aboutsummaryrefslogtreecommitdiff
path: root/src/Arithmetic/Core.v
blob: 23b796d8af3eb40510eef87b59024dd005ae80c4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
(* Following http://adam.chlipala.net/theses/andreser.pdf chapter 3 *)
Require Import Coq.ZArith.ZArith Coq.micromega.Lia.
Require Import Coq.Lists.List.
Require Import Crypto.Algebra.Nsatz.
Require Import Crypto.Util.LetIn.
Require Import Crypto.Util.ListUtil.
Require Import Crypto.Util.Prod.
Require Import Crypto.Util.ZUtil.Hints.Core.
Require Import Crypto.Util.Tactics.UniquePose.

Require Import Crypto.Util.Notations.
  
(*
Require Import Crypto.Algebra.Nsatz.
Require Import Coq.ZArith.ZArith Coq.micromega.Lia Crypto.Algebra.Nsatz.
Require Import Coq.Sorting.Mergesort Coq.Structures.Orders.
Require Import Coq.Sorting.Permutation.
Require Import Coq.derive.Derive.
Require Import Crypto.Arithmetic.MontgomeryReduction.Definition. (* For MontgomeryReduction *)
Require Import Crypto.Arithmetic.MontgomeryReduction.Proofs. (* For MontgomeryReduction *)
Require Import Crypto.Util.Tactics.UniquePose Crypto.Util.Decidable.
Require Import Crypto.Util.Tuple Crypto.Util.Prod Crypto.Util.LetIn.
Require Import Crypto.Util.ListUtil Coq.Lists.List Crypto.Util.NatUtil.
Require Import QArith.QArith_base QArith.Qround Crypto.Util.QUtil.
Require Import Crypto.Algebra.Ring Crypto.Util.Decidable.Bool2Prop.
Require Import Crypto.Arithmetic.BarrettReduction.Generalized.
Require Import Crypto.Arithmetic.ModularArithmeticTheorems.
Require Import Crypto.Arithmetic.PrimeFieldTheorems.
Require Import Crypto.Util.ZUtil.Tactics.PullPush.Modulo.
Require Import Crypto.Util.Tactics.RunTacticAsConstr.
Require Import Crypto.Util.Tactics.Head.
Require Import Crypto.Util.Option.
Require Import Crypto.Util.OptionList.
Require Import Crypto.Util.Prod.
Require Import Crypto.Util.Sum.
Require Import Crypto.Util.Bool.
Require Import Crypto.Util.Sigma.
Require Import Crypto.Util.ZUtil.Modulo Crypto.Util.ZUtil.Div Crypto.Util.ZUtil.Hints.Core.
Require Import Crypto.Util.ZUtil.Tactics.RewriteModSmall.
Require Import Crypto.Util.ZUtil.Tactics.PeelLe.
Require Import Crypto.Util.ZUtil.Tactics.LinearSubstitute.
Require Import Crypto.Util.ZUtil.Tactics.ZeroBounds.
Require Import Crypto.Util.ZUtil.Modulo.PullPush.
Require Import Crypto.Util.ZUtil.Opp.
Require Import Crypto.Util.ZUtil.Log2.
Require Import Crypto.Util.ZUtil.Le.
Require Import Crypto.Util.ZUtil.Hints.PullPush.
Require Import Crypto.Util.ZUtil.AddGetCarry Crypto.Util.ZUtil.MulSplit.
Require Import Crypto.Util.ZUtil.Tactics.LtbToLt.
Require Import Crypto.Util.ZUtil.Tactics.PullPush.Modulo.
Require Import Crypto.Util.ZUtil.Tactics.DivModToQuotRem.
Require Import Crypto.Util.Tactics.SpecializeBy.
Require Import Crypto.Util.Tactics.SplitInContext.
Require Import Crypto.Util.Tactics.SubstEvars.
Require Import Crypto.Util.Notations.
Require Import Crypto.Util.ZUtil.Definitions.
Require Import Crypto.Util.ZUtil.Sorting.
Require Import Crypto.Util.ZUtil.CC Crypto.Util.ZUtil.Rshi.
Require Import Crypto.Util.ZUtil.Zselect Crypto.Util.ZUtil.AddModulo.
Require Import Crypto.Util.ZUtil.AddGetCarry Crypto.Util.ZUtil.MulSplit.
Require Import Crypto.Util.ZUtil.Hints.Core.
Require Import Crypto.Util.ZUtil.Modulo Crypto.Util.ZUtil.Div.
Require Import Crypto.Util.ZUtil.Hints.PullPush.
Require Import Crypto.Util.ZUtil.EquivModulo.
Require Import Crypto.Util.Prod.
Require Import Crypto.Util.CPSNotations.
Require Import Crypto.Util.Equality.
Require Import Crypto.Util.Tactics.SetEvars.
Import Coq.Lists.List ListNotations. Local Open Scope Z_scope.
*)
Import ListNotations. Local Open Scope Z_scope.

Module Associational.
  Definition eval (p:list (Z*Z)) : Z :=
    fold_right (fun x y => x + y) 0%Z (map (fun t => fst t * snd t) p).

  Lemma eval_nil : eval nil = 0.
  Proof. trivial.                                             Qed.
  Lemma eval_cons p q : eval (p::q) = fst p * snd p + eval q.
  Proof. trivial.                                             Qed.
  Lemma eval_app p q: eval (p++q) = eval p + eval q.
  Proof. induction p; rewrite <-?List.app_comm_cons;
           rewrite ?eval_nil, ?eval_cons; nsatz.              Qed.

  Hint Rewrite eval_nil eval_cons eval_app : push_eval.
  Local Ltac push := autorewrite with
      push_eval push_map push_partition push_flat_map
      push_fold_right push_nth_default cancel_pair.

  Lemma eval_map_mul (a x:Z) (p:list (Z*Z))
  : eval (List.map (fun t => (a*fst t, x*snd t)) p) = a*x*eval p.
  Proof. induction p; push; nsatz.                            Qed.
  Hint Rewrite eval_map_mul : push_eval.

  Definition mul (p q:list (Z*Z)) : list (Z*Z) :=
    flat_map (fun t =>
      map (fun t' =>
        (fst t * fst t', snd t * snd t'))
    q) p.
  Lemma eval_mul p q : eval (mul p q) = eval p * eval q.
  Proof. induction p; cbv [mul]; push; nsatz.                 Qed.
  Hint Rewrite eval_mul : push_eval.

  Definition square (p:list (Z*Z)) : list (Z*Z) :=
    list_rect
      _
      nil
      (fun t ts acc
       => (dlet two_t2 := 2 * snd t in
               (fst t * fst t, snd t * snd t)
                 :: (map (fun t'
                          => (fst t * fst t', two_t2 * snd t'))
                         ts))
            ++ acc)
      p.
  Lemma eval_square p : eval (square p) = eval p * eval p.
  Proof. induction p; cbv [square list_rect Let_In]; push; nsatz. Qed.
  Hint Rewrite eval_square : push_eval.

  Definition negate_snd (p:list (Z*Z)) : list (Z*Z) :=
    map (fun cx => (fst cx, -snd cx)) p.
  Lemma eval_negate_snd p : eval (negate_snd p) = - eval p.
  Proof. induction p; cbv [negate_snd]; push; nsatz.          Qed.
  Hint Rewrite eval_negate_snd : push_eval.

  Example base10_2digit_mul (a0:Z) (a1:Z) (b0:Z) (b1:Z) :
    {ab| eval ab = eval [(10,a1);(1,a0)] * eval [(10,b1);(1,b0)]}.
    eexists ?[ab].
    (* Goal: eval ?ab = eval [(10,a1);(1,a0)] * eval [(10,b1);(1,b0)] *)
    rewrite <-eval_mul.
    (* Goal: eval ?ab = eval (mul [(10,a1);(1,a0)] [(10,b1);(1,b0)]) *)
    cbv -[Z.mul eval]; cbn -[eval].
    (* Goal: eval ?ab = eval [(100,(a1*b1));(10,a1*b0);(10,a0*b1);(1,a0*b0)]%RT *)
    trivial.                                              Defined.

  Lemma eval_partition f (p:list (Z*Z)) :
    eval (snd (partition f p)) + eval (fst (partition f p)) = eval p.
  Proof. induction p; cbn [partition]; eta_expand; break_match; cbn [fst snd]; push; nsatz. Qed.
  Hint Rewrite eval_partition : push_eval.

  Lemma eval_partition' f (p:list (Z*Z)) :
    eval (fst (partition f p)) + eval (snd (partition f p)) = eval p.
  Proof. rewrite Z.add_comm, eval_partition; reflexivity. Qed.
  Hint Rewrite eval_partition' : push_eval.

  Lemma eval_fst_partition f p : eval (fst (partition f p)) = eval p - eval (snd (partition f p)).
  Proof. rewrite <- (eval_partition f p); nsatz. Qed.
  Lemma eval_snd_partition f p : eval (snd (partition f p)) = eval p - eval (fst (partition f p)).
  Proof. rewrite <- (eval_partition f p); nsatz. Qed.

  Definition split (s:Z) (p:list (Z*Z)) : list (Z*Z) * list (Z*Z)
    := let hi_lo := partition (fun t => fst t mod s =? 0) p in
       (snd hi_lo, map (fun t => (fst t / s, snd t)) (fst hi_lo)).
  Lemma eval_snd_split s p (s_nz:s<>0) :
    s * eval (snd (split s p)) = eval (fst (partition (fun t => fst t mod s =? 0) p)).
  Proof using Type. cbv [split Let_In]; induction p;
    repeat match goal with
    | |- context[?a/?b] =>
      unique pose proof (Z_div_exact_full_2 a b ltac:(trivial) ltac:(trivial))
    | _ => progress push
    | _ => progress break_match
    | _ => progress nsatz                                end. Qed.
  Lemma eval_split s p (s_nz:s<>0) :
    eval (fst (split s p)) + s * eval (snd (split s p)) = eval p.
  Proof using Type. rewrite eval_snd_split, eval_fst_partition by assumption; cbv [split Let_In]; cbn [fst snd]; omega. Qed.

  Lemma reduction_rule' b s c (modulus_nz:s-c<>0) :
    (s * b) mod (s - c) = (c * b) mod (s - c).
  Proof using Type. replace (s * b) with ((c*b) + b*(s-c)) by nsatz.
    rewrite Z.add_mod,Z_mod_mult,Z.add_0_r,Z.mod_mod;trivial. Qed.

  Lemma reduction_rule a b s c (modulus_nz:s-c<>0) :
    (a + s * b) mod (s - c) = (a + c * b) mod (s - c).
  Proof using Type. apply Z.add_mod_Proper; [ reflexivity | apply reduction_rule', modulus_nz ]. Qed.

  Definition reduce (s:Z) (c:list _) (p:list _) : list (Z*Z) :=
    let lo_hi := split s p in fst lo_hi ++ mul c (snd lo_hi).

  Lemma eval_reduce s c p (s_nz:s<>0) (modulus_nz:s-eval c<>0) :
    eval (reduce s c p) mod (s - eval c) = eval p mod (s - eval c).
  Proof using Type. cbv [reduce]; push.
         rewrite <-reduction_rule, eval_split; trivial.      Qed.
  Hint Rewrite eval_reduce : push_eval.

  Lemma eval_reduce_adjusted s c p w c' (s_nz:s<>0) (modulus_nz:s-eval c<>0)
        (w_mod:w mod s = 0) (w_nz:w <> 0) (Hc' : eval c' = (w / s) * eval c) :
    eval (reduce w c' p) mod (s - eval c) = eval p mod (s - eval c).
  Proof using Type.
    cbv [reduce]; push.
    rewrite Hc', <- (Z.mul_comm (eval c)), <- !Z.mul_assoc, <-reduction_rule by auto.
    autorewrite with zsimplify_const; rewrite !Z.mul_assoc, Z.mul_div_eq_full, w_mod by auto.
    autorewrite with zsimplify_const; rewrite eval_split; trivial.
  Qed.

  (* reduce at most [n] times, stopping early if the high list is nil at any point *)
  Definition repeat_reduce (n : nat) (s:Z) (c:list _) (p:list _) : list (Z * Z)
    := nat_rect
         _
         (fun p => p)
         (fun n' repeat_reduce_n' p
          => let lo_hi := split s p in
             if (length (snd lo_hi) =? 0)%nat
             then p
             else let p := fst lo_hi ++ mul c (snd lo_hi) in
                  repeat_reduce_n' p)
         n
         p.

  Lemma repeat_reduce_S_step n s c p
    : repeat_reduce (S n) s c p
      = if (length (snd (split s p)) =? 0)%nat
        then p
        else repeat_reduce n s c (reduce s c p).
  Proof using Type. cbv [repeat_reduce]; cbn [nat_rect]; break_innermost_match; auto. Qed.

  Lemma eval_repeat_reduce n s c p (s_nz:s<>0) (modulus_nz:s-eval c<>0) :
    eval (repeat_reduce n s c p) mod (s - eval c) = eval p mod (s - eval c).
  Proof using Type.
    revert p; induction n as [|n IHn]; intro p; [ reflexivity | ];
      rewrite repeat_reduce_S_step; break_innermost_match;
        [ reflexivity | rewrite IHn ].
    now rewrite eval_reduce.
  Qed.
  Hint Rewrite eval_repeat_reduce : push_eval.

  Lemma eval_repeat_reduce_adjusted n s c p w c' (s_nz:s<>0) (modulus_nz:s-eval c<>0)
        (w_mod:w mod s = 0) (w_nz:w <> 0) (Hc' : eval c' = (w / s) * eval c) :
    eval (repeat_reduce n w c' p) mod (s - eval c) = eval p mod (s - eval c).
  Proof using Type.
    revert p; induction n as [|n IHn]; intro p; [ reflexivity | ];
      rewrite repeat_reduce_S_step; break_innermost_match;
        [ reflexivity | rewrite IHn ].
    now rewrite eval_reduce_adjusted.
  Qed.

  (*
  Definition splitQ (s:Q) (p:list (Z*Z)) : list (Z*Z) * list (Z*Z)
    := let hi_lo := partition (fun t => (fst t * Zpos (Qden s)) mod (Qnum s) =? 0) p in
       (snd hi_lo, map (fun t => ((fst t * Zpos (Qden s)) / Qnum s, snd t)) (fst hi_lo)).
  Lemma eval_snd_splitQ s p (s_nz:Qnum s<>0) :
   Qnum s * eval (snd (splitQ s p)) = eval (fst (partition (fun t => (fst t * Zpos (Qden s)) mod (Qnum s) =? 0) p)) * Zpos (Qden s).
  Proof using Type.
    (* Work around https://github.com/mit-plv/fiat-crypto/issues/381 ([nsatz] can't handle [Zpos]) *)
    cbv [splitQ Let_In]; cbn [fst snd]; zify; generalize dependent (Zpos (Qden s)); generalize dependent (Qnum s); clear s; intros.
    induction p;
    repeat match goal with
    | |- context[?a/?b] =>
      unique pose proof (Z_div_exact_full_2 a b ltac:(trivial) ltac:(trivial))
    | _ => progress push
    | _ => progress break_match
    | _ => progress nsatz                                end. Qed.
  Lemma eval_splitQ s p (s_nz:Qnum s<>0) :
    eval (fst (splitQ s p)) + (Qnum s * eval (snd (splitQ s p))) / Zpos (Qden s) = eval p.
  Proof using Type. rewrite eval_snd_splitQ, eval_fst_partition by assumption; cbv [splitQ Let_In]; cbn [fst snd]; Z.div_mod_to_quot_rem_in_goal; nia. Qed.
  Lemma eval_splitQ_mul s p (s_nz:Qnum s<>0) :
    eval (fst (splitQ s p)) * Zpos (Qden s) + (Qnum s * eval (snd (splitQ s p))) = eval p * Zpos (Qden s).
  Proof using Type. rewrite eval_snd_splitQ, eval_fst_partition by assumption; cbv [splitQ Let_In]; cbn [fst snd]; nia. Qed.
   *)
  Lemma eval_rev p : eval (rev p) = eval p.
  Proof using Type. induction p; cbn [rev]; push; lia. Qed.
  Hint Rewrite eval_rev : push_eval.
  (*
  Lemma eval_permutation (p q : list (Z * Z)) : Permutation p q -> eval p = eval q.
  Proof using Type. induction 1; push; nsatz.                          Qed.

  Module RevWeightOrder <: TotalLeBool.
    Definition t := (Z * Z)%type.
    Definition leb (x y : t) := Z.leb (fst y) (fst x).
    Infix "<=?" := leb.
    Local Coercion is_true : bool >-> Sortclass.
    Theorem leb_total : forall a1 a2, a1 <=? a2 \/ a2 <=? a1.
    Proof using Type.
      cbv [is_true leb]; intros x y; rewrite !Z.leb_le; pose proof (Z.le_ge_cases (fst x) (fst y)).
      omega.
    Qed.
    Global Instance leb_Transitive : Transitive leb.
    Proof using Type. repeat intro; unfold is_true, leb in *; Z.ltb_to_lt; omega. Qed.
  End RevWeightOrder.

  Module RevWeightSort := Mergesort.Sort RevWeightOrder.

  Lemma eval_sort p : eval (RevWeightSort.sort p) = eval p.
  Proof using Type. symmetry; apply eval_permutation, RevWeightSort.Permuted_sort. Qed.
  Hint Rewrite eval_sort : push_eval.
  *)
  (* rough template (we actually have to do things a bit differently to account for duplicate weights):
[ dlet fi_c := c * fi in
   let (fj_high, fj_low) := split fj at s/fi.weight in
   dlet fi_2 := 2 * fi in
    dlet fi_2_c := 2 * fi_c in
    (if fi.weight^2 >= s then fi_c * fi else fi * fi)
       ++ fi_2_c * fj_high
       ++ fi_2 * fj_low
 | fi <- f , fj := (f weight less than i) ]
   *)
  (** N.B. We take advantage of dead code elimination to allow us to
      let-bind partial products that we don't end up using *)
  (** [v] -> [(v, v*c, v*c*2, v*2)] *)
  Definition let_bind_for_reduce_square (c:list (Z*Z)) (p:list (Z*Z)) : list ((Z*Z) * list(Z*Z) * list(Z*Z) * list(Z*Z)) :=
    let two := [(1,2)] (* (weight, value) *) in
    map (fun t => dlet c_t := mul [t] c in dlet two_c_t := mul c_t two in dlet two_t := mul [t] two in (t, c_t, two_c_t, two_t)) p.
  Definition reduce_square (s:Z) (c:list (Z*Z)) (p:list (Z*Z)) : list (Z*Z) :=
    let p := let_bind_for_reduce_square c p in
    let div_s := map (fun t => (fst t / s, snd t)) in
    list_rect
      _
      nil
      (fun t ts acc
       => (let '(t, c_t, two_c_t, two_t) := t in
           (if ((fst t * fst t) mod s =? 0)
            then div_s (mul [t] c_t)
            else mul [t] [t])
             ++ (flat_map
                   (fun '(t', c_t', two_c_t', two_t')
                    => if ((fst t * fst t') mod s =? 0)
                       then div_s
                              (if fst t' <=? fst t
                               then mul [t'] two_c_t
                               else mul [t] two_c_t')
                       else (if fst t' <=? fst t
                             then mul [t'] two_t
                             else mul [t] two_t'))
                   ts))
            ++ acc)
      p.
  Lemma eval_map_div s p (s_nz:s <> 0) (Hmod : forall v, In v p -> fst v mod s = 0)
    : eval (map (fun x => (fst x / s, snd x)) p) = eval p / s.
  Proof using Type.
    assert (Hmod' : forall v, In v p -> (fst v * snd v) mod s = 0).
    { intros; push_Zmod; rewrite Hmod by assumption; autorewrite with zsimplify_const; reflexivity. }
    induction p as [|p ps IHps]; push.
    { autorewrite with zsimplify_const; reflexivity. }
    { cbn [In] in *; rewrite Z.div_add_exact by eauto.
      rewrite !Z.Z_divide_div_mul_exact', IHps by auto using Znumtheory.Zmod_divide.
      nsatz. }
  Qed.
  Lemma eval_map_mul_div s a b c (s_nz:s <> 0) (a_mod : (a*a) mod s = 0)
    : eval (map (fun x => ((a * (a * fst x)) / s, b * (b * snd x))) c) = ((a * a) / s) * (b * b) * eval c.
  Proof using Type.
    rewrite <- eval_map_mul; apply f_equal, map_ext; intro.
    rewrite !Z.mul_assoc.
    rewrite !Z.Z_divide_div_mul_exact' by auto using Znumtheory.Zmod_divide.
    f_equal; nia.
  Qed.
  Hint Rewrite eval_map_mul_div using solve [ auto ] : push_eval.

  Lemma eval_map_mul_div' s a b c (s_nz:s <> 0) (a_mod : (a*a) mod s = 0)
    : eval (map (fun x => (((a * a) * fst x) / s, (b * b) * snd x)) c) = ((a * a) / s) * (b * b) * eval c.
  Proof using Type. rewrite <- eval_map_mul_div by assumption; f_equal; apply map_ext; intro; Z.div_mod_to_quot_rem_in_goal; f_equal; nia. Qed.
  Hint Rewrite eval_map_mul_div' using solve [ auto ] : push_eval.

  Lemma eval_flat_map_if A (f : A -> bool) g h p
    : eval (flat_map (fun x => if f x then g x else h x) p)
      = eval (flat_map g (fst (partition f p))) + eval (flat_map h (snd (partition f p))).
  Proof using Type.
    induction p; cbn [flat_map partition fst snd]; eta_expand; break_match; cbn [fst snd]; push;
      nsatz.
  Qed.
  (*Local Hint Rewrite eval_flat_map_if : push_eval.*) (* this should be [Local], but that doesn't work *)

  Lemma eval_if (b : bool) p q : eval (if b then p else q) = if b then eval p else eval q.
  Proof using Type. case b; reflexivity. Qed.
  Hint Rewrite eval_if : push_eval.

  Lemma split_app s p q :
    split s (p ++ q) = (fst (split s p) ++ fst (split s q), snd (split s p) ++ snd (split s q)).
  Proof using Type.
    cbv [split]; rewrite !partition_app; cbn [fst snd].
    rewrite !map_app; reflexivity.
  Qed.
  Lemma fst_split_app s p q :
    fst (split s (p ++ q)) = fst (split s p) ++ fst (split s q).
  Proof using Type. rewrite split_app; reflexivity. Qed.
  Lemma snd_split_app s p q :
    snd (split s (p ++ q)) = snd (split s p) ++ snd (split s q).
  Proof using Type. rewrite split_app; reflexivity. Qed.
  Hint Rewrite fst_split_app snd_split_app : push_eval.

  Lemma eval_reduce_list_rect_app A s c N C p :
    eval (reduce s c (@list_rect A _ N (fun x xs acc => C x xs ++ acc) p))
    = eval (@list_rect A _ (reduce s c N) (fun x xs acc => reduce s c (C x xs) ++ acc) p).
  Proof using Type.
    cbv [reduce]; induction p as [|p ps IHps]; cbn [list_rect]; push; [ nsatz | rewrite <- IHps; clear IHps ].
    push; nsatz.
  Qed.
  Hint Rewrite eval_reduce_list_rect_app : push_eval.

  Lemma eval_list_rect_app A N C p :
    eval (@list_rect A _ N (fun x xs acc => C x xs ++ acc) p)
    = @list_rect A _ (eval N) (fun x xs acc => eval (C x xs) + acc) p.
  Proof using Type. induction p; cbn [list_rect]; push; nsatz. Qed.
  Hint Rewrite eval_list_rect_app : push_eval.

  Local Existing Instances list_rect_Proper pointwise_map flat_map_Proper.
  Local Hint Extern 0 (Proper _ _) => solve_Proper_eq : typeclass_instances.

  Lemma reduce_nil s c : reduce s c nil = nil.
  Proof using Type. cbv [reduce]; induction c; cbn; intuition auto. Qed.
  Hint Rewrite reduce_nil : push_eval.

  Lemma eval_reduce_app s c p q : eval (reduce s c (p ++ q)) = eval (reduce s c p) + eval (reduce s c q).
  Proof using Type. cbv [reduce]; push; nsatz. Qed.
  Hint Rewrite eval_reduce_app : push_eval.

  Lemma eval_reduce_cons s c p q :
    eval (reduce s c (p :: q))
    = (if fst p mod s =? 0 then eval c * ((fst p / s) * snd p) else fst p * snd p)
      + eval (reduce s c q).
  Proof using Type.
    cbv [reduce split]; cbn [partition fst snd]; eta_expand; push.
    break_innermost_match; cbn [fst snd map]; push; nsatz.
  Qed.
  Hint Rewrite eval_reduce_cons : push_eval.

  Lemma mul_cons_l t ts p :
    mul (t::ts) p = map (fun t' => (fst t * fst t', snd t * snd t')) p ++ mul ts p.
  Proof using Type. reflexivity. Qed.
  Lemma mul_nil_l p : mul nil p = nil.
  Proof using Type. reflexivity. Qed.
  Lemma mul_nil_r p : mul p nil = nil.
  Proof using Type. cbv [mul]; induction p; cbn; intuition auto. Qed.
  Hint Rewrite mul_nil_l mul_nil_r : push_eval.
  Lemma mul_app_l p p' q :
    mul (p ++ p') q = mul p q ++ mul p' q.
  Proof using Type. cbv [mul]; rewrite flat_map_app; reflexivity. Qed.
  Lemma mul_singleton_l_app_r p q q' :
    mul [p] (q ++ q') = mul [p] q ++ mul [p] q'.
  Proof using Type. cbv [mul flat_map]; rewrite !map_app, !app_nil_r; reflexivity. Qed.
  Hint Rewrite mul_singleton_l_app_r : push_eval.
  Lemma mul_singleton_singleton p q :
    mul [p] [q] = [(fst p * fst q, snd p * snd q)].
  Proof using Type. reflexivity. Qed.

  Lemma eval_reduce_square_step_helper s c t' t v (s_nz:s <> 0) :
    (fst t * fst t') mod s = 0 \/ (fst t' * fst t) mod s = 0 -> In v (mul [t'] (mul (mul [t] c) [(1, 2)])) -> fst v mod s = 0.
  Proof using Type.
    cbv [mul]; cbn [map flat_map fst snd].
    rewrite !app_nil_r, flat_map_singleton, !map_map; cbn [fst snd]; rewrite in_map_iff; intros [H|H] [? [? ?] ]; subst; revert H.
    all:cbn [fst snd]; autorewrite with zsimplify_const; intro H; rewrite Z.mul_assoc, Z.mul_mod_l.
    all:rewrite H || rewrite (Z.mul_comm (fst t')), H; autorewrite with zsimplify_const; reflexivity.
  Qed.

  Lemma eval_reduce_square_step s c t ts (s_nz : s <> 0) :
    eval (flat_map
            (fun t' => if (fst t * fst t') mod s =? 0
                    then map (fun t => (fst t / s, snd t))
                             (if fst t' <=? fst t
                              then mul [t'] (mul (mul [t] c) [(1, 2)])
                              else mul [t] (mul (mul [t'] c) [(1, 2)]))
                    else (if fst t' <=? fst t
                          then mul [t'] (mul [t] [(1, 2)])
                          else mul [t] (mul [t'] [(1, 2)])))
            ts)
    = eval (reduce s c (mul [(1, 2)] (mul [t] ts))).
  Proof using Type.
    induction ts as [|t' ts IHts]; cbn [flat_map]; [ push; nsatz | rewrite eval_app, IHts; clear IHts ].
    change (t'::ts) with ([t'] ++ ts); rewrite !mul_singleton_l_app_r, !mul_singleton_singleton; autorewrite with zsimplify_const; push.
    break_match; Z.ltb_to_lt; push; try nsatz.
    all:rewrite eval_map_div by eauto using eval_reduce_square_step_helper; push; autorewrite with zsimplify_const.
    all:rewrite ?Z.mul_assoc, <- !(Z.mul_comm (fst t')), ?Z.mul_assoc.
    all:rewrite ?Z.mul_assoc, <- !(Z.mul_comm (fst t)), ?Z.mul_assoc.
    all:rewrite <- !Z.mul_assoc, Z.mul_assoc.
    all:rewrite !Z.Z_divide_div_mul_exact' by auto using Znumtheory.Zmod_divide.
    all:nsatz.
  Qed.

  Lemma eval_reduce_square_helper s c x y v (s_nz:s <> 0) :
    (fst x * fst y) mod s = 0 \/ (fst y * fst x) mod s = 0 -> In v (mul [x] (mul [y] c)) -> fst v mod s = 0.
  Proof using Type.
    cbv [mul]; cbn [map flat_map fst snd].
    rewrite !app_nil_r, ?flat_map_singleton, !map_map; cbn [fst snd]; rewrite in_map_iff; intros [H|H] [? [? ?] ]; subst; revert H.
    all:cbn [fst snd]; autorewrite with zsimplify_const; intro H; rewrite Z.mul_assoc, Z.mul_mod_l.
    all:rewrite H || rewrite (Z.mul_comm (fst x)), H; autorewrite with zsimplify_const; reflexivity.
  Qed.

  Lemma eval_reduce_square_exact s c p (s_nz:s<>0) (modulus_nz:s-eval c<>0)
    : eval (reduce_square s c p) = eval (reduce s c (square p)).
  Proof using Type.
    cbv [let_bind_for_reduce_square reduce_square square Let_In]; rewrite list_rect_map; push.
    apply list_rect_Proper; [ | repeat intro; subst | reflexivity ]; cbv [split]; push; [ nsatz | ].
    rewrite flat_map_map, eval_reduce_square_step by auto.
    break_match; Z.ltb_to_lt; push.
    1:rewrite eval_map_div by eauto using eval_reduce_square_helper; push.
    all:cbv [mul]; cbn [map flat_map fst snd]; rewrite !app_nil_r, !map_map; cbn [fst snd].
    all:autorewrite with zsimplify_const.
    all:rewrite <- ?Z.mul_assoc, !(Z.mul_comm (fst a)), <- ?Z.mul_assoc.
    all:rewrite ?Z.mul_assoc, <- (Z.mul_assoc _ (fst a) (fst a)), <- !(Z.mul_comm (fst a * fst a)).
    1:rewrite !Z.Z_divide_div_mul_exact' by auto using Znumtheory.Zmod_divide.
    all:idtac;
      let LHS := match goal with |- ?LHS = ?RHS => LHS end in
      let RHS := match goal with |- ?LHS = ?RHS => RHS end in
      let f := match LHS with context[eval (reduce _ _ (map ?f _))] => f end in
      let g := match RHS with context[eval (reduce _ _ (map ?f _))] => f end in
      rewrite (map_ext f g) by (intros; f_equal; nsatz).
    all:nsatz.
  Qed.
  Lemma eval_reduce_square s c p (s_nz:s<>0) (modulus_nz:s-eval c<>0)
    : eval (reduce_square s c p) mod (s - eval c)
      = (eval p * eval p) mod (s - eval c).
  Proof using Type. rewrite eval_reduce_square_exact by assumption; push; auto. Qed.
  Hint Rewrite eval_reduce_square : push_eval.

  Definition bind_snd (p : list (Z*Z)) :=
    map (fun t => dlet_nd t2 := snd t in (fst t, t2)) p.

  Lemma bind_snd_correct p : bind_snd p = p.
  Proof using Type.
    cbv [bind_snd]; induction p as [| [? ?] ];
      push; [|rewrite IHp]; reflexivity.
  Qed.

  Section Carries.
    Definition carryterm (w fw:Z) (t:Z * Z) :=
      if (Z.eqb (fst t) w)
      then dlet_nd t2 := snd t in
           dlet_nd d2 := t2 / fw in
           dlet_nd m2 := t2 mod fw in
           [(w * fw, d2);(w,m2)]
      else [t].

    Lemma eval_carryterm w fw (t:Z * Z) (fw_nonzero:fw<>0):
      eval (carryterm w fw t) = eval [t].
    Proof using Type*.
      cbv [carryterm Let_In]; break_match; push; [|trivial].
      pose proof (Z.div_mod (snd t) fw fw_nonzero).
      rewrite Z.eqb_eq in *.
      nsatz.
    Qed. Hint Rewrite eval_carryterm using auto : push_eval.

    Definition carry (w fw:Z) (p:list (Z * Z)):=
      flat_map (carryterm w fw) p.

    Lemma eval_carry w fw p (fw_nonzero:fw<>0):
      eval (carry w fw p) = eval p.
    Proof using Type*. cbv [carry]; induction p; push; nsatz. Qed.
    Hint Rewrite eval_carry using auto : push_eval.
  End Carries.
End Associational.

Module Weight.
  Section Weight.
    Context weight
            (weight_0 : weight 0%nat = 1)
            (weight_positive : forall i, 0 < weight i)
            (weight_multiples : forall i, weight (S i) mod weight i = 0)
            (weight_divides : forall i : nat, 0 < weight (S i) / weight i).

    Lemma weight_multiples_full' j : forall i, weight (i+j) mod weight i = 0.
    Proof using weight_positive weight_multiples.
      induction j; intros;
        repeat match goal with
               | _ => rewrite Nat.add_succ_r
               | _ => rewrite IHj
               | |- context [weight (S ?x) mod weight _] =>
                 rewrite (Z.div_mod (weight (S x)) (weight x)), weight_multiples by auto with zarith
               | _ => progress autorewrite with push_Zmod natsimplify zsimplify_fast
               | _ => reflexivity
               end.
    Qed.

    Lemma weight_multiples_full j i : (i <= j)%nat -> weight j mod weight i = 0.
    Proof using weight_positive weight_multiples.
      intros; replace j with (i + (j - i))%nat by omega.
      apply weight_multiples_full'.
    Qed.

    Lemma weight_divides_full j i : (i <= j)%nat -> 0 < weight j / weight i.
    Proof using weight_positive weight_multiples. auto using Z.gt_lt, Z.div_positive_gt_0, weight_multiples_full with zarith. Qed.

    Lemma weight_div_mod j i : (i <= j)%nat -> weight j = weight i * (weight j / weight i).
    Proof using weight_positive weight_multiples. intros. apply Z.div_exact; auto using weight_multiples_full with zarith. Qed.

    Lemma weight_mod_pull_div n x :
      x mod weight (S n) / weight n =
      (x / weight n) mod (weight (S n) / weight n).
    Proof using weight_positive weight_multiples weight_divides.
      replace (weight (S n)) with (weight n * (weight (S n) / weight n));
      repeat match goal with
             | _ => progress autorewrite with zsimplify_fast
             | _ => rewrite Z.mul_div_eq_full by auto with zarith
             | _ => rewrite Z.mul_div_eq' by auto with zarith
             | _ => rewrite Z.mod_pull_div
             | _ => rewrite weight_multiples by auto with zarith
             | _ => solve [auto with zarith]
             end.
    Qed.

    Lemma weight_div_pull_div n x :
      x / weight (S n) =
      (x / weight n) / (weight (S n) / weight n).
    Proof using weight_positive weight_multiples weight_divides.
      replace (weight (S n)) with (weight n * (weight (S n) / weight n));
      repeat match goal with
             | _ => progress autorewrite with zdiv_to_mod zsimplify_fast
             | _ => rewrite Z.mul_div_eq_full by auto with zarith
             | _ => rewrite Z.mul_div_eq' by auto with zarith
             | _ => rewrite Z.div_div by auto with zarith
             | _ => rewrite weight_multiples by assumption
             | _ => solve [auto with zarith]
             end.
    Qed.
  End Weight.
End Weight.

Module Positional.
  Import Weight.
  Section Positional.
  Context (weight : nat -> Z)
          (weight_0 : weight 0%nat = 1)
          (weight_nz : forall i, weight i <> 0).

  Definition to_associational (n:nat) (xs:list Z) : list (Z*Z)
    := combine (map weight (List.seq 0 n)) xs.
  Definition eval n x := Associational.eval (@to_associational n x).
  Lemma eval_to_associational n x :
    Associational.eval (@to_associational n x) = eval n x.
  Proof using Type. trivial.                                             Qed.
  Hint Rewrite @eval_to_associational : push_eval.
  Lemma eval_nil n : eval n [] = 0.
  Proof using Type. cbv [eval to_associational]. rewrite combine_nil_r. reflexivity. Qed.
  Hint Rewrite eval_nil : push_eval.
  Lemma eval0 p : eval 0 p = 0.
  Proof using Type. cbv [eval to_associational]. reflexivity. Qed.
  Hint Rewrite eval0 : push_eval.

  Lemma eval_snoc n m x y : n = length x -> m = S n -> eval m (x ++ [y]) = eval n x + weight n * y.
  Proof using Type.
    cbv [eval to_associational]; intros; subst n m.
    rewrite seq_snoc, map_app.
    rewrite combine_app_samelength by distr_length.
    autorewrite with push_eval. simpl.
    autorewrite with push_eval cancel_pair; ring.
  Qed.

  Lemma eval_snoc_S n x y : n = length x -> eval (S n) (x ++ [y]) = eval n x + weight n * y.
  Proof using Type. intros; erewrite eval_snoc; eauto. Qed.
  Hint Rewrite eval_snoc_S using (solve [distr_length]) : push_eval.

  (* SKIP over this: zeros, add_to_nth *)
  Local Ltac push := autorewrite with push_eval push_map distr_length
    push_flat_map push_fold_right push_nth_default cancel_pair natsimplify.
  Definition zeros n : list Z := repeat 0 n.
  Lemma length_zeros n : length (zeros n) = n. Proof using Type. clear; cbv [zeros]; distr_length. Qed.
  Hint Rewrite length_zeros : distr_length.
  Lemma eval_combine_zeros ls n : Associational.eval (List.combine ls (zeros n)) = 0.
  Proof using Type.
    clear; cbv [Associational.eval zeros].
    revert n; induction ls, n; simpl; rewrite ?IHls; nsatz.   Qed.
  Lemma eval_zeros n : eval n (zeros n) = 0.
  Proof using Type. apply eval_combine_zeros.                            Qed.
  Definition add_to_nth i x (ls : list Z) : list Z
    := ListUtil.update_nth i (fun y => x + y) ls.
  Lemma length_add_to_nth i x ls : length (add_to_nth i x ls) = length ls.
  Proof using Type. clear; cbv [add_to_nth]; distr_length. Qed.
  Hint Rewrite length_add_to_nth : distr_length.
  Lemma eval_add_to_nth (n:nat) (i:nat) (x:Z) (xs:list Z) (H:(i<length xs)%nat)
        (Hn : length xs = n) (* N.B. We really only need [i < Nat.min n (length xs)] *) :
    eval n (add_to_nth i x xs) = weight i * x + eval n xs.
  Proof using Type.
    subst n.
    cbv [eval to_associational add_to_nth].
    rewrite ListUtil.combine_update_nth_r at 1.
    rewrite <-(update_nth_id i (List.combine _ _)) at 2.
    rewrite <-!(ListUtil.splice_nth_equiv_update_nth_update _ _
      (weight 0, 0)) by (push; lia); cbv [ListUtil.splice_nth id].
    repeat match goal with
           | _ => progress push
           | _ => progress break_match
           | _ => progress (apply Zminus_eq; ring_simplify)
           | _ => rewrite <-ListUtil.map_nth_default_always
           end; lia.                                          Qed.
  Hint Rewrite @eval_add_to_nth eval_zeros eval_combine_zeros : push_eval.

  Lemma zeros_ext_map {A} n (p : list A) : length p = n -> zeros n = map (fun _ => 0) p.
  Proof using Type. cbv [zeros]; intro; subst; induction p; cbn; congruence. Qed.

  Lemma eval_mul_each (n:nat) (a:Z) (p:list Z)
        (Hn : length p = n)
    : eval n (List.map (fun x => a*x) p) = a*eval n p.
  Proof using Type.
    clear -Hn.
    transitivity (Associational.eval (map (fun t => (1 * fst t, a * snd t)) (to_associational n p))).
    { cbv [eval to_associational]; rewrite !combine_map_r.
      f_equal; apply map_ext; intros; f_equal; nsatz. }
    { rewrite Associational.eval_map_mul, eval_to_associational; nsatz. }
  Qed.
  Hint Rewrite eval_mul_each : push_eval.

  Definition place (t:Z*Z) (i:nat) : nat * Z :=
    nat_rect
      (fun _ => unit -> (nat * Z)%type)
      (fun _ => (O, fst t * snd t))
      (fun i' place_i' _
       => let i := S i' in
          if (fst t mod weight i =? 0)
          then (i, let c := fst t / weight i in c * snd t)
          else place_i' tt)
      i
      tt.

  Lemma place_in_range (t:Z*Z) (n:nat) : (fst (place t n) < S n)%nat.
  Proof using Type. induction n; cbv [place nat_rect] in *; break_match; autorewrite with cancel_pair; try omega. Qed.
  Lemma weight_place t i : weight (fst (place t i)) * snd (place t i) = fst t * snd t.
  Proof using weight_nz weight_0. induction i; cbv [place nat_rect] in *; break_match; push;
    repeat match goal with |- context[?a/?b] =>
      unique pose proof (Z_div_exact_full_2 a b ltac:(auto) ltac:(auto))
           end; nsatz.                                        Qed.
  Hint Rewrite weight_place : push_eval.
  Lemma weight_add_mod (weight_mul : forall i, weight (S i) mod weight i = 0) i j
    : weight (i + j) mod weight i = 0.
  Proof using weight_nz.
    rewrite Nat.add_comm.
    induction j as [|[|j] IHj]; cbn [Nat.add] in *;
      eauto using Z_mod_same_full, Z.mod_mod_trans.
  Qed.
  Lemma weight_mul_iff (weight_pos : forall i, 0 < weight i) (weight_mul : forall i, weight (S i) mod weight i = 0) i j
    : weight i mod weight j = 0 <-> ((j < i)%nat \/ forall k, (i <= k <= j)%nat -> weight k = weight j).
  Proof using weight_nz.
    split.
    { destruct (dec (j < i)%nat); [ left; omega | intro H; right; revert H ].
      assert (j = (j - i) + i)%nat by omega.
      generalize dependent (j - i)%nat; intro jmi; intros ? H0.
      subst j.
      destruct jmi as [|j]; [ intros k ?; assert (k = i) by omega; subst; f_equal; omega | ].
      induction j as [|j IH]; cbn [Nat.add] in *.
      { intros k ?; assert (k = i \/ k = S i) by omega; destruct_head'_or; subst;
          eauto using Z.mod_mod_0_0_eq_pos. }
      { specialize_by omega.
        { pose proof (weight_mul (S (j + i))) as H.
          specialize_by eauto using Z.mod_mod_trans with omega.
          intros k H'; destruct (dec (k = S (S (j + i)))); subst;
            try rewrite IH by eauto using Z.mod_mod_trans with omega;
            eauto using Z.mod_mod_trans, Z.mod_mod_0_0_eq_pos with omega.
          rewrite (IH i) in * by omega.
          eauto using Z.mod_mod_trans, Z.mod_mod_0_0_eq_pos with omega. } } }
    { destruct (dec (j < i)%nat) as [H|H]; [ intros _ | intros [H'|H']; try omega ].
      { assert (i = j + (i - j))%nat by omega.
        generalize dependent (i - j)%nat; intro imj; intros.
        subst i.
        apply weight_add_mod; auto. }
      { erewrite H', Z_mod_same_full by omega; omega. } }
  Qed.
  Lemma weight_div_from_pos_mul (weight_pos : forall i, 0 < weight i) (weight_mul : forall i, weight (S i) mod weight i = 0)
    : forall i, 0 < weight (S i) / weight i.
  Proof using weight_nz.
    intro i; generalize (weight_mul i) (weight_mul (S i)).
    Z.div_mod_to_quot_rem; nia.
  Qed.
  Lemma place_weight n (weight_pos : forall i, 0 < weight i) (weight_mul : forall i, weight (S i) mod weight i = 0)
        (weight_unique : forall i j, (i <= n)%nat -> (j <= n)%nat -> weight i = weight j -> i = j)
        i x
    : (place (weight i, x) n) = (Nat.min i n, (weight i / weight (Nat.min i n)) * x).
  Proof using weight_0 weight_nz.
    cbv [place].
    induction n as [|n IHn]; cbn; [ destruct i; cbn; rewrite ?weight_0; autorewrite with zsimplify_const; reflexivity | ].
    destruct (dec (i < S n)%nat);
      break_innermost_match; cbn [fst snd] in *; Z.ltb_to_lt; [ | rewrite IHn | | rewrite IHn ];
        break_innermost_match;
        rewrite ?Min.min_l in * by omega;
        rewrite ?Min.min_r in * by omega;
        eauto with omega.
    { rewrite weight_mul_iff in * by auto.
      destruct_head'_or; try omega.
      assert (S n = i).
      { apply weight_unique; try omega.
        symmetry; eauto with omega. }
      subst; reflexivity. }
    { rewrite weight_mul_iff in * by auto.
      exfalso; intuition eauto with omega. }
  Qed.

  Definition from_associational n (p:list (Z*Z)) :=
    List.fold_right (fun t ls =>
      dlet_nd p := place t (pred n) in
      add_to_nth (fst p) (snd p) ls ) (zeros n) p.
  Lemma eval_from_associational n p (n_nz:n<>O \/ p = nil) :
    eval n (from_associational n p) = Associational.eval p.
  Proof using weight_0 weight_nz. destruct n_nz; [ induction p | subst p ];
  cbv [from_associational Let_In] in *; push; try
  pose proof place_in_range a (pred n); try omega; try nsatz;
  apply fold_right_invariant; cbv [zeros add_to_nth];
  intros; rewrite ?map_length, ?List.repeat_length, ?seq_length, ?length_update_nth;
  try omega.                                                  Qed.
  Hint Rewrite @eval_from_associational : push_eval.
  Lemma length_from_associational n p : length (from_associational n p) = n.
  Proof using Type. cbv [from_associational Let_In]. apply fold_right_invariant; intros; distr_length. Qed.
  Hint Rewrite length_from_associational : distr_length.

  Lemma nth_default_from_associational v n p i (n_nz : n <> 0%nat) :
    nth_default v (from_associational n p) i
    = fold_right Z.add (nth_default v (zeros n) i)
                 (map (fun t => dlet p : nat * Z := place t (pred n) in
                           if dec (fst p = i) then snd p else 0) p).
  Proof.
    subst; cbv [from_associational Let_In].
    induction p as [|p ps IHps]; [ reflexivity | ]; cbn [fold_right map]; rewrite <- IHps; clear IHps.
    cbv [add_to_nth].
    match goal with
    | [ |- context[place ?p ?i] ]
      => pose proof (place_in_range p i)
    end.
    rewrite update_nth_nth_default_full; break_match; try omega;
      rewrite nth_default_out_of_bounds by omega; try omega.
    match goal with
    | [ H : context[length (fold_right ?f ?v ?ps)] |- _ ]
      => replace (length (fold_right f v ps)) with (length v) in H
        by (apply fold_right_invariant; intros; distr_length; auto)
    end.
    distr_length; auto.
  Qed.

  Definition extend_to_length (n_in n_out : nat) (p:list Z) : list Z :=
    p ++ zeros (n_out - n_in).
  Lemma eval_extend_to_length n_in n_out p :
    length p = n_in -> (n_in <= n_out)%nat ->
    eval n_out (extend_to_length n_in n_out p) = eval n_in p.
  Proof using Type.
    cbv [eval extend_to_length to_associational]; intros.
    replace (seq 0 n_out) with (seq 0 (n_in + (n_out - n_in))) by (f_equal; omega).
    rewrite seq_add, map_app, combine_app_samelength, Associational.eval_app;
      push; omega.
  Qed.
  Hint Rewrite eval_extend_to_length : push_eval.
  Lemma length_extend_to_length n_in n_out p :
    length p = n_in -> (n_in <= n_out)%nat ->
    length (extend_to_length n_in n_out p) = n_out.
  Proof using Type. clear; cbv [extend_to_length]; intros; distr_length.        Qed.
  Hint Rewrite length_extend_to_length : distr_length.

  Definition drop_high_to_length (n : nat) (p:list Z) : list Z :=
    firstn n p.
  Lemma length_drop_high_to_length n p :
    length (drop_high_to_length n p) = Nat.min n (length p).
  Proof using Type. clear; cbv [drop_high_to_length]; intros; distr_length.        Qed.
  Hint Rewrite length_drop_high_to_length : distr_length.

  Section mulmod.
    Context (s:Z) (s_nz:s <> 0)
            (c:list (Z*Z))
            (m_nz:s - Associational.eval c <> 0).
    Definition mulmod (n:nat) (a b:list Z) : list Z
      := let a_a := to_associational n a in
         let b_a := to_associational n b in
         let ab_a := Associational.mul a_a b_a in
         let abm_a := Associational.repeat_reduce n s c ab_a in
         from_associational n abm_a.
    Lemma eval_mulmod n (f g:list Z)
          (Hf : length f = n) (Hg : length g = n) :
      eval n (mulmod n f g) mod (s - Associational.eval c)
      = (eval n f * eval n g) mod (s - Associational.eval c).
    Proof using m_nz s_nz weight_0 weight_nz. cbv [mulmod]; push; trivial.
    destruct f, g; simpl in *; [ right; subst n | left; try omega.. ].
    clear; cbv -[Associational.repeat_reduce].
    induction c as [|?? IHc]; simpl; trivial.                 Qed.

    Definition squaremod (n:nat) (a:list Z) : list Z
      := let a_a := to_associational n a in
         let aa_a := Associational.reduce_square s c a_a in
         let aam_a := Associational.repeat_reduce (pred n) s c aa_a in
         from_associational n aam_a.
    Lemma eval_squaremod n (f:list Z)
          (Hf : length f = n) :
      eval n (squaremod n f) mod (s - Associational.eval c)
      = (eval n f * eval n f) mod (s - Associational.eval c).
    Proof using m_nz s_nz weight_0 weight_nz. cbv [squaremod]; push; trivial.
    destruct f; simpl in *; [ right; subst n; reflexivity | left; try omega.. ]. Qed.
  End mulmod.
  Hint Rewrite @eval_mulmod @eval_squaremod : push_eval.

  Definition add (n:nat) (a b:list Z) : list Z
    := let a_a := to_associational n a in
       let b_a := to_associational n b in
       from_associational n (a_a ++ b_a).
  Lemma eval_add n (f g:list Z)
        (Hf : length f = n) (Hg : length g = n) :
    eval n (add n f g) = (eval n f + eval n g).
  Proof using weight_0 weight_nz. cbv [add]; push; trivial. destruct n; auto.          Qed.
  Hint Rewrite @eval_add : push_eval.
  Lemma length_add n f g
        (Hf : length f = n) (Hg : length g = n) :
    length (add n f g) = n.
  Proof using Type. clear -Hf Hf; cbv [add]; distr_length.               Qed.
  Hint Rewrite @length_add : distr_length.

  Section Carries.
    Definition carry n m (index:nat) (p:list Z) : list Z :=
      from_associational
        m (@Associational.carry (weight index)
                                (weight (S index) / weight index)
                                (to_associational n p)).

    Lemma length_carry n m index p : length (carry n m index p) = m.
    Proof using Type. cbv [carry]; distr_length. Qed.
    Hint Rewrite length_carry : distr_length.
    Lemma eval_carry n m i p: (n <> 0%nat) -> (m <> 0%nat) ->
                              weight (S i) / weight i <> 0 ->
      eval m (carry n m i p) = eval n p.
    Proof using weight_0 weight_nz.
      cbv [carry]; intros; push; [|tauto].
      rewrite @Associational.eval_carry by eauto.
      apply eval_to_associational.
    Qed. Hint Rewrite @eval_carry : push_eval.

    (** TODO: figure out a way to make this proof shorter and faster *)
    Lemma nth_default_carry upper n m index p
      (weight_mul : forall i, weight (S i) mod weight i = 0)
      (weight_pos : forall i, 0 < weight i)
      (weight_unique : forall i j, (i <= upper)%nat -> (j <= upper)%nat -> weight i = weight j -> i = j)
      (Hn : (n <= upper)%nat)
      (Hm : (0 < m <= upper)%nat)
      (Hnm : (n <= m)%nat)
      (Hidx : (index <= upper)%nat) :
      length p = n ->
      forall i, nth_default 0 (carry n m index p) i
           = if dec (m <= i)%nat
             then 0
             else if dec (i = S index)
                  then nth_default 0 p i + ((nth_default 0 p index) / (weight (S index) / weight index))
                  else if dec (i = index)
                       then if dec (S index <> n \/ n <> m)
                            then ((nth_default 0 p i) mod (weight (S index) / weight index))
                            else nth_default 0 p i
                       else nth_default 0 p i.
    Proof using weight_0 weight_nz.
      assert (weight_unique_iff : forall i j, (i <= upper)%nat -> (j <= upper)%nat -> weight i = weight j <-> i = j)
        by (split; subst; auto).
      pose proof (weight_div_from_pos_mul weight_pos weight_mul) as weight_div_pos.
      assert (weight_div_nz : forall i, weight (S i) / weight i <> 0) by (intro i; specialize (weight_div_pos i); omega).
      intro; subst.
      intro i.
      destruct (dec (m <= i)%nat) as [Hmi|Hmi];
        [ rewrite (@nth_default_out_of_bounds _ i (carry _ _ _ _)) by (distr_length; omega); reflexivity | ].
      cbv [carry to_associational Associational.carry Let_In Associational.carryterm].
      rewrite combine_map_l, flat_map_map; cbn [fst snd].
      rewrite nth_default_from_associational, map_flat_map by omega; cbn [map].
      cbv [zeros]; rewrite nth_default_repeat.
      replace (if (dec (i < m)%nat) then 0 else 0) with 0 by (break_match; reflexivity).
      set (init := 0) at 1.
      lazymatch goal with |- ?LHS = ?RHS => rewrite <- (Z.add_0_l RHS : init + RHS = RHS) end.
      clearbody init.
      revert Hn i init Hmi Hnm Hidx.
      rewrite <- (rev_involutive p); generalize (rev p); clear p; intro p; rewrite rev_length.
      induction p as [|p ps IHps]; cbn [length]; intros Hn i init Hmi Hnm Hidx.
      { cbn; cbv [zeros]; break_innermost_match; cbn;
          rewrite ?nth_default_repeat, ?nth_default_nil; break_innermost_match; autorewrite with zsimplify_const; reflexivity. }
      { specialize_by omega.
        rewrite seq_snoc, rev_cons, combine_app_samelength by distr_length.
        rewrite flat_map_app, fold_right_app, IHps by omega; clear IHps.
        cbn [combine fold_right fst snd flat_map map].
        rewrite Nat.add_0_l.
        cbv [Let_In]; cbn [fst snd].
        rewrite ?nth_default_app; distr_length.
        destruct (dec (i = index)), (dec (i = S index)); try (subst; omega).
        { all:subst; break_innermost_match; Z.ltb_to_lt;
            match goal with
            | [ H : context[weight ?x = weight ?y] |- _ ] => rewrite (weight_unique_iff x y) in H by omega
            end; destruct_head'_or; try (subst; omega).
          all:repeat first [ progress cbn [fst snd app map fold_right]
                           | progress Z.ltb_to_lt
                           | progress subst
                           | progress destruct_head'_or
                           | progress rewrite ?Z.mul_div_eq_full, ?weight_mul, ?Z.sub_0_r by eauto with omega
                           | progress rewrite ?place_weight by eauto with omega
                           | rewrite !Nat.sub_diag
                           | rewrite !Min.min_l by omega
                           | rewrite !nth_default_cons
                           | rewrite Z.div_same by eauto with omega
                           | progress break_innermost_match
                           | progress autorewrite with zsimplify_const
                           | lia
                           | match goal with
                             | [ H : context[weight ?x = weight ?y] |- _ ] => rewrite (weight_unique_iff x y) in H by omega
                             | [ |- context[nth_default ?d ?ls ?i] ] => rewrite (@nth_default_out_of_bounds _ i ls d) by (distr_length; omega)
                             | [ H : ?x = ?x |- _ ] => clear H
                             end
                           | progress handle_min_max_for_omega_case ]. }
        { subst; break_innermost_match; Z.ltb_to_lt;
            match goal with
            | [ H : context[weight ?x = weight ?y] |- _ ] => rewrite (weight_unique_iff x y) in H by omega
            end; destruct_head'_or; try (subst; omega).
          all:repeat first [ progress cbn [fst snd app map fold_right]
                           | progress Z.ltb_to_lt
                           | progress subst
                           | progress destruct_head'_or
                           | progress rewrite ?Z.mul_div_eq_full, ?weight_mul, ?Z.sub_0_r by eauto with omega
                           | progress rewrite ?place_weight by eauto with omega
                           | rewrite !Nat.sub_diag
                           | rewrite !Min.min_l by omega
                           | rewrite !nth_default_cons
                           | rewrite Z.div_same by eauto with omega
                           | progress break_innermost_match
                           | progress autorewrite with zsimplify_const
                           | lia
                           | match goal with
                             | [ H : context[weight ?x = weight ?y] |- _ ] => rewrite (weight_unique_iff x y) in H by omega
                             | [ |- context[nth_default ?d ?ls ?i] ] => rewrite (@nth_default_out_of_bounds _ i ls d) by (distr_length; omega)
                             | [ H : ?x = ?x |- _ ] => clear H
                             end
                           | progress handle_min_max_for_omega_case ]. }
        { subst; break_innermost_match; Z.ltb_to_lt;
            match goal with
            | [ H : context[weight ?x = weight ?y] |- _ ] => rewrite (weight_unique_iff x y) in H by omega
            end; destruct_head'_or; try (subst; omega).
          all:repeat first [ progress cbn [fst snd app map fold_right]
                           | progress Z.ltb_to_lt
                           | progress subst
                           | progress destruct_head'_or
                           | progress rewrite ?Z.mul_div_eq_full, ?weight_mul, ?Z.sub_0_r by eauto with omega
                           | progress rewrite ?place_weight by eauto with omega
                           | rewrite !Nat.sub_diag
                           | rewrite !Min.min_l by omega
                           | rewrite !nth_default_cons
                           | rewrite Z.div_same by eauto with omega
                           | progress break_innermost_match
                           | progress autorewrite with zsimplify_const
                           | lia
                           | match goal with
                             | [ H : context[weight ?x = weight ?y] |- _ ] => rewrite (weight_unique_iff x y) in H by omega
                             | [ |- context[nth_default ?d ?ls ?i] ] => rewrite (@nth_default_out_of_bounds _ i ls d) by (distr_length; omega)
                             | [ H : ?x = ?x |- _ ] => clear H
                             end
                           | progress handle_min_max_for_omega_case ]. } }
    Qed.

    Definition carry_reduce n (s:Z) (c:list (Z * Z))
               (index:nat) (p : list Z) :=
      from_associational
        n (Associational.reduce
             s c (to_associational (S n) (@carry n (S n) index p))).

    Lemma eval_carry_reduce n s c index p :
      (s <> 0) -> (s - Associational.eval c <> 0) -> (n <> 0%nat) ->
      (weight (S index) / weight index <> 0) ->
      eval n (carry_reduce n s c index p) mod (s - Associational.eval c)
      = eval n p mod (s - Associational.eval c).
    Proof using weight_0 weight_nz. cbv [carry_reduce]; intros; push; auto.            Qed.
    Hint Rewrite @eval_carry_reduce : push_eval.
    Lemma length_carry_reduce n s c index p
      : length p = n -> length (carry_reduce n s c index p) = n.
    Proof using Type. cbv [carry_reduce]; distr_length.                  Qed.
    Hint Rewrite @length_carry_reduce : distr_length.

    (* N.B. It is important to reverse [idxs] here, because fold_right is
      written such that the first terms in the list are actually used
      last in the computation. For example, running:

      `Eval cbv - [Z.add] in (fun a b c d => fold_right Z.add d [a;b;c]).`

      will produce [fun a b c d => (a + (b + (c + d)))].*)
    Definition chained_carries n s c p (idxs : list nat) :=
      fold_right (fun a b => carry_reduce n s c a b) p (rev idxs).

    Lemma eval_chained_carries n s c p idxs :
      (s <> 0) -> (s - Associational.eval c <> 0) -> (n <> 0%nat) ->
      (forall i, In i idxs -> weight (S i) / weight i <> 0) ->
      eval n (chained_carries n s c p idxs) mod (s - Associational.eval c)
      = eval n p mod (s - Associational.eval c).
    Proof using Type*.
      cbv [chained_carries]; intros; push.
      apply fold_right_invariant; [|intro; rewrite <-in_rev];
        destruct n; intros; push; auto.
    Qed. Hint Rewrite @eval_chained_carries : push_eval.
    Lemma length_chained_carries n s c p idxs
      : length p = n -> length (@chained_carries n s c p idxs) = n.
    Proof using Type.
      intros; cbv [chained_carries]; induction (rev idxs) as [|x xs IHxs];
        cbn [fold_right]; distr_length.
    Qed. Hint Rewrite @length_chained_carries : distr_length.

    (* carries without modular reduction; useful for converting between bases *)
    Definition chained_carries_no_reduce n p (idxs : list nat) :=
      fold_right (fun a b => carry n n a b) p (rev idxs).
    Lemma eval_chained_carries_no_reduce n p idxs:
      (forall i, In i idxs -> weight (S i) / weight i <> 0) ->
      eval n (chained_carries_no_reduce n p idxs) = eval n p.
    Proof using weight_0 weight_nz.
      cbv [chained_carries_no_reduce]; intros.
      destruct n; [push;reflexivity|].
      apply fold_right_invariant; [|intro; rewrite <-in_rev];
        intros; push; auto.
    Qed. Hint Rewrite @eval_chained_carries_no_reduce : push_eval.
    Lemma length_chained_carries_no_reduce n p idxs
      : length p = n -> length (@chained_carries_no_reduce n p idxs) = n.
    Proof using Type.
      intros; cbv [chained_carries_no_reduce]; induction (rev idxs) as [|x xs IHxs];
        cbn [fold_right]; distr_length.
    Qed. Hint Rewrite @length_chained_carries_no_reduce : distr_length.
    (** TODO: figure out a way to make this proof shorter and faster *)
    Lemma nth_default_chained_carries_no_reduce_app n m inp1 inp2
          (weight_mul : forall i, weight (S i) mod weight i = 0)
          (weight_pos : forall i, 0 < weight i)
          (weight_div : forall i : nat, 0 < weight (S i) / weight i)
          (weight_unique : forall i j, (i <= n)%nat -> (j <= n)%nat -> weight i = weight j -> i = j) :
      length inp1 = m -> (length inp1 + length inp2 = n)%nat
      -> (List.length inp2 <> 0%nat \/ 0 <= eval m inp1 < weight m)
      -> forall i,
          nth_default 0 (chained_carries_no_reduce n (inp1 ++ inp2) (seq 0 m)) i
          = if dec (i < m)%nat
            then ((eval m inp1) mod weight (S i)) / weight i
            else if dec (i = m)
                 then match inp2 with
                      | nil => 0
                      | cons x xs
                        =>  x + (eval m inp1) / weight m
                      end
                 else nth_default 0 inp2 (i - m).
    Proof using weight_0 weight_nz.
      intro; subst m.
      rewrite <- (rev_involutive inp1); generalize (List.rev inp1); clear inp1; intro inp1; rewrite rev_length.
      revert inp2; induction inp1 as [|x xs IHxs]; intros.
      { destruct inp2; cbn; autorewrite with zsimplify_const; intros; destruct i; reflexivity. }
      destruct (lt_dec i n);
        [
        | break_match; cbn [List.length] in *; try lia;
          rewrite ?nth_default_out_of_bounds by (repeat autorewrite with distr_length; lia);
          reflexivity ].
      cbv [chained_carries_no_reduce] in *.
      repeat first [ progress cbn [List.length List.app List.rev fold_right] in *
                   | reflexivity
                   | assumption
                   | progress intros
                   | rewrite <- List.app_assoc
                   | rewrite seq_snoc
                   | rewrite rev_unit
                   | rewrite Nat.add_0_l
                   | rewrite eval_snoc_S in * by distr_length
                   | rewrite app_length
                   | rewrite rev_length
                   | erewrite nth_default_carry; try eassumption
                   | rewrite !IHxs; clear IHxs
                   | lia
                   | match goal with
                     | [ |- length (fold_right _ ?p (rev ?idxs)) = ?n ]
                       => apply (length_chained_carries_no_reduce n p idxs)
                     | [ |- context[_ mod weight (S ?n) / weight ?n] ]
                       => rewrite (Z.div_mod' (weight (S n)) (weight n)), weight_mul, Z.add_0_r, <- Z.mod_pull_div, ?Z.div_mul, ?Z.div_add', ?Z.mul_div_eq', ?weight_mul, ?Z.sub_0_r
                         by solve [ assumption
                                  | now apply Z.lt_le_incl, weight_div
                                  | now apply Z.lt_gt, weight_pos
                                  | (idtac + symmetry); now apply Z.lt_neq, weight_pos ]
                     | [ |- context[?x + ?y] ]
                       => match goal with
                          | [ |- context[y + x] ]
                            => progress replace (y + x) with (x + y) by lia
                          end
                     end ].
      break_match; try (exfalso; lia).
      all: repeat first [ rewrite nth_default_app
                        | rewrite nth_default_carry
                        | rewrite Nat.sub_diag
                        | rewrite minus_S_diag
                        | rewrite Nat.sub_succ_r
                        | rewrite nth_default_cons
                        | rewrite nth_default_cons_S
                        | progress subst
                        | now apply weight_0
                        | now apply weight_mul
                        | now apply weight_pos
                        | reflexivity
                        | progress intros
                        | (idtac + symmetry); now apply Z.lt_neq, weight_pos
                        | rewrite Z.div_add' by ((idtac + symmetry); now apply Z.lt_neq, weight_pos)
                        | progress destruct_head'_and
                        | progress destruct_head'_or
                        | progress cbn [List.length] in *
                        | match goal with
                          | [ |- context[?x + ?y] ]
                            => match goal with
                               | [ |- context[y + x] ]
                                 => progress replace (y + x) with (x + y) by lia
                               end
                          | [ H : List.length ?x = 0%nat |- _ ] => is_var x; destruct x
                          | [ H : not (or _ _) |- _ ] => apply Decidable.not_or in H
                          | [ H : ?x = ?x |- _ ] => clear H
                          | [ H : not (?x < ?x) |- _ ] => clear H
                          | [ H : not (?x < ?x)%nat |- _ ] => clear H
                          | [ H : not (S ?x < ?x)%nat |- _ ] => clear H
                          | [ H : ~(S ?x + _ <= ?x)%nat |- _ ] => clear H
                          | [ H : (?x < S ?x + _)%nat |- _ ] => clear H
                          | [ H : ?x <> S ?x |- _ ] => clear H
                          | [ H : ?x <> (?x + ?y)%nat |- _ ] => assert (0 < y)%nat by lia; clear H
                          | [ H : (?x < ?x + ?y)%nat |- _ ] => assert (0 < y)%nat by lia; clear H
                          | [ H : ~(?x + ?y <= ?x)%nat |- _ ] => assert (0 < y)%nat by lia; clear H
                          | [ H : ~(?x <> ?y) |- _ ] => assert (x = y) by lia; clear H
                          | [ H : (?x = ?x + ?y)%nat |- _ ] => assert (y = 0%nat) by lia; clear H
                          | [ H : ~(?x <= ?y)%nat |- _ ] => assert (y < x)%nat by lia; clear H
                          | [ H : ~(?x < ?y)%nat |- _ ] => assert (y <= x)%nat by lia; clear H
                          | [ H : (?x <= ?y)%nat, H' : ?x <> ?y |- _ ] => assert (x < y)%nat by lia; clear H H'
                          | [ H : (?x <= ?y)%nat, H' : ?y <> ?x |- _ ] => assert (x < y)%nat by lia; clear H H'
                          | [ H : (?x < ?y)%nat |- context[nth_default _ _ (?y - ?x)] ]
                            => destruct (y - x)%nat eqn:?
                          | [ |- context[nth_default _ (_ :: _) ?n] ] => is_var n; destruct n
                          | [ H : ?T, H' : ?T |- _ ] => clear H'
                          | [ |- (?x + ?y) mod ?z = (?y + ?x) mod ?z ] => apply f_equal2
                          | [ |- ?x + _ = ?x + _ ] => apply f_equal
                          | [ H0 : 0 <= ?e + ?w * ?x, H1 : ?e + ?w * ?x < ?w'
                              |- ?x + ?e / ?w = (?x + ?e / ?w) mod (?w' / ?w) ]
                            => rewrite (Z.mod_small (x + e / w) (w' / w))
                          | [ H : (?i < ?n)%nat |- context[(_ + weight ?n * _) / weight ?i] ]
                            => rewrite (Z.div_mod (weight n) (weight (S i))), weight_multiples_full, Z.add_0_r,
                               (Z.div_mod (weight (S i)) (weight i)), weight_mul, Z.add_0_r,
                               <- !Z.mul_assoc, Z.div_add', ?Z.div_mul', ?Z.mul_div_eq_full, ?weight_mul, ?Z.sub_0_r
                              by solve [ assumption
                                       | now apply Z.lt_le_incl, weight_div
                                       | now apply Z.lt_gt, weight_pos
                                       | now apply Nat.lt_le_incl
                                       | (idtac + symmetry); now apply Z.lt_neq, weight_pos ];
                               push_Zmod; pull_Zmod
                          end
                        | progress autorewrite with distr_length in *
                        | lia
                        | progress autorewrite with zsimplify_const
                        | break_innermost_match_step
                        | match goal with
                          | [ |- context[weight (S ?n) / weight ?n] ]
                            => unique pose proof (@weight_mul n)
                          end
                        | Z.div_mod_to_quot_rem; nia ].
    Qed.

    Lemma nth_default_chained_carries_no_reduce n inp
          (weight_mul : forall i, weight (S i) mod weight i = 0)
          (weight_pos : forall i, 0 < weight i)
          (weight_div : forall i : nat, 0 < weight (S i) / weight i)
          (weight_unique : forall i j, (i <= n)%nat -> (j <= n)%nat -> weight i = weight j -> i = j) :
      length inp = n -> 0 <= eval n inp < weight n
      -> forall i,
          nth_default 0 (chained_carries_no_reduce n inp (seq 0 n)) i
          = ((eval n inp) mod weight (S i)) / weight i.
    Proof using weight_0 weight_nz.
      pose proof (weight_divides_full weight ltac:(assumption) ltac:(assumption)) as weight_div_full.
      pose proof (weight_multiples_full weight ltac:(assumption) ltac:(assumption)) as weight_mul_full.
      assert (weight_le_full : forall j i, (i <= j)%nat -> weight i <= weight j)
        by (intros j i pf; specialize (weight_div_full j i pf); specialize (weight_mul_full j i pf); Z.div_mod_to_quot_rem; nia).
      intros ? ? i.
      pose proof (weight_le_full (S n) n ltac:(lia)).
      pose proof (weight_le_full (S i) i ltac:(lia)).
      pose proof (weight_le_full i n).
      intros; rewrite <- (app_nil_r inp).
      rewrite (@nth_default_chained_carries_no_reduce_app n n inp nil), app_nil_r by (cbn [List.length]; auto with lia).
      break_innermost_match; try reflexivity; rewrite ?nth_default_nil.
      all: rewrite Z.mod_small by lia.
      all: rewrite Z.div_small by lia.
      all: reflexivity.
    Qed.

    Lemma nth_default_chained_carries_no_reduce_pred n inp
          (weight_mul : forall i, weight (S i) mod weight i = 0)
          (weight_pos : forall i, 0 < weight i)
          (weight_div : forall i : nat, 0 < weight (S i) / weight i)
          (weight_unique : forall i j, (i <= n)%nat -> (j <= n)%nat -> weight i = weight j -> i = j) :
      length inp = n -> 0 <= eval n inp < weight n
      -> forall i,
          nth_default 0 (chained_carries_no_reduce n inp (seq 0 (pred n))) i
          = ((eval n inp) mod weight (S i)) / weight i.
    Proof using weight_0 weight_nz.
      pose proof (weight_divides_full weight ltac:(assumption) ltac:(assumption)) as weight_div_full.
      pose proof (weight_multiples_full weight ltac:(assumption) ltac:(assumption)) as weight_mul_full.
      assert (weight_le_full : forall j i, (i <= j)%nat -> weight i <= weight j)
        by (intros j i pf; specialize (weight_div_full j i pf); specialize (weight_mul_full j i pf); Z.div_mod_to_quot_rem; nia).
      destruct n as [|n]; [ now apply nth_default_chained_carries_no_reduce | ].
      intros ? ? i.
      pose proof (weight_le_full (S n) n ltac:(lia)).
      pose proof (weight_le_full (S i) i ltac:(lia)).
      pose proof (weight_le_full i n).
      pose proof (weight_le_full (S i) (S n)).
      pose proof (weight_le_full i (S n)).
      cbn [pred].
      revert dependent inp; intro inp.
      rewrite <- (rev_involutive inp); generalize (rev inp); clear inp; intro inp.
      rewrite rev_length; intros.
      destruct inp as [|x inp]; cbn [List.length List.rev] in *; [ lia | ].
      rewrite (@nth_default_chained_carries_no_reduce_app (S n) n (List.rev inp) (x::nil)) by (cbn [List.length]; autorewrite with distr_length; auto with lia).
      rewrite eval_snoc_S in * by distr_length.
      break_innermost_match; try reflexivity.
      all: repeat first [ progress autorewrite with zsimplify_const
                        | reflexivity
                        | progress Z.rewrite_mod_small
                        | rewrite Z.div_add' by ((idtac + symmetry); now apply Z.lt_neq, weight_pos)
                        | lia
                        | match goal with
                          | [ |- context[_ mod weight (S ?n) / weight ?n] ]
                            => rewrite (Z.div_mod' (weight (S n)) (weight n)), weight_mul, Z.add_0_r, <- Z.mod_pull_div, ?Z.div_mul, ?Z.div_add', ?Z.mul_div_eq', ?weight_mul, ?Z.sub_0_r
                              by solve [ assumption
                                       | now apply Z.lt_le_incl, weight_div
                                       | now apply Z.lt_gt, weight_pos
                                       | (idtac + symmetry); now apply Z.lt_neq, weight_pos ]
                          | [ |- context[(_ + weight ?n * _) / weight ?i] ]
                            => rewrite (Z.div_mod (weight n) (weight (S i))), weight_multiples_full, Z.add_0_r,
                               (Z.div_mod (weight (S i)) (weight i)), weight_mul, Z.add_0_r,
                               <- !Z.mul_assoc, Z.div_add', ?Z.div_mul', ?Z.mul_div_eq_full, ?weight_mul, ?Z.sub_0_r
                              by solve [ assumption
                                       | now apply Z.lt_le_incl, weight_div
                                       | now apply Z.lt_gt, weight_pos
                                       | now apply Nat.lt_le_incl
                                       | (idtac + symmetry); now apply Z.lt_neq, weight_pos ];
                               push_Zmod; pull_Zmod
                          end
                        | rewrite nth_default_cons
                        | rewrite nth_default_cons_S
                        | rewrite nth_default_nil
                        | rewrite Z.div_small by lia
                        | lia
                        | match goal with
                          | [ H : ~(?x < ?y)%nat |- _ ] => assert (y <= x)%nat by lia; clear H
                          | [ H : (?x <= ?y)%nat, H' : ?x <> ?y |- _ ] => assert (x < y)%nat by lia; clear H H'
                          | [ H : (?x <= ?y)%nat, H' : ?y <> ?x |- _ ] => assert (x < y)%nat by lia; clear H H'
                          | [ H : (?x < ?y)%nat |- context[nth_default _ _ (?y - ?x)] ]
                            => destruct (y - x)%nat eqn:?
                          end ].
    Qed.

    (* Reverse of [eval]; translate from Z to basesystem by putting
    everything in first digit and then carrying. *)
    Definition encode n s c (x : Z) : list Z :=
      chained_carries n s c (from_associational n [(1,x)]) (seq 0 n).
    Lemma eval_encode n s c x :
      (s <> 0) -> (s - Associational.eval c <> 0) -> (n <> 0%nat) ->
      (forall i, In i (seq 0 n) -> weight (S i) / weight i <> 0) ->
      eval n (encode n s c x) mod (s - Associational.eval c)
      = x mod (s - Associational.eval c).
    Proof using Type*. cbv [encode]; intros; push; auto; f_equal; omega. Qed.
    Lemma length_encode n s c x
      : length (encode n s c x) = n.
    Proof using Type. cbv [encode]; repeat distr_length.                 Qed.

    (* Reverse of [eval]; translate from Z to basesystem by putting
    everything in first digit and then carrying, but without reduction. *)
    Definition encode_no_reduce n (x : Z) : list Z :=
      chained_carries_no_reduce n (from_associational n [(1,x)]) (seq 0 n).
    Lemma eval_encode_no_reduce n x :
      (n <> 0%nat) ->
      (forall i, In i (seq 0 n) -> weight (S i) / weight i <> 0) ->
      eval n (encode_no_reduce n x) = x.
    Proof using Type*. cbv [encode_no_reduce]; intros; push; auto; f_equal; omega. Qed.
    Lemma length_encode_no_reduce n x
      : length (encode_no_reduce n x) = n.
    Proof using Type. cbv [encode_no_reduce]; repeat distr_length.                 Qed.

  End Carries.
  Hint Rewrite @eval_encode @eval_encode_no_reduce @eval_carry @eval_carry_reduce @eval_chained_carries @eval_chained_carries_no_reduce : push_eval.
  Hint Rewrite @length_encode @length_encode_no_reduce @length_carry @length_carry_reduce @length_chained_carries @length_chained_carries_no_reduce : distr_length.

  Section sub.
    Context (n:nat)
            (s:Z) (s_nz:s <> 0)
            (c:list (Z * Z))
            (m_nz:s - Associational.eval c <> 0)
            (coef:Z).

    Definition negate_snd (a:list Z) : list Z
      := let A := to_associational n a in
         let negA := Associational.negate_snd A in
         from_associational n negA.

    Definition scmul (x:Z) (a:list Z) : list Z
      := let A := to_associational n a in
         let R := Associational.mul A [(1, x)] in
         from_associational n R.

    Definition balance : list Z
      := scmul coef (encode n s c (s - Associational.eval c)).

    Definition sub (a b:list Z) : list Z
      := let ca := add n balance a in
         let _b := negate_snd b in
         add n ca _b.

    Lemma eval_sub a b
      : (forall i, In i (seq 0 n) -> weight (S i) / weight i <> 0) ->
        (List.length a = n) -> (List.length b = n) ->
        eval n (sub a b) mod (s - Associational.eval c)
        = (eval n a - eval n b) mod (s - Associational.eval c).
    Proof using s_nz m_nz weight_0 weight_nz.
      destruct (zerop n); subst; try reflexivity.
      intros; cbv [sub balance scmul negate_snd]; push; repeat distr_length;
        eauto with omega.
      push_Zmod; push; pull_Zmod; push_Zmod; pull_Zmod; distr_length; eauto.
    Qed.
    Hint Rewrite eval_sub : push_eval.
    Lemma length_sub a b
      : length a = n -> length b = n ->
        length (sub a b) = n.
    Proof using Type. intros; cbv [sub balance scmul negate_snd]; repeat distr_length. Qed.
    Hint Rewrite length_sub : distr_length.
    Definition opp (a:list Z) : list Z
      := sub (zeros n) a.
    Lemma eval_opp
          (a:list Z)
      : (length a = n) ->
        (forall i, In i (seq 0 n) -> weight (S i) / weight i <> 0) ->
        eval n (opp a) mod (s - Associational.eval c)
        = (- eval n a) mod (s - Associational.eval c).
    Proof using m_nz s_nz weight_0 weight_nz. intros; cbv [opp]; push; distr_length; auto.       Qed.
    Lemma length_opp a
      : length a = n -> length (opp a) = n.
    Proof using Type. cbv [opp]; intros; repeat distr_length.            Qed.
  End sub.
  Hint Rewrite @eval_opp @eval_sub : push_eval.
  Hint Rewrite @length_sub @length_opp : distr_length.

  Section select.
    Definition zselect (mask cond:Z) (p:list Z) :=
      dlet t := Z.zselect cond 0 mask in List.map (Z.land t) p.

    Definition select (cond:Z) (if_zero if_nonzero:list Z) :=
      List.map (fun '(p, q) => Z.zselect cond p q) (List.combine if_zero if_nonzero).

    Lemma map_and_0 n (p:list Z) : length p = n -> map (Z.land 0) p = zeros n.
    Proof using Type.
      intro; subst; induction p as [|x xs IHxs]; [reflexivity | ].
      cbn; f_equal; auto.
    Qed.
    Lemma eval_zselect n mask cond p (H:List.map (Z.land mask) p = p) :
      length p = n
      -> eval n (zselect mask cond p) =
         if dec (cond = 0) then 0 else eval n p.
    Proof using Type.
      cbv [zselect Let_In].
      rewrite Z.zselect_correct; break_match.
      { intros; erewrite map_and_0 by eassumption. apply eval_zeros. }
      { rewrite H; reflexivity. }
    Qed.
    Lemma length_zselect mask cond p :
      length (zselect mask cond p) = length p.
    Proof using Type. clear dependent weight. cbv [zselect Let_In]; break_match; intros; distr_length. Qed.

    (** We need an explicit equality proof here, because sometimes it
        matters that we retain the same bounds when selecting.  The
        alternative (weaker) lemma is [eval_select], where we only
        talk about equality under [eval]. *)
    Lemma select_eq cond n : forall p q,
        length p = n -> length q = n ->
        select cond p q = if dec (cond = 0) then p else q.
    Proof using weight.
      cbv [select]; induction n; intros;
        destruct p; distr_length;
          destruct q; distr_length;
        repeat match goal with
               | _ => progress autorewrite with push_combine push_map
               | _ => rewrite IHn by distr_length
               | _ => rewrite Z.zselect_correct
               | _ => break_match; reflexivity
               end.
    Qed.
    Lemma eval_select n cond p q :
      length p = n -> length q = n
      -> eval n (select cond p q) =
         if dec (cond = 0) then eval n p else eval n q.
    Proof using weight.
      intros; erewrite select_eq by eauto.
      break_match; reflexivity.
    Qed.
    Lemma length_select_min cond p q :
      length (select cond p q) = Nat.min (length p) (length q).
    Proof using Type. clear dependent weight. cbv [select Let_In]; distr_length. Qed.
    Hint Rewrite length_select_min : distr_length.
    Lemma length_select n cond p q :
      length p = n -> length q = n ->
      length (select cond p q) = n.
    Proof using Type. clear dependent weight. distr_length; omega **. Qed.
  End select.
End Positional.
(* Hint Rewrite disappears after the end of a section *)
Hint Rewrite length_zeros length_add_to_nth length_from_associational @length_add @length_carry_reduce @length_carry @length_chained_carries @length_chained_carries_no_reduce @length_encode @length_encode_no_reduce @length_sub @length_opp @length_select @length_zselect @length_select_min @length_extend_to_length @length_drop_high_to_length : distr_length.
Hint Rewrite @eval_zeros @eval_nil @eval_snoc_S @eval_select @eval_zselect @eval_extend_to_length using solve [auto; distr_length]: push_eval.
Section Positional_nonuniform.
  Context (weight weight' : nat -> Z).

  Lemma eval_hd_tl n (xs:list Z) :
    length xs = n ->
    eval weight n xs = weight 0%nat * hd 0 xs + eval (fun i => weight (S i)) (pred n) (tl xs).
  Proof using Type.
    intro; subst; destruct xs as [|x xs]; [ cbn; omega | ].
    cbv [eval to_associational Associational.eval] in *; cbn.
    rewrite <- map_S_seq; reflexivity.
  Qed.

  Lemma eval_cons n (x:Z) (xs:list Z) :
    length xs = n ->
    eval weight (S n) (x::xs) = weight 0%nat * x + eval (fun i => weight (S i)) n xs.
  Proof using Type. intro; subst; apply eval_hd_tl; reflexivity. Qed.

  Lemma eval_weight_mul n p k :
    (forall i, In i (seq 0 n) -> weight i = k * weight' i) ->
    eval weight n p = k * eval weight' n p.
  Proof using Type.
    setoid_rewrite List.in_seq.
    revert n weight weight'; induction p as [|x xs IHxs], n as [|n]; intros weight weight' Hwt;
      cbv [eval to_associational Associational.eval] in *; cbn in *; try omega.
    rewrite Hwt, Z.mul_add_distr_l, Z.mul_assoc by omega.
    erewrite <- !map_S_seq, IHxs; [ reflexivity | ]; cbn; eauto with omega.
  Qed.
End Positional_nonuniform.
End Positional.

Record weight_properties {weight : nat -> Z} :=
  {
    weight_0 : weight 0%nat = 1;
    weight_positive : forall i, 0 < weight i;
    weight_multiples : forall i, weight (S i) mod weight i = 0;
    weight_divides : forall i : nat, 0 < weight (S i) / weight i;
  }.
Hint Resolve weight_0 weight_positive weight_multiples weight_divides.