aboutsummaryrefslogtreecommitdiff
path: root/src/Arithmetic/MontgomeryReduction/WordByWord/Abstract/Proofs.v
blob: 9ca2cf4e9326194a0a279e5b90ba7e7adbe712e5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
(*** Word-By-Word Montgomery Multiplication Proofs *)
Require Import Coq.Arith.Arith.
Require Import Coq.ZArith.BinInt Coq.ZArith.ZArith Coq.ZArith.Zdiv Coq.micromega.Lia.
Require Import Crypto.Util.LetIn.
Require Import Crypto.Util.Prod.
Require Import Crypto.Util.NatUtil.
Require Import Crypto.Util.ZUtil.
Require Import Crypto.Arithmetic.ModularArithmeticTheorems Crypto.Spec.ModularArithmetic.
Require Import Crypto.Arithmetic.MontgomeryReduction.WordByWord.Abstract.Definition.
Require Import Crypto.Algebra.Ring.
Require Import Crypto.Util.ZUtil.MulSplit.
Require Import Crypto.Util.Sigma.
Require Import Crypto.Util.Tactics.SetEvars.
Require Import Crypto.Util.Tactics.SubstEvars.
Require Import Crypto.Util.Tactics.DestructHead.
Local Open Scope Z_scope.

Section WordByWordMontgomery.
  Context
    {T : Type}
    {eval : T -> Z}
    {numlimbs : T -> nat}
    {zero : nat -> T}
    {divmod : T -> T * Z} (* returns lowest limb and all-but-lowest-limb *)
    {r : positive}
    {r_big : r > 1}
    {R : positive}
    {R_numlimbs : nat}
    {R_correct : R = r^Z.of_nat R_numlimbs :> Z}
    {small : T -> Prop}
    {eval_zero : forall n, eval (zero n) = 0}
    {numlimbs_zero : forall n, numlimbs (zero n) = n}
    {eval_div : forall v, small v -> eval (fst (divmod v)) = eval v / r}
    {eval_mod : forall v, small v -> snd (divmod v) = eval v mod r}
    {small_div : forall v, small v -> small (fst (divmod v))}
    {numlimbs_div : forall v, numlimbs (fst (divmod v)) = pred (numlimbs v)}
    {scmul : Z -> T -> T} (* uses double-output multiply *)
    {eval_scmul: forall a v, 0 <= a < r -> 0 <= eval v < R -> eval (scmul a v) = a * eval v}
    {numlimbs_scmul : forall a v, 0 <= a < r -> numlimbs (scmul a v) = S (numlimbs v)}
    {add : T -> T -> T} (* joins carry *)
    {eval_add : forall a b, eval (add a b) = eval a + eval b}
    {small_add : forall a b, small (add a b)}
    {numlimbs_add : forall a b, numlimbs (add a b) = Datatypes.S (max (numlimbs a) (numlimbs b))}
    {drop_high : T -> T} (* drops things after [S R_numlimbs] *)
    {eval_drop_high : forall v, small v -> eval (drop_high v) = eval v mod (r * r^Z.of_nat R_numlimbs)}
    {numlimbs_drop_high : forall v, numlimbs (drop_high v) = min (numlimbs v) (S R_numlimbs)}
    (N : T) (Npos : positive) (Npos_correct: eval N = Z.pos Npos)
    (N_lt_R : eval N < R)
    (B : T)
    (B_bounds : 0 <= eval B < R)
    ri (ri_correct : r*ri mod (eval N) = 1 mod (eval N)).
  Context (k : Z) (k_correct : k * eval N mod r = (-1) mod r).

  Create HintDb push_numlimbs discriminated.
  Create HintDb push_eval discriminated.
  Local Ltac t_small :=
    repeat first [ assumption
                 | apply small_add
                 | apply small_div
                 | apply Z_mod_lt
                 | rewrite Z.mul_split_mod
                 | solve [ auto with zarith ]
                 | lia
                 | progress autorewrite with push_eval
                 | progress autorewrite with push_numlimbs ].
  Hint Rewrite
       eval_zero
       eval_div
       eval_mod
       eval_add
       eval_scmul
       eval_drop_high
       using (repeat autounfold with word_by_word_montgomery; t_small)
    : push_eval.
  Hint Rewrite
       numlimbs_zero
       numlimbs_div
       numlimbs_add
       numlimbs_scmul
       numlimbs_drop_high
       using (repeat autounfold with word_by_word_montgomery; t_small)
    : push_numlimbs.
  Hint Rewrite <- Max.succ_max_distr pred_Sn Min.succ_min_distr : push_numlimbs.


  (* Recurse for a as many iterations as A has limbs, varying A := A, S := 0, r, bounds *)
  Section Iteration.
    Context (A S : T)
            (small_A : small A)
            (S_nonneg : 0 <= eval S).
    (* Given A, B < R, we want to compute A * B / R mod N. R = bound 0 * ... * bound (n-1) *)

    Local Coercion eval : T >-> Z.

    Local Notation a := (@WordByWord.Abstract.Definition.a T divmod A).
    Local Notation A' := (@WordByWord.Abstract.Definition.A' T divmod A).
    Local Notation S1 := (@WordByWord.Abstract.Definition.S1 T divmod scmul add B A S).
    Local Notation S2 := (@WordByWord.Abstract.Definition.S2 T divmod r scmul add N B k A S).
    Local Notation S3 := (@WordByWord.Abstract.Definition.S3 T divmod r scmul add N B k A S).
    Local Notation S4 := (@WordByWord.Abstract.Definition.S4 T divmod r scmul add drop_high N B k A S).

    Lemma S3_bound
      : eval S < eval N + eval B
        -> eval S3 < eval N + eval B.
    Proof.
      assert (Hmod : forall a b, 0 < b -> a mod b <= b - 1)
        by (intros x y; pose proof (Z_mod_lt x y); omega).
      intro HS.
      unfold S3, WordByWord.Abstract.Definition.S2, WordByWord.Abstract.Definition.S1.
      autorewrite with push_eval; [].
      eapply Z.le_lt_trans.
      { transitivity ((N+B-1 + (r-1)*B + (r-1)*N) / r);
          [ | set_evars; ring_simplify_subterms; subst_evars; reflexivity ].
        Z.peel_le; repeat apply Z.add_le_mono; repeat apply Z.mul_le_mono_nonneg; try lia;
          repeat autounfold with word_by_word_montgomery; rewrite ?Z.mul_split_mod;
          autorewrite with push_eval;
            try Z.zero_bounds;
            auto with lia. }
      rewrite (Z.mul_comm _ r), <- Z.add_sub_assoc, <- Z.add_opp_r, !Z.div_add_l' by lia.
      autorewrite with zsimplify.
      omega.
    Qed.

    Lemma small_A'
      : small A'.
    Proof.
      repeat autounfold with word_by_word_montgomery; auto.
    Qed.

    Lemma small_S3
      : small S3.
    Proof. repeat autounfold with word_by_word_montgomery; t_small. Qed.

    Lemma S3_nonneg : 0 <= eval S3.
    Proof.
      repeat autounfold with word_by_word_montgomery; rewrite Z.mul_split_mod;
        autorewrite with push_eval; [].
      rewrite ?Npos_correct; Z.zero_bounds; lia.
    Qed.

    Lemma S4_nonneg : 0 <= eval S4.
    Proof. unfold S4; rewrite eval_drop_high by apply small_S3; Z.zero_bounds. Qed.

    Lemma S4_bound
      : eval S < eval N + eval B
        -> eval S4 < eval N + eval B.
    Proof.
      intro H; pose proof (S3_bound H); pose proof S3_nonneg.
      unfold S4.
      rewrite eval_drop_high by apply small_S3.
      rewrite Z.mod_small by nia.
      assumption.
    Qed.

    Lemma numlimbs_S4 : numlimbs S4 = min (max (1 + numlimbs S) (1 + max (1 + numlimbs B) (numlimbs N))) (1 + R_numlimbs).
    Proof.
      cbn [plus].
      repeat autounfold with word_by_word_montgomery; rewrite Z.mul_split_mod.
      repeat autorewrite with push_numlimbs.
      change Init.Nat.max with Nat.max.
      rewrite <- ?(Max.max_assoc (numlimbs S)).
      reflexivity.
    Qed.

    Lemma S1_eq : eval S1 = S + a*B.
    Proof.
      cbv [S1 a WordByWord.Abstract.Definition.A'].
      repeat autorewrite with push_eval.
      reflexivity.
    Qed.

    Lemma S2_mod_N : (eval S2) mod N = (S + a*B) mod N.
    Proof.
      cbv [S2 WordByWord.Abstract.Definition.q WordByWord.Abstract.Definition.s]; autorewrite with push_eval zsimplify. rewrite S1_eq. reflexivity.
    Qed.

    Lemma S2_mod_r : S2 mod r = 0.
      cbv [S2 WordByWord.Abstract.Definition.q WordByWord.Abstract.Definition.s]; autorewrite with push_eval.
      assert (r > 0) by lia.
      assert (Hr : (-(1 mod r)) mod r = r - 1 /\ (-(1)) mod r = r - 1).
      { destruct (Z.eq_dec r 1) as [H'|H'].
        { rewrite H'; split; reflexivity. }
        { rewrite !Z_mod_nz_opp_full; rewrite ?Z.mod_mod; Z.rewrite_mod_small; [ split; reflexivity | omega.. ]. } }
      autorewrite with pull_Zmod.
      replace 0 with (0 mod r) by apply Zmod_0_l.
      eapply F.eq_of_Z_iff.
      rewrite Z.mul_split_mod.
      repeat rewrite ?F.of_Z_add, ?F.of_Z_mul, <-?F.of_Z_mod.
      rewrite <-Algebra.Hierarchy.associative.
      replace ((F.of_Z r k * F.of_Z r (eval N))%F) with (F.opp (m:=r) F.one).
      { cbv [F.of_Z F.add]; simpl.
        apply path_sig_hprop; [ intro; exact HProp.allpath_hprop | ].
        simpl.
        rewrite (proj1 Hr), Z.mul_sub_distr_l.
        push_Zmod; pull_Zmod.
        autorewrite with zsimplify; reflexivity. }
      { rewrite <- F.of_Z_mul.
        rewrite F.of_Z_mod.
        rewrite k_correct.
        cbv [F.of_Z F.add F.opp F.one]; simpl.
        change (-(1)) with (-1) in *.
        apply path_sig_hprop; [ intro; exact HProp.allpath_hprop | ]; simpl.
        rewrite (proj1 Hr), (proj2 Hr); Z.rewrite_mod_small; reflexivity. }
    Qed.

    Lemma S3_mod_N
      : S3 mod N = (S + a*B)*ri mod N.
    Proof.
      cbv [S3]; autorewrite with push_eval cancel_pair.
      pose proof fun a => Z.div_to_inv_modulo N a r ri eq_refl ri_correct as HH;
                            cbv [Z.equiv_modulo] in HH; rewrite HH; clear HH.
      etransitivity; [rewrite (fun a => Z.mul_mod_l a ri N)|
                      rewrite (fun a => Z.mul_mod_l a ri N); reflexivity].
      rewrite <-S2_mod_N; repeat (f_equal; []); autorewrite with push_eval.
      autorewrite with push_Zmod;
        rewrite S2_mod_r;
        autorewrite with zsimplify.
      reflexivity.
    Qed.

    Lemma S4_mod_N
          (Hbound : eval S < eval N + eval B)
      : S4 mod N = (S + a*B)*ri mod N.
    Proof.
      pose proof (S3_bound Hbound); pose proof S3_nonneg.
      unfold S4; autorewrite with push_eval.
      rewrite (Z.mod_small _ (r * _)) by nia.
      apply S3_mod_N.
    Qed.
  End Iteration.

  Local Notation redc_body := (@redc_body T divmod r scmul add drop_high N B k).
  Local Notation redc_loop := (@redc_loop T divmod r scmul add drop_high N B k).
  Local Notation redc A := (@redc T numlimbs zero divmod r scmul add drop_high N A B k).

  Lemma redc_loop_comm_body count
    : forall A_S, redc_loop count (redc_body A_S) = redc_body (redc_loop count A_S).
  Proof.
    induction count as [|count IHcount]; try reflexivity.
    simpl; intro; rewrite IHcount; reflexivity.
  Qed.

  Section body.
    Context (A_S : T * T).
    Let A:=fst A_S.
    Let S:=snd A_S.
    Let A_a:=divmod A.
    Let a:=snd A_a.
    Context (small_A : small A)
            (S_bound : 0 <= eval S < eval N + eval B).

    Lemma small_fst_redc_body : small (fst (redc_body A_S)).
    Proof. destruct A_S; apply small_A'; assumption. Qed.
    Lemma snd_redc_body_nonneg : 0 <= eval (snd (redc_body A_S)).
    Proof. destruct A_S; apply S4_nonneg; assumption. Qed.

    Lemma snd_redc_body_mod_N
      : (eval (snd (redc_body A_S))) mod (eval N) = (eval S + a*eval B)*ri mod (eval N).
    Proof. destruct A_S; apply S4_mod_N; auto; omega. Qed.

    Lemma fst_redc_body
      : (eval (fst (redc_body A_S))) = eval (fst A_S) / r.
    Proof.
      destruct A_S; simpl; unfold WordByWord.Abstract.Definition.A', WordByWord.Abstract.Definition.A_a, Let_In, a, A_a, A; simpl.
      autorewrite with push_eval.
      reflexivity.
    Qed.

    Lemma fst_redc_body_mod_N
      : (eval (fst (redc_body A_S))) mod (eval N) = ((eval (fst A_S) - a)*ri) mod (eval N).
    Proof.
      rewrite fst_redc_body.
      etransitivity; [ eapply Z.div_to_inv_modulo; try eassumption; lia | ].
      unfold a, A_a, A.
      autorewrite with push_eval.
      reflexivity.
    Qed.

    Lemma redc_body_bound
      : eval S < eval N + eval B
        -> eval (snd (redc_body A_S)) < eval N + eval B.
    Proof.
      destruct A_S; apply S4_bound; unfold S in *; cbn [snd] in *; try assumption; try omega.
    Qed.

    Lemma numlimbs_redc_body : numlimbs (snd (redc_body A_S))
                               = min (max (1 + numlimbs (snd A_S)) (1 + max (1 + numlimbs B) (numlimbs N))) (1 + R_numlimbs).
    Proof. destruct A_S; apply numlimbs_S4; assumption. Qed.
  End body.

  Local Arguments Z.pow !_ !_.
  Local Arguments Z.of_nat !_.
  Local Ltac induction_loop count IHcount
    := induction count as [|count IHcount]; intros; cbn [redc_loop] in *; [ | rewrite redc_loop_comm_body in * ].
  Lemma redc_loop_good A_S count
        (Hsmall : small (fst A_S))
        (Hbound : 0 <= eval (snd A_S) < eval N + eval B)
    : small (fst (redc_loop count A_S))
      /\ 0 <= eval (snd (redc_loop count A_S)) < eval N + eval B.
  Proof.
    induction_loop count IHcount; auto; [].
    change (id (0 <= eval B < R)) in B_bounds (* don't let [destruct_head'_and] loop *).
    destruct_head'_and.
    repeat first [ apply conj
                 | apply small_fst_redc_body
                 | apply redc_body_bound
                 | apply snd_redc_body_nonneg
                 | solve [ auto ] ].
  Qed.

  Lemma redc_loop_bound A_S count
        (Hsmall : small (fst A_S))
        (Hbound : 0 <= eval (snd A_S) < eval N + eval B)
    : 0 <= eval (snd (redc_loop count A_S)) < eval N + eval B.
  Proof. apply redc_loop_good; assumption. Qed.

  Local Ltac t_min_max_step _ :=
    match goal with
    | [ |- context[Init.Nat.max ?x ?y] ]
      => first [ rewrite (Max.max_l x y) by omega
               | rewrite (Max.max_r x y) by omega ]
    | [ |- context[Init.Nat.min ?x ?y] ]
      => first [ rewrite (Min.min_l x y) by omega
               | rewrite (Min.min_r x y) by omega ]
    | _ => progress change Init.Nat.max with Nat.max
    | _ => progress change Init.Nat.min with Nat.min
    end.

  Lemma numlimbs_redc_loop A_S count
        (Hsmall : small (fst A_S))
        (Hbound : 0 <= eval (snd A_S) < eval N + eval B)
        (Hnumlimbs : (R_numlimbs <= numlimbs (snd A_S))%nat)
    : numlimbs (snd (redc_loop count A_S))
      = match count with
        | O => numlimbs (snd A_S)
        | S _ => 1 + R_numlimbs
        end%nat.
  Proof.
    assert (Hgen
            : numlimbs (snd (redc_loop count A_S))
              = match count with
                | O => numlimbs (snd A_S)
                | S _ => min (max (count + numlimbs (snd A_S)) (1 + max (1 + numlimbs B) (numlimbs N))) (1 + R_numlimbs)
                end).
    { induction_loop count IHcount; [ reflexivity | ].
      rewrite numlimbs_redc_body by (try apply redc_loop_good; auto).
      rewrite IHcount; clear IHcount.
      destruct count; [ reflexivity | ].
      destruct (Compare_dec.le_lt_dec (1 + max (1 + numlimbs B) (numlimbs N)) (S count + numlimbs (snd A_S))),
      (Compare_dec.le_lt_dec (1 + R_numlimbs) (S count + numlimbs (snd A_S))),
      (Compare_dec.le_lt_dec (1 + R_numlimbs) (1 + max (1 + numlimbs B) (numlimbs N)));
        repeat first [ reflexivity
                     | t_min_max_step ()
                     | progress autorewrite with push_numlimbs
                     | rewrite Nat.min_comm, Nat.min_max_distr ]. }
    rewrite Hgen; clear Hgen.
    destruct count; [ reflexivity | ].
    repeat apply Max.max_case_strong; apply Min.min_case_strong; omega.
  Qed.


  Lemma fst_redc_loop A_S count
        (Hsmall : small (fst A_S))
        (Hbound : 0 <= eval (snd A_S) < eval N + eval B)
    : eval (fst (redc_loop count A_S)) = eval (fst A_S) / r^(Z.of_nat count).
  Proof.
    induction_loop count IHcount.
    { simpl; autorewrite with zsimplify; reflexivity. }
    { rewrite fst_redc_body, IHcount
        by (apply redc_loop_good; auto).
      rewrite Zdiv_Zdiv by Z.zero_bounds.
      rewrite <- (Z.pow_1_r r) at 2.
      rewrite <- Z.pow_add_r by lia.
      replace (Z.of_nat count + 1) with (Z.of_nat (S count)) by (simpl; lia).
      reflexivity. }
  Qed.

  Lemma fst_redc_loop_mod_N A_S count
        (Hsmall : small (fst A_S))
        (Hbound : 0 <= eval (snd A_S) < eval N + eval B)
    : eval (fst (redc_loop count A_S)) mod (eval N)
      = (eval (fst A_S) - eval (fst A_S) mod r^Z.of_nat count)
        * ri^(Z.of_nat count) mod (eval N).
  Proof.
    rewrite fst_redc_loop by assumption.
    destruct count.
    { simpl; autorewrite with zsimplify; reflexivity. }
    { etransitivity;
        [ eapply Z.div_to_inv_modulo;
          try solve [ eassumption
                    | apply Z.lt_gt, Z.pow_pos_nonneg; lia ]
        | ].
      { erewrite <- Z.pow_mul_l, <- Z.pow_1_l.
        { apply Z.pow_mod_Proper; [ eassumption | reflexivity ]. }
        { lia. } }
      reflexivity. }
  Qed.

  Local Arguments Z.pow : simpl never.
  Lemma snd_redc_loop_mod_N A_S count
        (Hsmall : small (fst A_S))
        (Hbound : 0 <= eval (snd A_S) < eval N + eval B)
    : (eval (snd (redc_loop count A_S))) mod (eval N)
      = ((eval (snd A_S) + (eval (fst A_S) mod r^(Z.of_nat count))*eval B)*ri^(Z.of_nat count)) mod (eval N).
  Proof.
    induction_loop count IHcount.
    { simpl; autorewrite with zsimplify; reflexivity. }
    { simpl; rewrite snd_redc_body_mod_N
        by (apply redc_loop_good; auto).
      push_Zmod; rewrite IHcount; pull_Zmod.
      autorewrite with push_eval; [ | apply redc_loop_good; auto.. ]; [].
      match goal with
      | [ |- ?x mod ?N = ?y mod ?N ]
        => change (Z.equiv_modulo N x y)
      end.
      destruct A_S as [A S].
      cbn [fst snd].
      change (Z.pos (Pos.of_succ_nat ?n)) with (Z.of_nat (Datatypes.S n)).
      rewrite !Z.mul_add_distr_r.
      rewrite <- !Z.mul_assoc.
      replace (ri^(Z.of_nat count) * ri) with (ri^(Z.of_nat (Datatypes.S count)))
        by (change (Datatypes.S count) with (1 + count)%nat;
            autorewrite with push_Zof_nat; rewrite Z.pow_add_r by lia; simpl Z.succ; rewrite Z.pow_1_r; nia).
      rewrite <- !Z.add_assoc.
      apply Z.add_mod_Proper; [ reflexivity | ].
      unfold Z.equiv_modulo; push_Zmod; rewrite (Z.mul_mod_l (_ mod r) _ (eval N)).
      rewrite fst_redc_loop by (try apply redc_loop_good; auto; omega).
      cbn [fst].
      rewrite Z.mod_pull_div by lia.
      erewrite Z.div_to_inv_modulo;
        [
        | solve [ eassumption | apply Z.lt_gt, Z.pow_pos_nonneg; lia ]
        | erewrite <- Z.pow_mul_l, <- Z.pow_1_l;
          [ apply Z.pow_mod_Proper; [ eassumption | reflexivity ]
          | lia ] ].
      pull_Zmod.
      match goal with
      | [ |- ?x mod ?N = ?y mod ?N ]
        => change (Z.equiv_modulo N x y)
      end.
      repeat first [ rewrite <- !Z.pow_succ_r, <- !Nat2Z.inj_succ by lia
                   | rewrite (Z.mul_comm _ ri)
                   | rewrite (Z.mul_assoc _ ri _)
                   | rewrite (Z.mul_comm _ (ri^_))
                   | rewrite (Z.mul_assoc _ (ri^_) _) ].
      repeat first [ rewrite <- Z.mul_assoc
                   | rewrite <- Z.mul_add_distr_l
                   | rewrite (Z.mul_comm _ (eval B))
                   | rewrite !Nat2Z.inj_succ, !Z.pow_succ_r by lia;
                     rewrite <- Znumtheory.Zmod_div_mod by (apply Z.divide_factor_r || Z.zero_bounds)
                   | rewrite Zplus_minus
                   | reflexivity ]. }
  Qed.

  Lemma redc_bound A
        (small_A : small A)
    : 0 <= eval (redc A) < eval N + eval B.
  Proof.
    unfold redc.
    apply redc_loop_good; simpl; autorewrite with push_eval;
      rewrite ?Npos_correct; auto; lia.
  Qed.

  Lemma numlimbs_redc_gen A (small_A : small A) (Hnumlimbs : (R_numlimbs <= numlimbs B)%nat)
    : numlimbs (redc A)
      = match numlimbs A with
        | O => S (numlimbs B)
        | _ => S R_numlimbs
        end.
  Proof.
    unfold redc; rewrite numlimbs_redc_loop by (cbn [fst snd]; t_small);
      cbn [snd]; rewrite ?numlimbs_zero.
    reflexivity.
  Qed.
  Lemma numlimbs_redc A (small_A : small A) (Hnumlimbs : R_numlimbs = numlimbs B)
    : numlimbs (redc A) = S (numlimbs B).
  Proof. rewrite numlimbs_redc_gen; subst; auto; destruct (numlimbs A); reflexivity. Qed.

  Lemma redc_mod_N A (small_A : small A) (A_bound : 0 <= eval A < r ^ Z.of_nat (numlimbs A))
    : (eval (redc A)) mod (eval N) = (eval A * eval B * ri^(Z.of_nat (numlimbs A))) mod (eval N).
  Proof.
    unfold redc.
    rewrite snd_redc_loop_mod_N; cbn [fst snd];
      autorewrite with push_eval zsimplify;
      [ | rewrite ?Npos_correct; auto; lia.. ].
    Z.rewrite_mod_small.
    reflexivity.
  Qed.
End WordByWordMontgomery.