aboutsummaryrefslogtreecommitdiff
path: root/src/Algebra.v
blob: 9bd3cac5eb44b08ff65e05e2bcecb962873e502f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
Require Import Coq.Classes.Morphisms. Require Coq.Setoids.Setoid.
Require Import Crypto.Util.Tactics.
Require Import Crypto.Util.Decidable.
Require Import Crypto.Util.Notations.
Require Coq.Numbers.Natural.Peano.NPeano.
Local Close Scope nat_scope. Local Close Scope type_scope. Local Close Scope core_scope.
Require Crypto.Tactics.Algebra_syntax.Nsatz.
Require Export Crypto.Util.FixCoqMistakes.

Module Import ModuloCoq8485.
  Import NPeano Nat.
  Infix "mod" := modulo.
End ModuloCoq8485.

Notation is_eq_dec := (DecidableRel _) (only parsing).
Notation "@ 'is_eq_dec' T R" := (DecidableRel (R:T->T->Prop)) (only parsing).
Notation eq_dec x y := (@dec (_ x y) _) (only parsing).
Notation "x =? y" := (eq_dec x y) : type_scope.

Section Algebra.
  Context {T:Type} {eq:T->T->Prop}.
  Local Infix "=" := eq : type_scope. Local Notation "a <> b" := (not (a = b)) : type_scope.

  Local Notation is_eq_dec := (@is_eq_dec T eq).

  Section SingleOperation.
    Context {op:T->T->T}.

    Class is_associative := { associative : forall x y z, op x (op y z) = op (op x y) z }.

    Context {id:T}.

    Class is_left_identity := { left_identity : forall x, op id x = x }.
    Class is_right_identity := { right_identity : forall x, op x id = x }.

    Class monoid :=
      {
        monoid_is_associative : is_associative;
        monoid_is_left_identity : is_left_identity;
        monoid_is_right_identity : is_right_identity;

        monoid_op_Proper: Proper (respectful eq (respectful eq eq)) op;
        monoid_Equivalence : Equivalence eq;
        monoid_is_eq_dec : is_eq_dec
      }.
    Global Existing Instance monoid_is_associative.
    Global Existing Instance monoid_is_left_identity.
    Global Existing Instance monoid_is_right_identity.
    Global Existing Instance monoid_Equivalence.
    Global Existing Instance monoid_is_eq_dec.
    Global Existing Instance monoid_op_Proper.

    Context {inv:T->T}.
    Class is_left_inverse := { left_inverse : forall x, op (inv x) x = id }.
    Class is_right_inverse := { right_inverse : forall x, op x (inv x) = id }.

    Class group :=
      {
        group_monoid : monoid;
        group_is_left_inverse : is_left_inverse;
        group_is_right_inverse : is_right_inverse;

        group_inv_Proper: Proper (respectful eq eq) inv
      }.
    Global Existing Instance group_monoid.
    Global Existing Instance group_is_left_inverse.
    Global Existing Instance group_is_right_inverse.
    Global Existing Instance group_inv_Proper.

    Class is_commutative := { commutative : forall x y, op x y = op y x }.

    Record abelian_group :=
      {
        abelian_group_group : group;
        abelian_group_is_commutative : is_commutative
      }.
    Existing Class abelian_group.
    Global Existing Instance abelian_group_group.
    Global Existing Instance abelian_group_is_commutative.
  End SingleOperation.

  Section AddMul.
    Context {zero one:T}. Local Notation "0" := zero. Local Notation "1" := one.
    Context {opp:T->T}. Local Notation "- x" := (opp x).
    Context {add:T->T->T} {sub:T->T->T} {mul:T->T->T}.
    Local Infix "+" := add. Local Infix "-" := sub. Local Infix "*" := mul.

    Class is_left_distributive := { left_distributive : forall a b c, a * (b + c) =  a * b + a * c }.
    Class is_right_distributive := { right_distributive : forall a b c, (b + c) * a = b * a + c * a }.


    Class ring :=
      {
        ring_abelian_group_add : abelian_group (op:=add) (id:=zero) (inv:=opp);
        ring_monoid_mul : monoid (op:=mul) (id:=one);
        ring_is_left_distributive : is_left_distributive;
        ring_is_right_distributive : is_right_distributive;

        ring_sub_definition : forall x y, x - y = x + opp y;

        ring_mul_Proper : Proper (respectful eq (respectful eq eq)) mul;
        ring_sub_Proper : Proper(respectful eq (respectful eq eq)) sub
      }.
    Global Existing Instance ring_abelian_group_add.
    Global Existing Instance ring_monoid_mul.
    Global Existing Instance ring_is_left_distributive.
    Global Existing Instance ring_is_right_distributive.
    Global Existing Instance ring_mul_Proper.
    Global Existing Instance ring_sub_Proper.

    Class commutative_ring :=
      {
        commutative_ring_ring : ring;
        commutative_ring_is_commutative : is_commutative (op:=mul)
      }.
    Global Existing Instance commutative_ring_ring.
    Global Existing Instance commutative_ring_is_commutative.

    Class is_mul_nonzero_nonzero := { mul_nonzero_nonzero : forall x y, x<>0 -> y<>0 -> x*y<>0 }.

    Class is_zero_neq_one := { zero_neq_one : zero <> one }.

    Class integral_domain :=
      {
        integral_domain_commutative_ring : commutative_ring;
        integral_domain_is_mul_nonzero_nonzero : is_mul_nonzero_nonzero;
        integral_domain_is_zero_neq_one : is_zero_neq_one
      }.
    Global Existing Instance integral_domain_commutative_ring.
    Global Existing Instance integral_domain_is_mul_nonzero_nonzero.
    Global Existing Instance integral_domain_is_zero_neq_one.

    Context {inv:T->T} {div:T->T->T}.
    Class is_left_multiplicative_inverse := { left_multiplicative_inverse : forall x, x<>0 -> (inv x) * x = 1 }.

    Class field :=
      {
        field_commutative_ring : commutative_ring;
        field_is_left_multiplicative_inverse : is_left_multiplicative_inverse;
        field_domain_is_zero_neq_one : is_zero_neq_one;

        field_div_definition : forall x y , div x y = x * inv y;

        field_inv_Proper : Proper (respectful eq eq) inv;
        field_div_Proper : Proper (respectful eq (respectful eq eq)) div
      }.
    Global Existing Instance field_commutative_ring.
    Global Existing Instance field_is_left_multiplicative_inverse.
    Global Existing Instance field_domain_is_zero_neq_one.
    Global Existing Instance field_inv_Proper.
    Global Existing Instance field_div_Proper.
  End AddMul.
End Algebra.


Module Monoid.
  Section Monoid.
    Context {T eq op id} {monoid:@monoid T eq op id}.
    Local Infix "=" := eq : type_scope. Local Notation "a <> b" := (not (a = b)) : type_scope.
    Local Infix "*" := op.
    Local Infix "=" := eq : eq_scope.
    Local Open Scope eq_scope.

    Lemma cancel_right z iz (Hinv:op z iz = id) :
      forall x y, x * z = y * z <-> x = y.
    Proof.
      split; intros.
      { assert (op (op x z) iz = op (op y z) iz) as Hcut by (f_equiv; assumption).
        rewrite <-associative in Hcut.
        rewrite <-!associative, !Hinv, !right_identity in Hcut; exact Hcut. }
      { f_equiv; assumption. }
    Qed.

    Lemma cancel_left z iz (Hinv:op iz z = id) :
      forall x y, z * x = z * y <-> x = y.
    Proof.
      split; intros.
      { assert (op iz (op z x) = op iz (op z y)) as Hcut by (f_equiv; assumption).
        rewrite !associative, !Hinv, !left_identity in Hcut; exact Hcut. }
      { f_equiv; assumption. }
    Qed.

    Lemma inv_inv x ix iix : ix*x = id -> iix*ix = id -> iix = x.
    Proof.
      intros Hi Hii.
      assert (H:op iix id = op iix (op ix x)) by (rewrite Hi; reflexivity).
      rewrite associative, Hii, left_identity, right_identity in H; exact H.
    Qed.

    Lemma inv_op x y ix iy : ix*x = id -> iy*y = id -> (iy*ix)*(x*y) =id.
    Proof.
      intros Hx Hy.
      cut (iy * (ix*x) * y = id); try intro H.
      { rewrite <-!associative; rewrite <-!associative in H; exact H. }
      rewrite Hx, right_identity, Hy. reflexivity.
    Qed.

  End Monoid.
End Monoid.

Section ZeroNeqOne.
  Context {T eq zero one} `{@is_zero_neq_one T eq zero one} `{Equivalence T eq}.

  Lemma one_neq_zero : not (eq one zero).
  Proof.
    intro HH; symmetry in HH. auto using zero_neq_one.
  Qed.
End ZeroNeqOne.

Module Group.
  Section BasicProperties.
    Context {T eq op id inv} `{@group T eq op id inv}.
    Local Infix "=" := eq : type_scope. Local Notation "a <> b" := (not (a = b)) : type_scope.
    Local Infix "*" := op.
    Local Infix "=" := eq : eq_scope.
    Local Open Scope eq_scope.

    Lemma cancel_left : forall z x y, z*x = z*y <-> x = y.
    Proof. eauto using Monoid.cancel_left, left_inverse. Qed.
    Lemma cancel_right : forall z x y, x*z = y*z <-> x = y.
    Proof. eauto using Monoid.cancel_right, right_inverse. Qed.
    Lemma inv_inv x : inv(inv(x)) = x.
    Proof. eauto using Monoid.inv_inv, left_inverse. Qed.
    Lemma inv_op_ext x y : (inv y*inv x)*(x*y) =id.
    Proof. eauto using Monoid.inv_op, left_inverse. Qed.

    Lemma inv_unique x ix : ix * x = id -> ix = inv x.
    Proof.
      intro Hix.
      cut (ix*x*inv x = inv x).
      - rewrite <-associative, right_inverse, right_identity; trivial.
      - rewrite Hix, left_identity; reflexivity.
    Qed.

    Lemma inv_op x y : inv (x*y) = inv y*inv x.
    Proof.
      symmetry. etransitivity.
      2:eapply inv_unique.
      2:eapply inv_op_ext.
      reflexivity.
    Qed.

    Lemma inv_id : inv id = id.
    Proof. symmetry. eapply inv_unique, left_identity. Qed.

    Lemma inv_nonzero_nonzero : forall x, x <> id -> inv x <> id.
    Proof.
      intros ? Hx Ho.
      assert (Hxo: x * inv x = id) by (rewrite right_inverse; reflexivity).
      rewrite Ho, right_identity in Hxo. intuition.
    Qed.

    Lemma neq_inv_nonzero : forall x, x <> inv x -> x <> id.
    Proof.
      intros ? Hx Hi; apply Hx.
      rewrite Hi.
      symmetry; apply inv_id.
    Qed.

    Lemma inv_neq_nonzero : forall x, inv x <> x -> x <> id.
    Proof.
      intros ? Hx Hi; apply Hx.
      rewrite Hi.
      apply inv_id.
    Qed.

    Section ZeroNeqOne.
      Context {one} `{is_zero_neq_one T eq id one}.
      Lemma opp_one_neq_zero : inv one <> id.
      Proof. apply inv_nonzero_nonzero, one_neq_zero. Qed.
      Lemma zero_neq_opp_one : id <> inv one.
      Proof. intro Hx. symmetry in Hx. eauto using opp_one_neq_zero. Qed.
    End ZeroNeqOne.
  End BasicProperties.

  Section Homomorphism.
    Context {G EQ OP ID INV} {groupG:@group G EQ OP ID INV}.
    Context {H eq op id inv} {groupH:@group H eq op id inv}.
    Context {phi:G->H}.
    Local Infix "=" := eq. Local Infix "=" := eq : type_scope.

    Class is_homomorphism :=
      {
        homomorphism : forall a b,  phi (OP a b) = op (phi a) (phi b);

        is_homomorphism_phi_proper : Proper (respectful EQ eq) phi
      }.
    Global Existing Instance is_homomorphism_phi_proper.
    Context `{is_homomorphism}.

    Lemma homomorphism_id : phi ID = id.
    Proof.
      assert (Hii: op (phi ID) (phi ID) = op (phi ID) id) by
        (rewrite <- homomorphism, left_identity, right_identity; reflexivity).
      rewrite cancel_left in Hii; exact Hii.
    Qed.

    Lemma homomorphism_inv : forall x, phi (INV x) = inv (phi x).
    Proof.
    Admitted.
  End Homomorphism.

  Section GroupByHomomorphism.
    Lemma surjective_homomorphism_from_group
          {G EQ OP ID INV} {groupG:@group G EQ OP ID INV}
          {H eq op id inv}
          {Equivalence_eq: @Equivalence H eq} {eq_dec: forall x y, {eq x y} + {~ eq x y} }
          {Proper_op:Proper(eq==>eq==>eq)op}
          {Proper_inv:Proper(eq==>eq)inv}
          {phi iph} {Proper_phi:Proper(EQ==>eq)phi} {Proper_iph:Proper(eq==>EQ)iph}
          {surj:forall h, phi (iph h) = h}
          {phi_op : forall a b, eq (phi (OP a b)) (op (phi a) (phi b))}
          {phi_inv : forall a, eq (phi (INV a)) (inv (phi a))}
          {phi_id : eq (phi ID) id}
          : @group H eq op id inv.
    Proof.
      repeat split; eauto with core typeclass_instances; intros;
        repeat match goal with
                 |- context[?x] =>
                 match goal with
                 | |- context[iph x] => fail 1
                 | _ => unify x id; fail 1
                 | _ => is_var x; rewrite <- (surj x)
                 end
               end;
        repeat rewrite <-?phi_op, <-?phi_inv, <-?phi_id;
      f_equiv; auto using associative, left_identity, right_identity, left_inverse, right_inverse.
    Qed.

    Lemma isomorphism_to_subgroup_group
          {G EQ OP ID INV}
          {Equivalence_EQ: @Equivalence G EQ} {eq_dec: forall x y, {EQ x y} + {~ EQ x y} }
          {Proper_OP:Proper(EQ==>EQ==>EQ)OP}
          {Proper_INV:Proper(EQ==>EQ)INV}
          {H eq op id inv} {groupG:@group H eq op id inv}
          {phi}
          {eq_phi_EQ: forall x y, eq (phi x) (phi y) -> EQ x y}
          {phi_op : forall a b, eq (phi (OP a b)) (op (phi a) (phi b))}
          {phi_inv : forall a, eq (phi (INV a)) (inv (phi a))}
          {phi_id : eq (phi ID) id}
          : @group G EQ OP ID INV.
    Proof.
      repeat split; eauto with core typeclass_instances; intros;
        eapply eq_phi_EQ;
        repeat rewrite ?phi_op, ?phi_inv, ?phi_id;
        auto using associative, left_identity, right_identity, left_inverse, right_inverse.
    Qed.
  End GroupByHomomorphism.
End Group.

Module ScalarMult.
  Section ScalarMultProperties.
    Context {G eq add zero} `{@monoid G eq add zero}.
    Context {mul:nat->G->G}.
    Local Infix "=" := eq : type_scope. Local Infix "=" := eq.
    Local Infix "+" := add. Local Infix "*" := mul.
    Class is_scalarmult :=
      {
        scalarmult_0_l : forall P, 0 * P = zero;
        scalarmult_S_l : forall n P, S n * P = P + n * P;

        scalarmult_Proper : Proper (Logic.eq==>eq==>eq) mul
      }.
    Global Existing Instance scalarmult_Proper.
    Context `{is_scalarmult}.

    Lemma scalarmult_1_l : forall P, 1*P = P.
    Proof. intros. rewrite scalarmult_S_l, scalarmult_0_l, right_identity; reflexivity. Qed.

    Lemma scalarmult_add_l : forall (n m:nat) (P:G), ((n + m)%nat * P = n * P + m * P).
    Proof.
      induction n; intros;
        rewrite ?scalarmult_0_l, ?scalarmult_S_l, ?plus_Sn_m, ?plus_O_n, ?scalarmult_S_l, ?left_identity, <-?associative, <-?IHn; reflexivity.
    Qed.

    Lemma scalarmult_zero_r : forall m, m * zero = zero.
    Proof. induction m; rewrite ?scalarmult_S_l, ?scalarmult_0_l, ?left_identity, ?IHm; try reflexivity. Qed.

    Lemma scalarmult_assoc : forall (n m : nat) P, n * (m * P) = (m * n)%nat * P.
    Proof.
      induction n; intros.
      { rewrite <-mult_n_O, !scalarmult_0_l. reflexivity. }
      { rewrite scalarmult_S_l, <-mult_n_Sm, <-Plus.plus_comm, scalarmult_add_l.
        rewrite IHn. reflexivity. }
    Qed.

    Lemma scalarmult_times_order : forall l B, l*B = zero -> forall n, (l * n) * B = zero.
    Proof. intros ? ? Hl ?. rewrite <-scalarmult_assoc, Hl, scalarmult_zero_r. reflexivity. Qed.

    Lemma scalarmult_mod_order : forall l B, l <> 0%nat -> l*B = zero -> forall n, n mod l * B = n * B.
    Proof.
      intros ? ? Hnz Hmod ?.
      rewrite (NPeano.Nat.div_mod n l Hnz) at 2.
      rewrite scalarmult_add_l, scalarmult_times_order, left_identity by auto. reflexivity.
    Qed.
    Context {opp} {group:@group G eq add zero opp}.

    Lemma opp_mul : forall n P, opp (n * P) = n * (opp P).
      induction n; intros.
      { rewrite !scalarmult_0_l, Group.inv_id; reflexivity. }
      { rewrite <-NPeano.Nat.add_1_l, Plus.plus_comm at 1.
        rewrite scalarmult_add_l, scalarmult_1_l, Group.inv_op, scalarmult_S_l, Group.cancel_left; eauto. }
    Qed.
  End ScalarMultProperties.
End ScalarMult.

Require Coq.nsatz.Nsatz.

Ltac dropAlgebraSyntax :=
  cbv beta delta [
      Algebra_syntax.zero
        Algebra_syntax.one
        Algebra_syntax.addition
        Algebra_syntax.multiplication
        Algebra_syntax.subtraction
        Algebra_syntax.opposite
        Algebra_syntax.equality
        Algebra_syntax.bracket
        Algebra_syntax.power
        ] in *.

Ltac dropRingSyntax :=
  dropAlgebraSyntax;
  cbv beta delta [
      Ncring.zero_notation
        Ncring.one_notation
        Ncring.add_notation
        Ncring.mul_notation
        Ncring.sub_notation
        Ncring.opp_notation
        Ncring.eq_notation
    ] in *.

Module Ring.
  Section Ring.
    Context {T eq zero one opp add sub mul} `{@ring T eq zero one opp add sub mul}.
    Local Infix "=" := eq : type_scope. Local Notation "a <> b" := (not (a = b)) : type_scope.
    Local Notation "0" := zero. Local Notation "1" := one.
    Local Infix "+" := add. Local Infix "-" := sub. Local Infix "*" := mul.

    Lemma mul_0_l : forall x, 0 * x = 0.
    Proof.
      intros.
      assert (0*x = 0*x) as Hx by reflexivity.
      rewrite <-(right_identity 0), right_distributive in Hx at 1.
      assert (0*x + 0*x - 0*x = 0*x - 0*x) as Hxx by (f_equiv; exact Hx).
      rewrite !ring_sub_definition, <-associative, right_inverse, right_identity in Hxx; exact Hxx.
    Qed.

    Lemma mul_0_r : forall x, x * 0 = 0.
    Proof.
      intros.
      assert (x*0 = x*0) as Hx by reflexivity.
      rewrite <-(left_identity 0), left_distributive in Hx at 1.
      assert (opp (x*0) + (x*0 + x*0)  = opp (x*0) + x*0) as Hxx by (f_equiv; exact Hx).
      rewrite associative, left_inverse, left_identity in Hxx; exact Hxx.
    Qed.

    Lemma sub_0_l x : 0 - x = opp x.
    Proof. rewrite ring_sub_definition. rewrite left_identity. reflexivity. Qed.

    Lemma mul_opp_r x y : x * opp y = opp (x * y).
    Proof.
      assert (Ho:x*(opp y) + x*y = 0)
        by (rewrite <-left_distributive, left_inverse, mul_0_r; reflexivity).
      rewrite <-(left_identity (opp (x*y))), <-Ho; clear Ho.
      rewrite <-!associative, right_inverse, right_identity; reflexivity.
    Qed.

    Lemma mul_opp_l x y : opp x * y = opp (x * y).
    Proof.
      assert (Ho:opp x*y + x*y = 0)
        by (rewrite <-right_distributive, left_inverse, mul_0_l; reflexivity).
      rewrite <-(left_identity (opp (x*y))), <-Ho; clear Ho.
      rewrite <-!associative, right_inverse, right_identity; reflexivity.
    Qed.

    Definition opp_nonzero_nonzero : forall x, x <> 0 -> opp x <> 0 := Group.inv_nonzero_nonzero.

    Global Instance is_left_distributive_sub : is_left_distributive (eq:=eq)(add:=sub)(mul:=mul).
    Proof.
      split; intros. rewrite !ring_sub_definition, left_distributive.
      eapply Group.cancel_left, mul_opp_r.
    Qed.

    Global Instance is_right_distributive_sub : is_right_distributive (eq:=eq)(add:=sub)(mul:=mul).
    Proof.
      split; intros. rewrite !ring_sub_definition, right_distributive.
      eapply Group.cancel_left, mul_opp_l.
    Qed.

    Global Instance Ncring_Ring_ops : @Ncring.Ring_ops T zero one add mul sub opp eq.
    Global Instance Ncring_Ring : @Ncring.Ring T zero one add mul sub opp eq Ncring_Ring_ops.
    Proof.
      split; dropRingSyntax; eauto using left_identity, right_identity, commutative, associative, right_inverse, left_distributive, right_distributive, ring_sub_definition with core typeclass_instances.
      - (* TODO: why does [eauto using @left_identity with typeclass_instances] not work? *)
        eapply @left_identity; eauto with typeclass_instances.
      - eapply @right_identity; eauto with typeclass_instances.
      - eapply associative.
      - intros; eapply right_distributive.
      - intros; eapply left_distributive.
    Qed.
  End Ring.

  Section Homomorphism.
    Context {R EQ ZERO ONE OPP ADD SUB MUL} `{@ring R EQ ZERO ONE OPP ADD SUB MUL}.
    Context {S eq zero one opp add sub mul} `{@ring S eq zero one opp add sub mul}.
    Context {phi:R->S}.
    Local Infix "=" := eq. Local Infix "=" := eq : type_scope.

    Class is_homomorphism :=
      {
        homomorphism_is_homomorphism : Group.is_homomorphism (phi:=phi) (OP:=ADD) (op:=add) (EQ:=EQ) (eq:=eq);
        homomorphism_mul : forall x y, phi (MUL x y) = mul (phi x) (phi y);
        homomorphism_one : phi ONE = one
      }.
    Global Existing Instance homomorphism_is_homomorphism.

    Context `{is_homomorphism}.

    Lemma homomorphism_add : forall x y,  phi (ADD x y) = add (phi x) (phi y).
    Proof. apply Group.homomorphism. Qed.

    Definition homomorphism_opp : forall x,  phi (OPP x) = opp (phi x) :=
      (Group.homomorphism_inv (INV:=OPP) (inv:=opp)).

    Lemma homomorphism_sub : forall x y, phi (SUB x y) = sub (phi x) (phi y).
    Proof.
      intros.
      rewrite !ring_sub_definition, Group.homomorphism, homomorphism_opp. reflexivity.
    Qed.
  End Homomorphism.

  Lemma isomorphism_to_subring_ring
        {T EQ ZERO ONE OPP ADD SUB MUL}
        {Equivalence_EQ: @Equivalence T EQ} {eq_dec: forall x y, {EQ x y} + {~ EQ x y} }
        {Proper_OPP:Proper(EQ==>EQ)OPP}
        {Proper_ADD:Proper(EQ==>EQ==>EQ)ADD}
        {Proper_SUB:Proper(EQ==>EQ==>EQ)SUB}
        {Proper_MUL:Proper(EQ==>EQ==>EQ)MUL}
        {R eq zero one opp add sub mul} {ringR:@ring R eq zero one opp add sub mul}
        {phi}
        {eq_phi_EQ: forall x y, eq (phi x) (phi y) -> EQ x y}
        {phi_opp : forall a, eq (phi (OPP a)) (opp (phi a))}
        {phi_add : forall a b, eq (phi (ADD a b)) (add (phi a) (phi b))}
        {phi_sub : forall a b, eq (phi (SUB a b)) (sub (phi a) (phi b))}
        {phi_mul : forall a b, eq (phi (MUL a b)) (mul (phi a) (phi b))}
        {phi_zero : eq (phi ZERO) zero}
        {phi_one : eq (phi ONE) one}
    : @ring T EQ ZERO ONE OPP ADD SUB MUL.
  Proof.
    repeat split; eauto with core typeclass_instances; intros;
      eapply eq_phi_EQ;
      repeat rewrite ?phi_opp, ?phi_add, ?phi_sub, ?phi_mul, ?phi_inv, ?phi_zero, ?phi_one;
      auto using (associative (op := add)), (commutative (op := add)), (left_identity (op := add)), (right_identity (op := add)),
                 (associative (op := mul)), (commutative (op := add)), (left_identity (op := mul)), (right_identity (op := mul)),
                 left_inverse, right_inverse, (left_distributive (add := add)), (right_distributive (add := add)), ring_sub_definition.
  Qed.

  Section TacticSupportCommutative.
    Context {T eq zero one opp add sub mul} `{@commutative_ring T eq zero one opp add sub mul}.

    Global Instance Cring_Cring_commutative_ring :
      @Cring.Cring T zero one add mul sub opp eq Ring.Ncring_Ring_ops Ring.Ncring_Ring.
    Proof. unfold Cring.Cring; intros; dropRingSyntax. eapply commutative. Qed.

   Lemma ring_theory_for_stdlib_tactic : Ring_theory.ring_theory zero one add mul sub opp eq.
   Proof.
     constructor; intros. (* TODO(automation): make [auto] do this? *)
     - apply left_identity.
     - apply commutative.
     - apply associative.
     - apply left_identity.
     - apply commutative.
     - apply associative.
     - apply right_distributive.
     - apply ring_sub_definition.
     - apply right_inverse.
   Qed.
  End TacticSupportCommutative.
End Ring.

Module IntegralDomain.
  Section IntegralDomain.
    Context {T eq zero one opp add sub mul} `{@integral_domain T eq zero one opp add sub mul}.

    Lemma mul_nonzero_nonzero_cases (x y : T)
      : eq (mul x y) zero -> eq x zero \/ eq y zero.
    Proof.
      pose proof mul_nonzero_nonzero x y.
      destruct (eq_dec x zero); destruct (eq_dec y zero); intuition.
    Qed.

    Lemma mul_nonzero_nonzero_iff (x y : T)
      : ~eq (mul x y) zero <-> ~eq x zero /\ ~eq y zero.
    Proof.
      split.
      { intro H0; split; intro H1; apply H0; rewrite H1.
        { apply Ring.mul_0_l. }
        { apply Ring.mul_0_r. } }
      { intros [? ?] ?; edestruct mul_nonzero_nonzero_cases; eauto with nocore. }
    Qed.

    Global Instance Integral_domain :
      @Integral_domain.Integral_domain T zero one add mul sub opp eq Ring.Ncring_Ring_ops
                                       Ring.Ncring_Ring Ring.Cring_Cring_commutative_ring.
    Proof.
      split; dropRingSyntax.
      - auto using mul_nonzero_nonzero_cases.
      - intro bad; symmetry in bad; auto using zero_neq_one.
    Qed.
  End IntegralDomain.
End IntegralDomain.

Module Field.
  Section Field.
    Context {T eq zero one opp add mul sub inv div} `{@field T eq zero one opp add sub mul inv div}.
    Local Infix "=" := eq : type_scope. Local Notation "a <> b" := (not (a = b)) : type_scope.
    Local Notation "0" := zero. Local Notation "1" := one.
    Local Infix "+" := add. Local Infix "*" := mul.

    Lemma right_multiplicative_inverse : forall x : T, ~ eq x zero -> eq (mul x (inv x)) one.
    Proof.
      intros. rewrite commutative. auto using left_multiplicative_inverse.
    Qed.

    Global Instance is_mul_nonzero_nonzero : @is_mul_nonzero_nonzero T eq 0 mul.
    Proof.
      constructor. intros x y Hx Hy Hxy.
      assert (0 = (inv y * (inv x * x)) * y) as H00. (rewrite <-!associative, Hxy, !Ring.mul_0_r; reflexivity).
      rewrite left_multiplicative_inverse in H00 by assumption.
      rewrite right_identity in H00.
      rewrite left_multiplicative_inverse in H00 by assumption.
      auto using zero_neq_one.
    Qed.

    Global Instance integral_domain : @integral_domain T eq zero one opp add sub mul.
    Proof.
      split; auto using field_commutative_ring, field_domain_is_zero_neq_one, is_mul_nonzero_nonzero.
    Qed.

    Lemma inv_unique x ix : ix * x = one -> ix = inv x.
    Proof.
      intro Hix.
      assert (ix*x*inv x = inv x).
      - rewrite Hix, left_identity; reflexivity.
      - rewrite <-associative, right_multiplicative_inverse, right_identity in H0; trivial.
        intro eq_x_0. rewrite eq_x_0, Ring.mul_0_r in Hix.
        apply zero_neq_one. assumption.
    Qed.

    Require Coq.setoid_ring.Field_theory.
    Lemma field_theory_for_stdlib_tactic : Field_theory.field_theory 0 1 add mul sub opp div inv eq.
    Proof.
      constructor.
      { apply Ring.ring_theory_for_stdlib_tactic. }
      { intro H01. symmetry in H01. auto using zero_neq_one. }
      { apply field_div_definition. }
      { apply left_multiplicative_inverse. }
    Qed.

  End Field.

  Lemma isomorphism_to_subfield_field
        {T EQ ZERO ONE OPP ADD SUB MUL INV DIV}
        {Equivalence_EQ: @Equivalence T EQ} {eq_dec: forall x y, {EQ x y} + {~ EQ x y} }
        {Proper_OPP:Proper(EQ==>EQ)OPP}
        {Proper_ADD:Proper(EQ==>EQ==>EQ)ADD}
        {Proper_SUB:Proper(EQ==>EQ==>EQ)SUB}
        {Proper_MUL:Proper(EQ==>EQ==>EQ)MUL}
        {Proper_INV:Proper(EQ==>EQ)INV}
        {Proper_DIV:Proper(EQ==>EQ==>EQ)DIV}
        {R eq zero one opp add sub mul inv div} {fieldR:@field R eq zero one opp add sub mul inv div}
        {phi}
        {eq_phi_EQ: forall x y, eq (phi x) (phi y) -> EQ x y}
        {neq_zero_one : (EQ ZERO ONE -> False)}
        {phi_opp : forall a, eq (phi (OPP a)) (opp (phi a))}
        {phi_add : forall a b, eq (phi (ADD a b)) (add (phi a) (phi b))}
        {phi_sub : forall a b, eq (phi (SUB a b)) (sub (phi a) (phi b))}
        {phi_mul : forall a b, eq (phi (MUL a b)) (mul (phi a) (phi b))}
        {phi_inv : forall a, eq (phi (INV a)) (inv (phi a))}
        {phi_div : forall a b, eq (phi (DIV a b)) (div (phi a) (phi b))}
        {phi_zero : eq (phi ZERO) zero}
        {phi_one : eq (phi ONE) one}
    : @field T EQ ZERO ONE OPP ADD SUB MUL INV DIV.
  Proof.
    repeat split; eauto with core typeclass_instances; intros;
      eapply eq_phi_EQ;
      repeat rewrite ?phi_opp, ?phi_add, ?phi_sub, ?phi_mul, ?phi_inv, ?phi_zero, ?phi_one, ?phi_inv, ?phi_div;
      auto using (associative (op := add)), (commutative (op := add)), (left_identity (op := add)), (right_identity (op := add)),
                 (associative (op := mul)), (commutative (op := mul)), (left_identity (op := mul)), (right_identity (op := mul)),
                 left_inverse, right_inverse, (left_distributive (add := add)), (right_distributive (add := add)),
                 ring_sub_definition, field_div_definition.
      apply left_multiplicative_inverse; rewrite <-phi_zero; auto.
  Qed.

  Lemma Proper_ext : forall {A} (f g : A -> A) eq, Equivalence eq ->
    (forall x, eq (g x) (f x)) -> Proper (eq==>eq) f -> Proper (eq==>eq) g.
  Proof.
    repeat intro.
    transitivity (f x); auto.
    transitivity (f y); auto.
    symmetry; auto.
  Qed.

  Lemma Proper_ext2 : forall {A} (f g : A -> A -> A) eq, Equivalence eq ->
    (forall x y, eq (g x y) (f x y)) -> Proper (eq==>eq ==>eq) f -> Proper (eq==>eq==>eq) g.
  Proof.
    repeat intro.
    transitivity (f x x0); auto.
    transitivity (f y y0); match goal with H : Proper _ f |- _=> try apply H end; auto.
    symmetry; auto.
  Qed.

  Lemma equivalent_operations_field
        {T EQ ZERO ONE OPP ADD SUB MUL INV DIV}
        {EQ_equivalence : Equivalence EQ}
        {zero one opp add sub mul inv div}
        {fieldR:@field T EQ zero one opp add sub mul inv div}
        {EQ_opp : forall a, EQ (OPP a) (opp a)}
        {EQ_inv : forall a, EQ (INV a) (inv a)}
        {EQ_add : forall a b, EQ (ADD a b) (add a b)}
        {EQ_sub : forall a b, EQ (SUB a b) (sub a b)}
        {EQ_mul : forall a b, EQ (MUL a b) (mul a b)}
        {EQ_div : forall a b, EQ (DIV a b) (div a b)}
        {EQ_zero : EQ ZERO zero}
        {EQ_one : EQ ONE one}
    : @field T EQ ZERO ONE OPP ADD SUB MUL INV DIV.
  Proof.
    repeat split; eauto with core typeclass_instances; intros;
      repeat rewrite ?EQ_opp, ?EQ_inv, ?EQ_add, ?EQ_sub, ?EQ_mul, ?EQ_div, ?EQ_zero, ?EQ_one;
      auto using (associative (op := add)), (commutative (op := add)), (left_identity (op := add)), (right_identity (op := add)),
                 (associative (op := mul)), (commutative (op := mul)), (left_identity (op := mul)), (right_identity (op := mul)),
                 left_inverse, right_inverse, (left_distributive (add := add)), (right_distributive (add := add)),
                 ring_sub_definition, field_div_definition;
      try solve [(eapply Proper_ext2 || eapply Proper_ext);
        eauto using group_inv_Proper, monoid_op_Proper, ring_mul_Proper, ring_sub_Proper,
          field_inv_Proper, field_div_Proper].
      + apply left_multiplicative_inverse.
        symmetry in EQ_zero. rewrite EQ_zero. assumption.
      + eapply field_domain_is_zero_neq_one; eauto.
  Qed.

  Section Homomorphism.
    Context {F EQ ZERO ONE OPP ADD MUL SUB INV DIV} `{@field F EQ ZERO ONE OPP ADD SUB MUL INV DIV}.
    Context {K eq zero one opp add mul sub inv div} `{@field K eq zero one opp add sub mul inv div}.
    Context {phi:F->K}.
    Local Infix "=" := eq. Local Infix "=" := eq : type_scope.
    Context `{@Ring.is_homomorphism F EQ ONE ADD MUL K eq one add mul phi}.

    Lemma homomorphism_multiplicative_inverse_complete
       : forall x, (EQ x ZERO -> phi (INV x) = inv (phi x))
       -> phi (INV x) = inv (phi x).
    Proof.
      intros.
      destruct (eq_dec x ZERO); auto.
      assert (phi (MUL (INV x) x) = one) as A. {
        rewrite left_multiplicative_inverse; auto using Ring.homomorphism_one.
      }
      rewrite Ring.homomorphism_mul in A.
      apply inv_unique in A. assumption.
    Qed.

    Lemma homomorphism_multiplicative_inverse
      : forall x, not (EQ x ZERO)
      -> phi (INV x) = inv (phi x).
    Proof.
      intros. apply homomorphism_multiplicative_inverse_complete. contradiction.
    Qed.

    Lemma homomorphism_div_complete
      : forall x y, (EQ y ZERO -> phi (INV y) = inv (phi y))
      -> phi (DIV x y) = div (phi x) (phi y).
    Proof.
      intros. rewrite !field_div_definition.
      rewrite Ring.homomorphism_mul, homomorphism_multiplicative_inverse_complete. reflexivity. trivial.
    Qed.

    Lemma homomorphism_div
      : forall x y, not (EQ y ZERO)
      -> phi (DIV x y) = div (phi x) (phi y).
    Proof.
      intros. apply homomorphism_div_complete. contradiction.
    Qed.
  End Homomorphism.
End Field.

(** Tactics *)

Ltac nsatz := Algebra_syntax.Nsatz.nsatz; dropRingSyntax.
Ltac nsatz_contradict := Algebra_syntax.Nsatz.nsatz_contradict; dropRingSyntax.

(*** Tactics for manipulating field equations *)
Require Import Coq.setoid_ring.Field_tac.

(** Convention: These tactics put the original goal first, and all
    goals for non-zero side-conditions after that.  (Exception:
    [field_simplify_eq in], which is silly.  *)

Ltac guess_field :=
  match goal with
  | |- ?eq _ _ =>  constr:(_:field (eq:=eq))
  | |- not (?eq _ _) =>  constr:(_:field (eq:=eq))
  | [H: ?eq _ _ |- _ ] =>  constr:(_:field (eq:=eq))
  | [H: not (?eq _ _) |- _] =>  constr:(_:field (eq:=eq))
  end.

Ltac field_nonzero_mul_split :=
  repeat match goal with
         | [ H : ?R (?mul ?x ?y) ?zero |- _ ]
           => apply IntegralDomain.mul_nonzero_nonzero_cases in H; destruct H
         | [ |- not (?R (?mul ?x ?y) ?zero) ]
           => apply IntegralDomain.mul_nonzero_nonzero_iff; split
         | [ H : not (?R (?mul ?x ?y) ?zero) |- _ ]
           => apply IntegralDomain.mul_nonzero_nonzero_iff in H; destruct H
         end.

Ltac field_simplify_eq_if_div :=
  let fld := guess_field in
  lazymatch type of fld with
    field (div:=?div) =>
    lazymatch goal with
    | |- appcontext[div] => field_simplify_eq
    | |- _ => idtac
    end
  end.

(** We jump through some hoops to ensure that the side-conditions come late *)
Ltac field_simplify_eq_if_div_in_cycled_side_condition_order H :=
  let fld := guess_field in
  lazymatch type of fld with
    field (div:=?div) =>
    lazymatch type of H with
    | appcontext[div] => field_simplify_eq in H
    | _ => idtac
    end
  end.

Ltac field_simplify_eq_if_div_in H :=
  side_conditions_before_to_side_conditions_after
    field_simplify_eq_if_div_in_cycled_side_condition_order
    H.

(** Now we have more conservative versions that don't simplify non-division structure. *)
Ltac deduplicate_nonfraction_pieces mul :=
  repeat match goal with
         | [ x0 := ?v, x1 := context[?v] |- _ ]
             => progress change v with x0 in x1
         | [ x := mul ?a ?b |- _ ]
           => not is_var a;
              let a' := fresh x in
              pose a as a'; change a with a' in x
         | [ x := mul ?a ?b |- _ ]
           => not is_var b;
              let b' := fresh x in
              pose b as b'; change b with b' in x
         | [ x0 := ?v, x1 := ?v |- _ ]
           => change x1 with x0 in *; clear x1
         | [ x := ?v |- _ ]
           => is_var v; subst x
         | [ x0 := mul ?a ?b, x1 := mul ?a ?b' |- _ ]
           => subst x0 x1
         | [ x0 := mul ?a ?b, x1 := mul ?a' ?b |- _ ]
           => subst x0 x1
         end.

Ltac set_nonfraction_pieces_on T eq zero opp add sub mul inv div cont :=
  idtac;
  let one_arg_recr :=
      fun op v
      => set_nonfraction_pieces_on
           v eq zero opp add sub mul inv div
           ltac:(fun x => cont (op x)) in
  let two_arg_recr :=
      fun op v0 v1
      => set_nonfraction_pieces_on
           v0 eq zero opp add sub mul inv div
           ltac:(fun x
                 =>
                   set_nonfraction_pieces_on
                     v1 eq zero opp add sub mul inv div
                     ltac:(fun y => cont (op x y))) in
  lazymatch T with
  | eq ?x ?y => two_arg_recr eq x y
  | appcontext[div]
    => lazymatch T with
       | opp ?x => one_arg_recr opp x
       | inv ?x => one_arg_recr inv x
       | add ?x ?y => two_arg_recr add x y
       | sub ?x ?y => two_arg_recr sub x y
       | mul ?x ?y => two_arg_recr mul x y
       | div ?x ?y => two_arg_recr div x y
       | _ => idtac
       end
  | _ => let x := fresh "x" in
         pose T as x;
         cont x
  end.
Ltac set_nonfraction_pieces_in H :=
  idtac;
  let fld := guess_field in
  lazymatch type of fld with
  | @field ?T ?eq ?zero ?one ?opp ?add ?sub ?mul ?inv ?div
    => let T := type of H in
       set_nonfraction_pieces_on
         T eq zero opp add sub mul inv div
         ltac:(fun T' => change T' in H);
       deduplicate_nonfraction_pieces mul
  end.
Ltac set_nonfraction_pieces :=
  idtac;
  let fld := guess_field in
  lazymatch type of fld with
  | @field ?T ?eq ?zero ?one ?opp ?add ?sub ?mul ?inv ?div
    => let T := get_goal in
       set_nonfraction_pieces_on
         T eq zero opp add sub mul inv div
         ltac:(fun T' => change T');
       deduplicate_nonfraction_pieces mul
  end.
Ltac default_common_denominator_nonzero_tac :=
  repeat apply conj;
  try first [ assumption
            | intro; field_nonzero_mul_split; tauto ].
Ltac common_denominator_in H :=
  idtac;
  let fld := guess_field in
  let div := lazymatch type of fld with
             | @field ?T ?eq ?zero ?one ?opp ?add ?sub ?mul ?inv ?div
               => div
             end in
  lazymatch type of H with
  | appcontext[div]
    => set_nonfraction_pieces_in H;
       field_simplify_eq_if_div_in H;
       [
       | default_common_denominator_nonzero_tac.. ];
       repeat match goal with H := _ |- _ => subst H end
  | ?T => fail 0 "no division in" H ":" T
  end.
Ltac common_denominator :=
  idtac;
  let fld := guess_field in
  let div := lazymatch type of fld with
             | @field ?T ?eq ?zero ?one ?opp ?add ?sub ?mul ?inv ?div
               => div
             end in
  lazymatch goal with
  | |- appcontext[div]
    => set_nonfraction_pieces;
       field_simplify_eq_if_div;
       [
       | default_common_denominator_nonzero_tac.. ];
       repeat match goal with H := _ |- _ => subst H end
  | |- ?G
    => fail 0 "no division in goal" G
  end.
Ltac common_denominator_inequality_in H :=
  let HT := type of H in
  lazymatch HT with
  | not (?R _ _) => idtac
  | (?R _ _ -> False)%type => idtac
  | _ => fail 0 "Not an inequality" H ":" HT
  end;
  let HTT := type of HT in
  let HT' := fresh in
  evar (HT' : HTT);
  let H' := fresh in
  rename H into H';
  cut (not HT'); subst HT';
  [ intro H; clear H'
  | let H'' := fresh in
    intro H''; apply H'; common_denominator; [ eexact H'' | .. ] ].
Ltac common_denominator_inequality :=
  let G := get_goal in
  lazymatch G with
  | not (?R _ _) => idtac
  | (?R _ _ -> False)%type => idtac
  | _ => fail 0 "Not an inequality (goal):" G
  end;
  let GT := type of G in
  let HT' := fresh in
  evar (HT' : GT);
  let H' := fresh in
  assert (H' : not HT'); subst HT';
  [
  | let HG := fresh in
    intros HG; apply H'; common_denominator_in HG; [ eexact HG | .. ] ].

Ltac common_denominator_hyps :=
  try match goal with
      | [H: _ |- _ ]
        => progress common_denominator_in H;
           [ common_denominator_hyps
           | .. ]
      end.

Ltac common_denominator_inequality_hyps :=
  try match goal with
      | [H: _ |- _ ]
        => progress common_denominator_inequality_in H;
           [ common_denominator_inequality_hyps
           | .. ]
      end.

Ltac common_denominator_all :=
  try common_denominator;
  [ try common_denominator_hyps
  | .. ].

Ltac common_denominator_inequality_all :=
  try common_denominator_inequality;
  [ try common_denominator_inequality_hyps
  | .. ].

Ltac common_denominator_equality_inequality_all :=
  common_denominator_all;
  [ common_denominator_inequality_all
  | .. ].

Inductive field_simplify_done {T} : T -> Type :=
  Field_simplify_done : forall H, field_simplify_done H.

Ltac field_simplify_eq_hyps :=
  repeat match goal with
           [ H: _ |- _ ] =>
           match goal with
           | [ Ha : field_simplify_done H |- _ ] => fail
           | _ => idtac
           end;
           field_simplify_eq in H;
           unique pose proof (Field_simplify_done H)
         end;
  repeat match goal with [ H: field_simplify_done _ |- _] => clear H end.

Ltac field_simplify_eq_all := field_simplify_eq_hyps; try field_simplify_eq.

(** Clear duplicate hypotheses, and hypotheses of the form [R x x] for a reflexive relation [R], and similarly for symmetric relations *)
Ltac clear_algebraic_duplicates_step R :=
  match goal with
  | [ H : R ?x ?x |- _ ]
    => clear H
  end.
Ltac clear_algebraic_duplicates_step_S R :=
  match goal with
  | [ H : R ?x ?y, H' : R ?y ?x |- _ ]
    => clear H
  | [ H : not (R ?x ?y), H' : not (R ?y ?x) |- _ ]
    => clear H
  | [ H : (R ?x ?y -> False)%type, H' : (R ?y ?x -> False)%type |- _ ]
    => clear H
  | [ H : not (R ?x ?y), H' : (R ?y ?x -> False)%type |- _ ]
    => clear H
  end.
Ltac clear_algebraic_duplicates_guarded R :=
  let test_reflexive := constr:(_ : Reflexive R) in
  repeat clear_algebraic_duplicates_step R.
Ltac clear_algebraic_duplicates_guarded_S R :=
  let test_symmetric := constr:(_ : Symmetric R) in
  repeat clear_algebraic_duplicates_step_S R.
Ltac clear_algebraic_duplicates :=
  clear_duplicates;
  repeat match goal with
         | [ H : ?R ?x ?x |- _ ] => progress clear_algebraic_duplicates_guarded R
         | [ H : ?R ?x ?y, H' : ?R ?y ?x |- _ ]
           => progress clear_algebraic_duplicates_guarded_S R
         | [ H : not (?R ?x ?y), H' : not (?R ?y ?x) |- _ ]
           => progress clear_algebraic_duplicates_guarded_S R
         | [ H : not (?R ?x ?y), H' : (?R ?y ?x -> False)%type |- _ ]
           => progress clear_algebraic_duplicates_guarded_S R
         | [ H : (?R ?x ?y -> False)%type, H' : (?R ?y ?x -> False)%type |- _ ]
           => progress clear_algebraic_duplicates_guarded_S R
         end.

(*** Inequalities over fields *)
Ltac assert_expr_by_nsatz H ty :=
  let H' := fresh in
  rename H into H'; assert (H : ty)
    by (try (intro; apply H'); nsatz);
  clear H'.
Ltac test_not_constr_eq_assert_expr_by_nsatz y zero H ty :=
  first [ constr_eq y zero; fail 1 y "is already" zero
        | assert_expr_by_nsatz H ty ].
Ltac canonicalize_field_inequalities_step' eq zero opp add sub :=
  match goal with
  |  [ H : not (eq ?x (opp ?y)) |- _ ]
     => test_not_constr_eq_assert_expr_by_nsatz y zero H (not (eq (add x y) zero))
  |  [ H : (eq ?x (opp ?y) -> False)%type |- _ ]
     => test_not_constr_eq_assert_expr_by_nsatz y zero H (eq (add x y) zero -> False)%type
  |  [ H : not (eq ?x ?y) |- _ ]
     => test_not_constr_eq_assert_expr_by_nsatz y zero H (not (eq (sub x y) zero))
  |  [ H : (eq ?x ?y -> False)%type |- _ ]
     => test_not_constr_eq_assert_expr_by_nsatz y zero H (not (eq (sub x y) zero))
  end.
Ltac canonicalize_field_inequalities' eq zero opp add sub := repeat canonicalize_field_inequalities_step' eq zero opp add sub.
Ltac canonicalize_field_equalities_step' eq zero opp add sub :=
  lazymatch goal with
  |  [ H : eq ?x (opp ?y) |- _ ]
     => test_not_constr_eq_assert_expr_by_nsatz y zero H (eq (add x y) zero)
  |  [ H : eq ?x ?y |- _ ]
     => test_not_constr_eq_assert_expr_by_nsatz y zero H (eq (sub x y) zero)
  end.
Ltac canonicalize_field_equalities' eq zero opp add sub := repeat canonicalize_field_equalities_step' eq zero opp add sub.

(** These are the two user-facing tactics.  They put (in)equalities
    into the form [_ <> 0] / [_ = 0]. *)
Ltac canonicalize_field_inequalities :=
  let fld := guess_field in
  lazymatch type of fld with
  | @field ?F ?eq ?zero ?one ?opp ?add ?sub ?mul ?inv ?div
    => canonicalize_field_inequalities' eq zero opp add sub
  end.
Ltac canonicalize_field_equalities :=
  let fld := guess_field in
  lazymatch type of fld with
  | @field ?F ?eq ?zero ?one ?opp ?add ?sub ?mul ?inv ?div
    => canonicalize_field_equalities' eq zero opp add sub
  end.


(*** Polynomial equations over fields *)

Ltac neq01 :=
  try solve
      [apply zero_neq_one
      |apply Group.zero_neq_opp_one
      |apply one_neq_zero
      |apply Group.opp_one_neq_zero].

Ltac combine_field_inequalities_step :=
  match goal with
  | [ H : not (?R ?x ?zero), H' : not (?R ?x' ?zero) |- _ ]
    => pose proof (mul_nonzero_nonzero x x' H H'); clear H H'
  | [ H : (?X -> False)%type |- _ ]
    => change (not X) in H
  end.

(** First we split apart the equalities so that we can clear
    duplicates; it's easier for us to do this than to give [nsatz] the
    extra work. *)

Ltac split_field_inequalities_step :=
  match goal with
  | [ H : not (?R (?mul ?x ?y) ?zero) |- _ ]
    => apply IntegralDomain.mul_nonzero_nonzero_iff in H; destruct H
  end.
Ltac split_field_inequalities :=
  canonicalize_field_inequalities;
  repeat split_field_inequalities_step;
  clear_duplicates.

Ltac combine_field_inequalities :=
  split_field_inequalities;
  repeat combine_field_inequalities_step.
(** Handles field inequalities which can be made by splitting multiplications in the goal and the assumptions *)
Ltac solve_simple_field_inequalities :=
  repeat (apply conj || split_field_inequalities);
  try assumption.
Ltac prensatz_contradict :=
  solve_simple_field_inequalities;
  combine_field_inequalities.
Ltac nsatz_inequality_to_equality :=
  repeat intro;
  match goal with
  | [ H : not (?R ?x ?zero) |- False ] => apply H
  | [ H : (?R ?x ?zero -> False)%type |- False ] => apply H
  end.
(** Clean up tactic handling side-conditions *)
Ltac super_nsatz_post_clean_inequalities :=
  repeat (apply conj || split_field_inequalities);
  try assumption;
  prensatz_contradict; nsatz_inequality_to_equality;
  try nsatz.
Ltac nsatz_equality_to_inequality_by_decide_equality :=
  lazymatch goal with
  | [ H : not (?R _ _) |- ?R _ _ ] => idtac
  | [ H : (?R _ _ -> False)%type |- ?R _ _ ] => idtac
  | [ |- ?R _ _ ] => fail 0 "No hypothesis exists which negates the relation" R
  | [ |- ?G ] => fail 0 "The goal is not a binary relation:" G
  end;
  lazymatch goal with
  | [ |- ?R ?x ?y ]
    => destruct (@dec (R x y) _); [ assumption | exfalso ]
  end.
(** Handles inequalities and fractions *)
Ltac super_nsatz_internal nsatz_alternative :=
  (* [nsatz] gives anomalies on duplicate hypotheses, so we strip them *)
  clear_algebraic_duplicates;
  prensatz_contradict;
  (* Each goal left over by [prensatz_contradict] is separate (and
     there might not be any), so we handle them all separately *)
  [ try common_denominator_equality_inequality_all;
    [ try nsatz_inequality_to_equality;
      try first [ nsatz;
                  (* [nstaz] might leave over side-conditions; we handle them if they are inequalities *)
                  try super_nsatz_post_clean_inequalities
                | nsatz_alternative ]
    | super_nsatz_post_clean_inequalities.. ].. ].

Ltac super_nsatz :=
  super_nsatz_internal
    (* if [nsatz] fails, we try turning the goal equality into an inequality and trying again *)
    ltac:(nsatz_equality_to_inequality_by_decide_equality;
          super_nsatz_internal idtac).

Section ExtraLemmas.
  Context {F eq zero one opp add sub mul inv div} `{F_field:field F eq zero one opp add sub mul inv div}.
  Local Infix "+" := add. Local Infix "*" := mul. Local Infix "-" := sub. Local Infix "/" := div.
  Local Notation "0" := zero. Local Notation "1" := one.
  Local Infix "=" := eq : type_scope. Local Notation "a <> b" := (not (a = b)) : type_scope.

  Example _only_two_square_roots_test x y : x * x = y * y -> x <> opp y -> x = y.
  Proof. intros; super_nsatz. Qed.

  Lemma only_two_square_roots' x y : x * x = y * y -> x <> y -> x <> opp y -> False.
  Proof. intros; super_nsatz. Qed.

  Lemma only_two_square_roots x y z : x * x = z -> y * y = z -> x <> y -> x <> opp y -> False.
  Proof.
    intros; setoid_subst z; eauto using only_two_square_roots'.
  Qed.

  Lemma only_two_square_roots'_choice x y : x * x = y * y -> x = y \/ x = opp y.
  Proof.
    intro H.
    destruct (eq_dec x y); [ left; assumption | right ].
    destruct (eq_dec x (opp y)); [ assumption | exfalso ].
    eapply only_two_square_roots'; eassumption.
  Qed.

  Lemma only_two_square_roots_choice x y z : x * x = z -> y * y = z -> x = y \/ x = opp y.
  Proof.
    intros; setoid_subst z; eauto using only_two_square_roots'_choice.
  Qed.
End ExtraLemmas.

(** We look for hypotheses of the form [x^2 = y^2] and [x^2 = z] together with [y^2 = z], and prove that [x = y] or [x = opp y] *)
Ltac pose_proof_only_two_square_roots x y H eq opp mul :=
  not constr_eq x y;
  lazymatch x with
  | opp ?x' => pose_proof_only_two_square_roots x' y H eq opp mul
  | _
    => lazymatch y with
       | opp ?y' => pose_proof_only_two_square_roots x y' H eq opp mul
       | _
         => match goal with
            | [ H' : eq x y |- _ ]
              => let T := type of H' in fail 1 "The hypothesis" H' "already proves" T
            | [ H' : eq y x |- _ ]
              => let T := type of H' in fail 1 "The hypothesis" H' "already proves" T
            | [ H' : eq x (opp y) |- _ ]
              => let T := type of H' in fail 1 "The hypothesis" H' "already proves" T
            | [ H' : eq y (opp x) |- _ ]
              => let T := type of H' in fail 1 "The hypothesis" H' "already proves" T
            | [ H' : eq (opp x) y |- _ ]
              => let T := type of H' in fail 1 "The hypothesis" H' "already proves" T
            | [ H' : eq (opp y) x |- _ ]
              => let T := type of H' in fail 1 "The hypothesis" H' "already proves" T
            | [ H' : eq (mul x x) (mul y y) |- _ ]
              => pose proof (only_two_square_roots'_choice x y H') as H
            | [ H0 : eq (mul x x) ?z, H1 : eq (mul y y) ?z |- _ ]
              => pose proof (only_two_square_roots_choice x y z H0 H1) as H
            end
       end
  end.
Ltac reduce_only_two_square_roots x y eq opp mul :=
  let H := fresh in
  pose_proof_only_two_square_roots x y H eq opp mul;
  destruct H;
  try setoid_subst y.
Ltac pre_clean_only_two_square_roots :=
  clear_algebraic_duplicates.
(** Remove duplicates; solve goals by contradiction, and, if goals still remain, substitute the square roots *)
Ltac post_clean_only_two_square_roots x y :=
  clear_algebraic_duplicates;
  try (unfold not in *;
       match goal with
       | [ H : (?T -> False)%type, H' : ?T |- _ ] => exfalso; apply H; exact H'
       | [ H : (?R ?x ?x -> False)%type |- _ ] => exfalso; apply H; reflexivity
       end);
  try setoid_subst x; try setoid_subst y.
Ltac only_two_square_roots_step eq opp mul :=
  match goal with
  | [ H : not (eq ?x (opp ?y)) |- _ ]
    (* this one comes first, because it the procedure is asymmetric
       with respect to [x] and [y], and this order is more likely to
       lead to solving goals by contradiction. *)
    => is_var x; is_var y; reduce_only_two_square_roots x y eq opp mul; post_clean_only_two_square_roots x y
  | [ H : eq (mul ?x ?x) (mul ?y ?y) |- _ ]
    => reduce_only_two_square_roots x y eq opp mul; post_clean_only_two_square_roots x y
  | [ H : eq (mul ?x ?x) ?z, H' : eq (mul ?y ?y) ?z |- _ ]
    => reduce_only_two_square_roots x y eq opp mul; post_clean_only_two_square_roots x y
  end.
Ltac only_two_square_roots :=
  pre_clean_only_two_square_roots;
  let fld := guess_field in
  lazymatch type of fld with
  | @field ?F ?eq ?zero ?one ?opp ?add ?sub ?mul ?inv ?div
    => repeat only_two_square_roots_step eq opp mul
  end.

(*** Tactics for ring equations *)
Require Import Coq.setoid_ring.Ring_tac.
Ltac ring_simplify_subterms := tac_on_subterms ltac:(fun t => ring_simplify t).

Ltac ring_simplify_subterms_in_all :=
  reverse_nondep; ring_simplify_subterms; intros.

Create HintDb ring_simplify discriminated.
Create HintDb ring_simplify_subterms discriminated.
Create HintDb ring_simplify_subterms_in_all discriminated.
Hint Extern 1 => progress ring_simplify : ring_simplify.
Hint Extern 1 => progress ring_simplify_subterms : ring_simplify_subterms.
Hint Extern 1 => progress ring_simplify_subterms_in_all : ring_simplify_subterms_in_all.


Section Example.
  Context {F zero one opp add sub mul inv div} `{F_field:field F eq zero one opp add sub mul inv div}.
  Local Infix "+" := add. Local Infix "*" := mul. Local Infix "-" := sub. Local Infix "/" := div.
  Local Notation "0" := zero. Local Notation "1" := one.

  Add Field _ExampleField : (Field.field_theory_for_stdlib_tactic (T:=F)).

  Example _example_nsatz x y : 1+1 <> 0 -> x + y = 0 -> x - y = 0 -> x = 0.
  Proof. intros. nsatz. Qed.

  Example _example_field_nsatz x y z : y <> 0 -> x/y = z -> z*y + y = x + y.
  Proof. intros. super_nsatz. Qed.

  Example _example_nonzero_nsatz_contradict x y : x * y = 1 -> not (x = 0).
  Proof. intros. intro. nsatz_contradict. Qed.
End Example.

Section Z.
  Require Import ZArith.
  Global Instance ring_Z : @ring Z Logic.eq 0%Z 1%Z Z.opp Z.add Z.sub Z.mul.
  Proof. repeat split; auto using Z.eq_dec with zarith typeclass_instances. Qed.

  Global Instance commutative_ring_Z : @commutative_ring Z Logic.eq 0%Z 1%Z Z.opp Z.add Z.sub Z.mul.
  Proof. eauto using @commutative_ring, @is_commutative, ring_Z with zarith. Qed.

  Global Instance integral_domain_Z : @integral_domain Z Logic.eq 0%Z 1%Z Z.opp Z.add Z.sub Z.mul.
  Proof.
    split.
    { apply commutative_ring_Z. }
    { constructor. intros. apply Z.neq_mul_0; auto. }
    { constructor. discriminate. }
  Qed.

  Example _example_nonzero_nsatz_contradict_Z x y : Z.mul x y = (Zpos xH) -> not (x = Z0).
  Proof. intros. intro. nsatz_contradict. Qed.
End Z.