sat_reduce base s c p n :
        base <> 0 -> s - Associational.eval c <> 0 -> s <> 0 ->
        Associational.eval (repeat_sat_reduce base s c p n) mod (s - Associational.eval c)
        = Associational.eval p mod (s - Associational.eval c).
      Proof using wprops.
        intros; cbv [repeat_sat_reduce].
        apply fold_right_invariant; intros; autorewrite with push_eval; auto.
      Qed.
      Hint Rewrite eval_repeat_sat_reduce using auto : push_eval.

      Lemma eval_mulmod base s c n nreductions p q :
        base <> 0 -> s <> 0 -> s - Associational.eval c <> 0 ->
        n <> 0%nat -> length p = n -> length q = n ->
        (Positional.eval weight n (fst (mulmod base s c n nreductions p q))
         + weight n * (snd (mulmod base s c n nreductions p q))) mod (s - Associational.eval c)
        = (Positional.eval weight n p * Positional.eval weight n q) mod (s - Associational.eval c).
      Proof using wprops.
        solver. cbn [fst snd].
        rewrite eval_partition by auto.
        rewrite <-Z.div_mod'' by auto.
        autorewrite with push_eval; reflexivity.
      Qed.

      (* returns all-but-lowest-limb and lowest limb *)
      Definition divmod (p : list Z) : list Z * Z
        := (tl p, hd 0 p).
    End Ops.
  End Rows.
  Hint Rewrite length_from_columns using eassumption : distr_length.
  Hint Rewrite length_sum_rows using solve [ reflexivity | eassumption | distr_length; eauto ] : distr_length.
  Hint Rewrite length_fst_extract_row length_snd_extract_row length_flatten length_fst_from_columns' length_snd_from_columns' : distr_length.
End Rows.