aboutsummaryrefslogtreecommitdiff
path: root/etc/compile-by-zinc/heuristic-search.py
blob: c09e936271aa2700e374bfe7f678391cc70681f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
#!/usr/bin/env python
from __future__ import with_statement
from memoize import memoize
import codecs, re, sys
import random

LAMBDA = u'\u03bb'

OP_NAMES = {'*':'MUL', '+':'ADD', '>>':'SHL', '<<':'SHR', '|':'OR', '&':'AND'}

MAX_INSTRUCTION_WINDOW = 1000

INSTRUCTIONS_PER_CYCLE = 4

REGISTERS = tuple(['RAX', 'RBX', 'RCX', 'RDX', 'RSI', 'RDI', 'RBP', 'RSP']
                  + ['r%d' % i for i in range(8, 16)])

CORE_DATA = tuple(('p%d' % i, 1) for i in range(8))
CORES = tuple(name for name, count in CORE_DATA)
CORE_COUNT = dict(CORE_DATA)

def possible_cores_for_line(line, var_types):
    REGISTER = 'reg'
    MEMORY = 'mem'
    IMMEDIATE = 'imm'
    VECTOR = 'vec'
    INPUT = 'input'
    def arg_type(arg):
        if arg in REGISTERS: return REGISTER
        if arg[:2] == '0x' and arg[2:].isdigit(): return IMMEDIATE
        if arg[:3] in ('mmx', 'xmm', 'ymm'): return VECTOR
        if arg[0] in 'v': return VECTOR
        if arg[0] in 'Rr': return REGISTER
        if arg[0] in 'm': return MEMORY
        if arg[0] in 'x': return INPUT
        assert False
    # from page 233 of http://agner.org/optimize/instruction_tables.pdf
    if line['op'] == '*':
        if line['type'] == 'uint64_t' and '0x13' in line['args']: # * 19 can be either imul r64/r64/i, or two lea; we skip the second case because jgross can't figure out what cost to use for it
            return ({
                'core': ({ 'name' : 'p1' , 'latency' : 1 },),
                'latency' : 3,
                'instruction' : 'IMUL r64,r64,i'
                },)
        elif line['type'] == 'uint128_t' and all(var_types[var] == 'uint64_t' for var in line['args']): # mulx
            return ({
                'core': tuple({ 'name' : core_name , 'latency' : 1 } for core_name in ('p1', 'p5')),
                'latency' : 4,
                'instruction' : 'MULX r64,r64,r64'
                },)
        else:
            assert False
    elif line['op'] == '+':
        if line['type'] == 'uint128_t':
            return tuple({
                'core' : ({ 'name' : core_name , 'latency' : 1+1 },),
                'latency' : 1+1,
                'instruction' : 'ADD; ADC(X)'
                } for core_name in ('p0', 'p6'))
        elif line['type'] == 'uint64_t':
            return tuple({
                'core' : ({ 'name' : core_name , 'latency' : 1 },),
                'latency' : 1,
                'instruction' : 'ADD'
                } for core_name in ('p0', 'p1', 'p5', 'p6'))
        else:
            assert False
    elif line['op'] in ('>>', '<<'):
        if var_types[line['args'][0]] == 'uint128_t' and line['type'] == 'uint64_t' and line['args'][1][:2] == '0x':
            return tuple({
                'core' : ({ 'name' : core_name , 'latency' : 1 },),
                'latency' : 3,
                'instruction' : ('SHLD' if line['op'] == '<<' else 'SHRD') + ' r,r,i'
                } for core_name in ('p1',))
        elif var_types[line['args'][0]] == 'uint64_t' and line['type'] == 'uint64_t' and line['args'][1][:2] == '0x':
            return tuple({
                'core' : ({ 'name' : core_name , 'latency' : 1 },),
                'latency' : 1,
                'instruction' : ('SHL' if line['op'] == '<<' else 'SHR') + ' r,i'
                } for core_name in ('p0', 'p6'))
        else:
            assert False
    elif line['op'] in ('&', '|', '^'):
        return tuple({
            'core' : ({ 'name' : core_name , 'latency' : 1 },),
            'latency' : 1,
            'instruction' : {'&':'AND', '|':'OR', '^':'XOR'}[line['op']]
            } for core_name in ('p0', 'p1', 'p5', 'p6'))
    elif line['op'] in ('LOAD','MOVmr') or (line['op'] == '=' and arg_type(line['args'][1]) in (MEMORY,) and arg_type(line['args'][0]) in (REGISTER,)):
        if line['type'] == 'uint128_t': # issue 2 MOV, same port, block on p4
            return tuple({
                'core' : ({ 'name' : core_name , 'latency' : 2 }, { 'name' : 'p4' , 'latency' : 2 }),
                'latency' : 2,
                'instruction' : 'MOV m,r; MOV m,r'
                } for core_name in ('p2', 'p3', 'p7'))
        elif line['type'] == 'uint64_t':
            return tuple({
                'core' : ({ 'name' : core_name , 'latency' : 1 }, { 'name' : 'p4' , 'latency' : 1 }),
                'latency' : 1,
                'instruction' : 'MOV m,r'
                } for core_name in ('p2', 'p3', 'p7'))
        else:
            assert False
    elif line['op'] in ('STORE','MOVrm') or (line['op'] == '=' and arg_type(line['args'][0]) in (MEMORY,) and arg_type(line['args'][1]) in (REGISTER,)):
        if line['type'] == 'uint128_t': # issue 2 MOV, different ports
            return ({
                'core' : tuple({ 'name' : core_name , 'latency' : 1 } for core_name in ('p2', 'p3')),
                'latency' : 1,
                'instruction' : 'MOV r64,m; MOV r64,m'
                },)
        elif line['type'] == 'uint64_t':
            return tuple({
                'core' : ({ 'name' : core_name , 'latency' : 1 },),
                'latency' : 1,
                'instruction' : 'MOV r64,m'
                } for core_name in ('p2', 'p3'))
        else:
            assert False
    elif line['op'] in ('MOV','MOVrr') or (line['op'] == '=' and arg_type(line['args'][1]) in (REGISTER,INPUT) and arg_type(line['args'][0]) in (REGISTER,INPUT)):
        if line['type'] == 'uint64_t':
            return tuple({
                'core' : ({ 'name' : core_name , 'latency' : 1 },),
                'latency' : 1,
                'instruction' : 'MOV r64,r64'
                } for core_name in ('p0', 'p1', 'p5', 'p6'))
        else:
            assert False
    else:
        assert False



if len(sys.argv) > 1:
    MAX_INSTRUCTION_WINDOW = int(sys.argv[1])

def get_lines(filename):
    with codecs.open(filename, 'r', encoding='utf8') as f:
        lines = f.read().replace('\r\n', '\n')
    return [line.strip() for line in re.findall("%s '.*?[Rr]eturn [^\r\n]*" % LAMBDA, lines, flags=re.DOTALL)[0].split('\n')]

def strip_casts(text):
    return re.sub(r'\(u?int[0-9]*_t\)\s*\(?([^\)]*)\)?', r'\1', text)

def get_input_var_names(input_data):
    return tuple(i for i in input_data['vars'].replace('%core', '').replace(',', ' ').replace('(', ' ').replace(')', ' ').replace("'", ' ').split(' ')
                 if i != '')

def parse_lines(lines):
    orig_lines = list(lines)
    lines = list(map(strip_casts, orig_lines))
    assert lines[0][:len(LAMBDA + ' ')] == LAMBDA + ' '
    assert lines[0][-1] == ','
    ret = {}
    ret['vars'] = lines[0][len(LAMBDA + ' '):-1]
    assert lines[-1][-1] == ')'
    ret['return'] = lines[-1][:-1].replace('return ', '').replace('Return ', '')
    ret['header'] = orig_lines[0]
    ret['footer'] = orig_lines[-1]
    ret['lines'] = []
    var_types = dict((var, 'uint64_t') for var in get_input_var_names(ret))
    for line, orig_line in zip(lines, orig_lines)[1:-1]:
        binop = re.findall('^(u?int[0-9]*_t) ([^ ]*) = ([^ ]*) ([^ ]*) ([^ ]*);(?: // .*)?$', line)
        unop = re.findall('^([^ ]*) = ([^ ]*);(?: // .*)?$', line)
        if len(binop) > 0:
            datatype, varname, arg1, op, arg2 = binop[0]
            var_types[varname] = datatype
            cur_line = {'type':datatype, 'out':varname, 'op':op, 'args':(arg1, arg2), 'source':orig_line}
        else:
            varname, arg = unop[0]
            var_types[varname] = var_types[arg]
            cur_line = {'type':var_types[varname], 'out':varname, 'op':'=', 'args':(arg,), 'source':orig_line}
        possible_cores = possible_cores_for_line(cur_line, var_types)
        cur_line['cores'] = possible_cores
        ret['lines'].append(cur_line)
    print('Compiling %d lines in groups of %d...' % (len(ret['lines']), min(MAX_INSTRUCTION_WINDOW, len(ret['lines']))))
    ret['lines'] = tuple(ret['lines'])
    split_ret = []
    for start in range(0, len(ret['lines']), MAX_INSTRUCTION_WINDOW):
        cur_ret = dict(ret)
        cur_ret['lines'] = ret['lines'][start:][:MAX_INSTRUCTION_WINDOW]
        split_ret.append(cur_ret)
    return tuple(split_ret)

def get_var_names(input_data):
    return tuple(line['out'] for line in input_data['lines'])

def get_output_var_names(input_data):
    return tuple(i for i in data['return'].replace(',', ' ').replace('(', ' ').replace(')', ' ').split(' ')
                 if i != '')

def create_set(name, items):
    ret = ''
    ret += 'set of int: %s = 1..%d;\n' % (name, len(items))
    for i, item in enumerate(items):
        ret += '%s: %s = %d; ' % (name, item, i+1)
    ret += 'array[%s] of string: %s_NAMES = ["' % (name, name)
    ret += '", "'.join(items) + '"];\n'
    ret += '\n'
    return ret

def schedule(data, basepoint, do_print):
    def make_data_dependencies(input_data):
        input_var_names = get_input_var_names(input_data)
        dependencies = dict((var, tuple()) for var in input_var_names)
        for line in input_data['lines']:
            dependencies[line['out']] = tuple(arg for arg in line['args']
                                              if arg[0] not in '0123456789')
        return dependencies

    def make_reverse_data_dependencies(dependencies):
        reverse_dependencies = {}
        for k, v in dependencies.items():
            for arg in v:
                if arg not in reverse_dependencies.keys(): reverse_dependencies[arg] = []
                reverse_dependencies[arg].append(k)
        return reverse_dependencies

    def get_possible_next_statements(remaining_vars, dependencies):
        return [var for var in remaining_vars
                if all(arg not in remaining_vars for arg in dependencies[var])]

    def make_initial_core_state():
        return {'cores':dict((name, [0] * count) for name, count in CORE_DATA),
                'registers':dict((name, None) for name in REGISTERS)}

#    def freeze_core_state(core_state):
#        return (tuple(tuple(core_state['cores'][name]) for name in CORES),
#                tuple(core_state['registers'][name] for name in REGISTERS))
#    def unfreeze_core_state(core_state):
#        return {'cores':dict((name, list(cycles_until_free)) for name, cycles_until_free in zip(CORES, core_state[0])),
#                'registers':dict((name, var) for name, var in zip(REGISTERS, core_state[1]))}

    def get_initial_indices(input_data):
        #if basepoint == 0:
        #    return tuple(list(get_input_var_names(input_data)) + list(get_var_names(input_data)))
        #else:
        return tuple(get_var_names(input_data))



#    def make_source(input_data, var):
#        input_var_names = get_input_var_names(input_data)
#        if var in input_var_names: return 'LOAD %s' % var

#    def freeze_core_state(vars_ready_at, core_remaining_cycle_count,



    dependencies = make_data_dependencies(data)
    reverse_dependencies = make_reverse_data_dependencies(dependencies)

    def make_initial_core_state():
        vars_remaining_cycles = {}
        core_remaining_cycle_count = dict([(core_name, [0] * core_count) for core_name, core_count in CORE_DATA]
                                          + [(core_name, [0]) for core_name in REGISTERS])
        cur_instructions_in_cycle = 0
        register_vals = dict((var, None) for var in REGISTERS)
        return vars_remaining_cycles, core_remaining_cycle_count, cur_instructions_in_cycle, register_vals

    def freeze_gen(v, rec=(lambda x:x)):
        if isinstance(v, list):
            return ('list', tuple(map(rec, v)))
        if isinstance(v, tuple):
            return ('tuple', tuple(map(rec, v)))
        elif isinstance(v, dict):
            return ('dict', tuple(sorted((k, rec(val)) for k, val in v.items())))
        else:
            return v
    def unfreeze_gen(v, rec=(lambda x:x)):
        if isinstance(v, tuple):
            ty, v = v
            if ty == 'list':
                return list(map(rec, v))
            elif ty == 'tuple':
                return tuple(map(rec, v))
            elif ty == 'dict':
                return dict((k, rec(val)) for k, val in v)
            else:
                print('Freeze error: %s' % repr((ty, v)))
                assert False
        else:
            return v
    def freeze(v):
        return freeze_gen(v, freeze)
    def unfreeze(v):
        return unfreeze_gen(v, unfreeze)

    def update_register_vals_with_core_args(core, args, register_vals):
        new_rdx = register_vals['RDX']
        if 'MULX' in core['instruction']:
            new_rdx = sorted(args, key=(lambda x: int(x.lstrip('0xrs'))))[0]
        changed = (register_vals['RDX'] != new_rdx)
        register_vals['RDX'] = new_rdx
        return changed, register_vals

    @memoize
    def update_core_state(var, core, args, core_state):
        core = unfreeze(core)
        (vars_remaining_cycles, core_remaining_cycle_count, cur_instructions_in_cycle, register_vals) = unfreeze(core_state)
        changed, register_vals = update_register_vals_with_core_args(core, args, register_vals)
        cost = 0
        if cur_instructions_in_cycle >= INSTRUCTIONS_PER_CYCLE:
            cost += 1
            cur_instructions_in_cycle = 0
            for c in core_remaining_cycle_count.keys():
                for i in range(len(core_remaining_cycle_count[c])):
                    core_remaining_cycle_count[c][i] = max(0, core_remaining_cycle_count[c][i] - 1)
            vars_remaining_cycles = dict((var, c - 1) for var, c in vars_remaining_cycles.items()
                                         if c > 1)
        cycles_passed = max([min(core_remaining_cycle_count[port['name']]) for port in core['core']] +
                            [vars_remaining_cycles[v] for v in dependencies[var] if v in vars_remaining_cycles.keys()])
        if cycles_passed != 0:
            cost += cycles_passed
            cur_instructions_in_cycle = 1
            for c in core_remaining_cycle_count.keys():
                for i in range(len(core_remaining_cycle_count[c])):
                    core_remaining_cycle_count[c][i] = max(0, core_remaining_cycle_count[c][i] - cycles_passed)
            vars_remaining_cycles = dict((var, c - cycles_passed) for var, c in vars_remaining_cycles.items()
                                         if c > cycles_passed)
        else:
            cur_instructions_in_cycle += 1
        vars_remaining_cycles[var] = core['latency']
        for port in core['core']:
            assert core_remaining_cycle_count[port['name']][0] == 0
            core_remaining_cycle_count[port['name']][0] = port['latency']
            core_remaining_cycle_count[port['name']] = sorted(core_remaining_cycle_count[port['name']])
        return (cost, freeze((vars_remaining_cycles, core_remaining_cycle_count, cur_instructions_in_cycle, register_vals)))

    @memoize
    def evaluate_cost_memo(arg):
        schedule, core_state = unfreeze_gen(arg)
        schedule = unfreeze(schedule)
        (vars_remaining_cycles, core_remaining_cycle_count, cur_instructions_in_cycle, register_vals) = unfreeze(core_state)
        if len(schedule) == 0: return max([0] + list(vars_remaining_cycles.values()))
        (var, core, args), schedule = schedule[0], schedule[1:]
        cost, core_state = update_core_state(var, freeze(core), args, core_state)
        return cost + evaluate_cost_memo(freeze_gen((freeze(schedule), core_state)))


    def get_wait_times(var_cores, core_state):
        for var, core, args in var_cores:
            (vars_remaining_cycles, core_remaining_cycle_count, cur_instructions_in_cycle, register_vals) = unfreeze(core_state)
            changed, register_vals = update_register_vals_with_core_args(core, args, register_vals)
            cost, new_core_state = update_core_state(var, freeze(core), args, core_state)
            yield (cost, -len(reverse_dependencies.get(var, [])), changed, -core['latency'], var, core, args, new_core_state)

    def cmp_wait_time(v1, v2):
        (cost1, neg_len_deps1, changed1, neg_latency1, var1, core1, args1, new_core_state1) = v1
        (cost2, neg_len_deps2, changed2, neg_latency2, var2, core2, args2, new_core_state2) = v2
        if cost1 != cost2: return cmp(cost1, cost2)
        if core1['instruction'] == core2['instruction']:
            if changed1 != changed2: return cmp(changed1, changed2)
            if neg_len_deps1 != neg_len_deps2: return cmp(neg_len_deps1, neg_len_deps2)
            if neg_latency1 != neg_latency2: return cmp(neg_latency1, neg_latency2)
        if var1 != var2: return cmp(var1, var2)
        return cmp(v1, v2)

    def get_sorted_next_statements(next_var_cores, core_state):
        return sorted(get_wait_times(next_var_cores, core_state), cmp=cmp_wait_time)

    def add_cycle_info(schedule):
        core_state = freeze(make_initial_core_state())
        schedule_with_cycle_info = []
        cur_cycle = 0
        for var, core, args in schedule:
            cost, core_state = update_core_state(var, freeze(core), args, core_state)
            cur_cycle += cost
            schedule_with_cycle_info.append((var,
                                             {'start':cur_cycle, 'finish':cur_cycle + core['latency']},
                                             core))
        return schedule_with_cycle_info

    def evaluate_cost(schedule_with_cycle_info):
        return max(cycles['finish'] for var, cycles, core in reversed(schedule_with_cycle_info))


    var_names = get_var_names(data)
    lines = dict((line['out'], line) for line in data['lines'])

    @memoize
    def schedule_remaining(remaining_indices, core_state):
        def make_schedule(var, core, args):
            cost, new_core_state = update_core_state(var, freeze(core), args, core_state)
            extra_cost, schedule = schedule_remaining(tuple(i for i in remaining_indices if i != var), new_core_state)
            return cost + extra_cost, ([(var, core, args)] + schedule)
        next_statements = get_possible_next_statements(remaining_indices, dependencies)
        min_cost, min_schedule = None, None
        var_cores = [(var, core, (lines[var]['args'] if var in lines.keys() else (var,)))
                     for var in next_statements
                     for core in (lines[var]['cores'] if var in lines.keys() else possible_cores_for_line({'op':'LOAD', 'type':'uint64_t'}))]

        sorted_subset_next_statements = sorted_next_statements = get_sorted_next_statements(var_cores, core_state)
        if len(sorted_next_statements) > 0:
            pre_min_cost = sorted_next_statements[0][0]
#            print((pre_min_cost, tuple(var for cost2, var, core, new_core_state in sorted_next_statements if pre_min_cost == cost2)))
            sorted_subset_next_statements \
                = tuple((cost, var, core, args, new_core_state) for cost, reverse_dep_count, changed, neg_latency, var, core, args, new_core_state in sorted_next_statements
                        if pre_min_cost == cost)
            sorted_subset_next_statements = sorted_subset_next_statements[:1]
            if pre_min_cost == 0: sorted_subset_next_statements = sorted_subset_next_statements[:1]
        for cost, var, core, args, new_core_state in sorted_subset_next_statements:
            cost, schedule = make_schedule(var, core, args)
            if min_cost is None or cost < min_cost:
                min_cost, min_schedule = cost, schedule
#            return min_cost, min_schedule
        if min_cost is None:
            min_cost, min_schedule = evaluate_cost_memo(freeze_gen((freeze([]), core_state))), []
        return min_cost, min_schedule

    core_state = freeze(make_initial_core_state())
    cost, schedule = schedule_remaining(get_initial_indices(data), core_state) #, freeze_core_state(make_initial_core_state()))
    schedule_with_cycle_info = add_cycle_info(schedule)
    for var, cycles, core in schedule_with_cycle_info:
        if var in lines.keys():
            do_print(lines[var]['source'], ' // %s, start: %s, end: %s' % (core['instruction'], basepoint + cycles['start'], basepoint + cycles['finish']))
        else:
            do_print('%s = %s;' % (var, var), ' // %s, start: %s, end: %s' % (core['instruction'], basepoint + cycles['start'], basepoint + cycles['finish']))
    return basepoint + cost

data_list = parse_lines(get_lines('femulDisplay.log'))
basepoint = 0
for i, data in enumerate(data_list):
    with codecs.open('femulScheduled.log', 'w', encoding='utf8') as f:
        def do_print(v, comment):
            print(v + comment)
            f.write(v + comment + '\n')
        f.write(data['header'] + '\n')
        basepoint = schedule(data, basepoint, do_print)
        f.write(data['footer'] + '\n')
    print(basepoint)
    break