aboutsummaryrefslogtreecommitdiff
path: root/src/Util/ZUtil.v
diff options
context:
space:
mode:
Diffstat (limited to 'src/Util/ZUtil.v')
-rw-r--r--src/Util/ZUtil.v1589
1 files changed, 69 insertions, 1520 deletions
diff --git a/src/Util/ZUtil.v b/src/Util/ZUtil.v
index 270bd0c90..765142c39 100644
--- a/src/Util/ZUtil.v
+++ b/src/Util/ZUtil.v
@@ -1,1520 +1,69 @@
-Require Import Coq.ZArith.Zpower Coq.ZArith.Znumtheory Coq.ZArith.ZArith Coq.ZArith.Zdiv.
-Require Import Coq.Classes.RelationClasses Coq.Classes.Morphisms.
-Require Import Coq.Structures.Equalities.
-Require Import Coq.omega.Omega Coq.micromega.Psatz Coq.Numbers.Natural.Peano.NPeano Coq.Arith.Arith.
-Require Import Crypto.Util.NatUtil.
-Require Import Crypto.Util.Tactics.SpecializeBy.
-Require Import Crypto.Util.Tactics.BreakMatch.
-Require Import Crypto.Util.Tactics.Contains.
-Require Import Crypto.Util.Tactics.Not.
-Require Import Crypto.Util.Bool.
-Require Import Crypto.Util.Notations.
-Require Import Coq.Lists.List.
-Require Export Crypto.Util.FixCoqMistakes.
-Require Export Crypto.Util.ZUtil.Definitions.
-Require Export Crypto.Util.ZUtil.Div.
-Require Export Crypto.Util.ZUtil.Le.
-Require Export Crypto.Util.ZUtil.EquivModulo.
-Require Export Crypto.Util.ZUtil.Hints.
-Require Export Crypto.Util.ZUtil.Land.
-Require Export Crypto.Util.ZUtil.Modulo.
-Require Export Crypto.Util.ZUtil.Modulo.PullPush.
-Require Export Crypto.Util.ZUtil.Morphisms.
-Require Export Crypto.Util.ZUtil.Notations.
-Require Export Crypto.Util.ZUtil.Pow2Mod.
-Require Export Crypto.Util.ZUtil.Quot.
-Require Export Crypto.Util.ZUtil.Sgn.
-Require Export Crypto.Util.ZUtil.Tactics.
-Require Export Crypto.Util.ZUtil.Testbit.
-Require Export Crypto.Util.ZUtil.ZSimplify.
-Import Nat.
-Local Open Scope Z.
-
-Module Z.
- Lemma mul_comm3 x y z : x * (y * z) = y * (x * z).
- Proof. lia. Qed.
-
- Lemma pos_pow_nat_pos : forall x n,
- Z.pos x ^ Z.of_nat n > 0.
- Proof.
- do 2 (try intros x n; induction n as [|n]; subst; simpl in *; auto with zarith).
- rewrite <- Pos.add_1_r, Zpower_pos_is_exp.
- apply Zmult_gt_0_compat; auto; reflexivity.
- Qed.
-
- (** TODO: Should we get rid of this duplicate? *)
- Notation gt0_neq0 := Z.positive_is_nonzero (only parsing).
-
- Lemma pow_Z2N_Zpow : forall a n, 0 <= a ->
- ((Z.to_nat a) ^ n = Z.to_nat (a ^ Z.of_nat n)%Z)%nat.
- Proof.
- intros a n H; induction n as [|n IHn]; try reflexivity.
- rewrite Nat2Z.inj_succ.
- rewrite pow_succ_r by apply le_0_n.
- rewrite Z.pow_succ_r by apply Zle_0_nat.
- rewrite IHn.
- rewrite Z2Nat.inj_mul; auto using Z.pow_nonneg.
- Qed.
-
- Lemma pow_Zpow : forall a n : nat, Z.of_nat (a ^ n) = Z.of_nat a ^ Z.of_nat n.
- Proof with auto using Zle_0_nat, Z.pow_nonneg.
- intros; apply Z2Nat.inj...
- rewrite <- pow_Z2N_Zpow, !Nat2Z.id...
- Qed.
- Hint Rewrite pow_Zpow : push_Zof_nat.
- Hint Rewrite <- pow_Zpow : pull_Zof_nat.
-
- Lemma Zpow_sub_1_nat_pow a v
- : (Z.pos a^Z.of_nat v - 1 = Z.of_nat (Z.to_nat (Z.pos a)^v - 1))%Z.
- Proof.
- rewrite <- (Z2Nat.id (Z.pos a)) at 1 by lia.
- change 2%Z with (Z.of_nat 2); change 1%Z with (Z.of_nat 1);
- autorewrite with pull_Zof_nat.
- rewrite Nat2Z.inj_sub
- by (change 1%nat with (Z.to_nat (Z.pos a)^0)%nat; apply Nat.pow_le_mono_r; simpl; lia).
- reflexivity.
- Qed.
- Hint Rewrite Zpow_sub_1_nat_pow : pull_Zof_nat.
- Hint Rewrite <- Zpow_sub_1_nat_pow : push_Zof_nat.
-
- Lemma divide_mul_div: forall a b c (a_nonzero : a <> 0) (c_nonzero : c <> 0),
- (a | b * (a / c)) -> (c | a) -> (c | b).
- Proof.
- intros ? ? ? ? ? divide_a divide_c_a; do 2 Z.divide_exists_mul.
- rewrite divide_c_a in divide_a.
- rewrite Z.div_mul' in divide_a by auto.
- replace (b * k) with (k * b) in divide_a by ring.
- replace (c * k * k0) with (k * (k0 * c)) in divide_a by ring.
- rewrite Z.mul_cancel_l in divide_a by (intuition auto with nia; rewrite H in divide_c_a; ring_simplify in divide_a; intuition).
- eapply Zdivide_intro; eauto.
- Qed.
-
- Lemma divide2_even_iff : forall n, (2 | n) <-> Z.even n = true.
- Proof.
- intros n; split. {
- intro divide2_n.
- Z.divide_exists_mul; [ | pose proof (Z.mod_pos_bound n 2); omega].
- rewrite divide2_n.
- apply Z.even_mul.
- } {
- intro n_even.
- pose proof (Zmod_even n) as H.
- rewrite n_even in H.
- apply Zmod_divide; omega || auto.
- }
- Qed.
-
- Lemma prime_odd_or_2 : forall p (prime_p : prime p), p = 2 \/ Z.odd p = true.
- Proof.
- intros p prime_p.
- apply Decidable.imp_not_l; try apply Z.eq_decidable.
- intros p_neq2.
- pose proof (Zmod_odd p) as mod_odd.
- destruct (Sumbool.sumbool_of_bool (Z.odd p)) as [? | p_not_odd]; auto.
- rewrite p_not_odd in mod_odd.
- apply Zmod_divides in mod_odd; try omega.
- destruct mod_odd as [c c_id].
- rewrite Z.mul_comm in c_id.
- apply Zdivide_intro in c_id.
- apply prime_divisors in c_id; auto.
- destruct c_id; [omega | destruct H; [omega | destruct H; auto] ].
- pose proof (prime_ge_2 p prime_p); omega.
- Qed.
-
- Lemma shiftr_add_shiftl_high : forall n m a b, 0 <= n <= m -> 0 <= a < 2 ^ n ->
- Z.shiftr (a + (Z.shiftl b n)) m = Z.shiftr b (m - n).
- Proof.
- intros n m a b H H0.
- rewrite !Z.shiftr_div_pow2, Z.shiftl_mul_pow2 by omega.
- replace (2 ^ m) with (2 ^ n * 2 ^ (m - n)) by
- (rewrite <-Z.pow_add_r by omega; f_equal; ring).
- rewrite <-Z.div_div, Z.div_add, (Z.div_small a) ; try solve
- [assumption || apply Z.pow_nonzero || apply Z.pow_pos_nonneg; omega].
- f_equal; ring.
- Qed.
- Hint Rewrite Z.shiftr_add_shiftl_high using zutil_arith : pull_Zshift.
- Hint Rewrite <- Z.shiftr_add_shiftl_high using zutil_arith : push_Zshift.
-
- Lemma shiftr_add_shiftl_low : forall n m a b, 0 <= m <= n -> 0 <= a < 2 ^ n ->
- Z.shiftr (a + (Z.shiftl b n)) m = Z.shiftr a m + Z.shiftr b (m - n).
- Proof.
- intros n m a b H H0.
- rewrite !Z.shiftr_div_pow2, Z.shiftl_mul_pow2, Z.shiftr_mul_pow2 by omega.
- replace (2 ^ n) with (2 ^ (n - m) * 2 ^ m) by
- (rewrite <-Z.pow_add_r by omega; f_equal; ring).
- rewrite Z.mul_assoc, Z.div_add by (apply Z.pow_nonzero; omega).
- repeat f_equal; ring.
- Qed.
- Hint Rewrite Z.shiftr_add_shiftl_low using zutil_arith : pull_Zshift.
- Hint Rewrite <- Z.shiftr_add_shiftl_low using zutil_arith : push_Zshift.
-
- Lemma testbit_add_shiftl_high : forall i, (0 <= i) -> forall a b n, (0 <= n <= i) ->
- 0 <= a < 2 ^ n ->
- Z.testbit (a + Z.shiftl b n) i = Z.testbit b (i - n).
- Proof.
- intros i ?.
- apply natlike_ind with (x := i); [ intros a b n | intros x H0 H1 a b n | ]; intros; try assumption;
- (destruct (Z.eq_dec 0 n); [ subst; rewrite Z.pow_0_r in *;
- replace a with 0 by omega; f_equal; ring | ]); try omega.
- rewrite <-Z.add_1_r at 1. rewrite <-Z.shiftr_spec by assumption.
- replace (Z.succ x - n) with (x - (n - 1)) by ring.
- rewrite shiftr_add_shiftl_low, <-Z.shiftl_opp_r with (a := b) by omega.
- rewrite <-H1 with (a := Z.shiftr a 1); try omega; [ repeat f_equal; ring | ].
- rewrite Z.shiftr_div_pow2 by omega.
- split; apply Z.div_pos || apply Z.div_lt_upper_bound;
- try solve [rewrite ?Z.pow_1_r; omega].
- rewrite <-Z.pow_add_r by omega.
- replace (1 + (n - 1)) with n by ring; omega.
- Qed.
- Hint Rewrite testbit_add_shiftl_high using zutil_arith : Ztestbit.
-
- Lemma nonneg_pow_pos a b : 0 < a -> 0 < a^b -> 0 <= b.
- Proof.
- destruct (Z_lt_le_dec b 0); intros; auto.
- erewrite Z.pow_neg_r in * by eassumption.
- omega.
- Qed.
- Hint Resolve nonneg_pow_pos (fun n => nonneg_pow_pos 2 n Z.lt_0_2) : zarith.
- Lemma nonneg_pow_pos_helper a b dummy : 0 < a -> 0 <= dummy < a^b -> 0 <= b.
- Proof. eauto with zarith omega. Qed.
- Hint Resolve nonneg_pow_pos_helper (fun n dummy => nonneg_pow_pos_helper 2 n dummy Z.lt_0_2) : zarith.
-
- Lemma testbit_add_shiftl_full i (Hi : 0 <= i) a b n (Ha : 0 <= a < 2^n)
- : Z.testbit (a + b << n) i
- = if (i <? n) then Z.testbit a i else Z.testbit b (i - n).
- Proof.
- assert (0 < 2^n) by omega.
- assert (0 <= n) by eauto 2 with zarith.
- pose proof (Zlt_cases i n); break_match; autorewrite with Ztestbit; reflexivity.
- Qed.
- Hint Rewrite testbit_add_shiftl_full using zutil_arith : Ztestbit.
-
- Lemma land_add_land : forall n m a b, (m <= n)%nat ->
- Z.land ((Z.land a (Z.ones (Z.of_nat n))) + (Z.shiftl b (Z.of_nat n))) (Z.ones (Z.of_nat m)) = Z.land a (Z.ones (Z.of_nat m)).
- Proof.
- intros n m a b H.
- rewrite !Z.land_ones by apply Nat2Z.is_nonneg.
- rewrite Z.shiftl_mul_pow2 by apply Nat2Z.is_nonneg.
- replace (b * 2 ^ Z.of_nat n) with
- ((b * 2 ^ Z.of_nat (n - m)) * 2 ^ Z.of_nat m) by
- (rewrite (le_plus_minus m n) at 2; try assumption;
- rewrite Nat2Z.inj_add, Z.pow_add_r by apply Nat2Z.is_nonneg; ring).
- rewrite Z.mod_add by (pose proof (Z.pow_pos_nonneg 2 (Z.of_nat m)); omega).
- symmetry. apply Znumtheory.Zmod_div_mod; try (apply Z.pow_pos_nonneg; omega).
- rewrite (le_plus_minus m n) by assumption.
- rewrite Nat2Z.inj_add, Z.pow_add_r by apply Nat2Z.is_nonneg.
- apply Z.divide_factor_l.
- Qed.
-
- Lemma div_pow2succ : forall n x, (0 <= x) ->
- n / 2 ^ Z.succ x = Z.div2 (n / 2 ^ x).
- Proof.
- intros.
- rewrite Z.pow_succ_r, Z.mul_comm by auto.
- rewrite <- Z.div_div by (try apply Z.pow_nonzero; omega).
- rewrite Zdiv2_div.
- reflexivity.
- Qed.
-
- Lemma shiftr_succ : forall n x,
- Z.shiftr n (Z.succ x) = Z.shiftr (Z.shiftr n x) 1.
- Proof.
- intros.
- rewrite Z.shiftr_shiftr by omega.
- reflexivity.
- Qed.
- Hint Rewrite Z.shiftr_succ using zutil_arith : push_Zshift.
- Hint Rewrite <- Z.shiftr_succ using zutil_arith : pull_Zshift.
-
- Lemma pow2_lt_or_divides : forall a b, 0 <= b ->
- 2 ^ a < 2 ^ b \/ (2 ^ a) mod 2 ^ b = 0.
- Proof.
- intros a b H.
- destruct (Z_lt_dec a b); [left|right].
- { apply Z.pow_lt_mono_r; auto; omega. }
- { replace a with (a - b + b) by ring.
- rewrite Z.pow_add_r by omega.
- apply Z.mod_mul, Z.pow_nonzero; omega. }
- Qed.
-
- Lemma odd_mod : forall a b, (b <> 0)%Z ->
- Z.odd (a mod b) = if Z.odd b then xorb (Z.odd a) (Z.odd (a / b)) else Z.odd a.
- Proof.
- intros a b H.
- rewrite Zmod_eq_full by assumption.
- rewrite <-Z.add_opp_r, Z.odd_add, Z.odd_opp, Z.odd_mul.
- case_eq (Z.odd b); intros; rewrite ?Bool.andb_true_r, ?Bool.andb_false_r; auto using Bool.xorb_false_r.
- Qed.
-
- Lemma mod_same_pow : forall a b c, 0 <= c <= b -> a ^ b mod a ^ c = 0.
- Proof.
- intros a b c H.
- replace b with (b - c + c) by ring.
- rewrite Z.pow_add_r by omega.
- apply Z_mod_mult.
- Qed.
- Hint Rewrite mod_same_pow using zutil_arith : zsimplify.
-
- Lemma ones_succ : forall x, (0 <= x) ->
- Z.ones (Z.succ x) = 2 ^ x + Z.ones x.
- Proof.
- unfold Z.ones; intros.
- rewrite !Z.shiftl_1_l.
- rewrite Z.add_pred_r.
- apply Z.succ_inj.
- rewrite !Z.succ_pred.
- rewrite Z.pow_succ_r; omega.
- Qed.
-
- Lemma div_floor : forall a b c, 0 < b -> a < b * (Z.succ c) -> a / b <= c.
- Proof.
- intros.
- apply Z.lt_succ_r.
- apply Z.div_lt_upper_bound; try omega.
- Qed.
-
- Lemma shiftr_1_r_le : forall a b, a <= b ->
- Z.shiftr a 1 <= Z.shiftr b 1.
- Proof.
- intros.
- rewrite !Z.shiftr_div_pow2, Z.pow_1_r by omega.
- apply Z.div_le_mono; omega.
- Qed.
- Hint Resolve shiftr_1_r_le : zarith.
-
- Lemma shiftr_le : forall a b i : Z, 0 <= i -> a <= b -> a >> i <= b >> i.
- Proof.
- intros a b i ?; revert a b. apply natlike_ind with (x := i); intros; auto.
- rewrite !shiftr_succ, shiftr_1_r_le; eauto. reflexivity.
- Qed.
- Hint Resolve shiftr_le : zarith.
-
- Lemma ones_pred : forall i, 0 < i -> Z.ones (Z.pred i) = Z.shiftr (Z.ones i) 1.
- Proof.
- induction i as [|p|p]; [ | | pose proof (Pos2Z.neg_is_neg p) ]; try omega.
- intros.
- unfold Z.ones.
- rewrite !Z.shiftl_1_l, Z.shiftr_div_pow2, <-!Z.sub_1_r, Z.pow_1_r, <-!Z.add_opp_r by omega.
- replace (2 ^ (Z.pos p)) with (2 ^ (Z.pos p - 1)* 2).
- rewrite Z.div_add_l by omega.
- reflexivity.
- change 2 with (2 ^ 1) at 2.
- rewrite <-Z.pow_add_r by (pose proof (Pos2Z.is_pos p); omega).
- f_equal. omega.
- Qed.
- Hint Rewrite <- ones_pred using zutil_arith : push_Zshift.
-
- Lemma shiftr_ones' : forall a n, 0 <= a < 2 ^ n -> forall i, (0 <= i) ->
- Z.shiftr a i <= Z.ones (n - i) \/ n <= i.
- Proof.
- intros a n H.
- apply natlike_ind.
- + unfold Z.ones.
- rewrite Z.shiftr_0_r, Z.shiftl_1_l, Z.sub_0_r.
- omega.
- + intros x H0 H1.
- destruct (Z_lt_le_dec x n); try omega.
- intuition auto with zarith lia.
- left.
- rewrite shiftr_succ.
- replace (n - Z.succ x) with (Z.pred (n - x)) by omega.
- rewrite Z.ones_pred by omega.
- apply Z.shiftr_1_r_le.
- assumption.
- Qed.
-
- Lemma shiftr_ones : forall a n i, 0 <= a < 2 ^ n -> (0 <= i) -> (i <= n) ->
- Z.shiftr a i <= Z.ones (n - i) .
- Proof.
- intros a n i G G0 G1.
- destruct (Z_le_lt_eq_dec i n G1).
- + destruct (Z.shiftr_ones' a n G i G0); omega.
- + subst; rewrite Z.sub_diag.
- destruct (Z.eq_dec a 0).
- - subst; rewrite Z.shiftr_0_l; reflexivity.
- - rewrite Z.shiftr_eq_0; try omega; try reflexivity.
- apply Z.log2_lt_pow2; omega.
- Qed.
- Hint Resolve shiftr_ones : zarith.
-
- Lemma shiftr_upper_bound : forall a n, 0 <= n -> 0 <= a <= 2 ^ n -> Z.shiftr a n <= 1.
- Proof.
- intros a ? ? [a_nonneg a_upper_bound].
- apply Z_le_lt_eq_dec in a_upper_bound.
- destruct a_upper_bound.
- + destruct (Z.eq_dec 0 a).
- - subst; rewrite Z.shiftr_0_l; omega.
- - rewrite Z.shiftr_eq_0; auto; try omega.
- apply Z.log2_lt_pow2; auto; omega.
- + subst.
- rewrite Z.shiftr_div_pow2 by assumption.
- rewrite Z.div_same; try omega.
- assert (0 < 2 ^ n) by (apply Z.pow_pos_nonneg; omega).
- omega.
- Qed.
- Hint Resolve shiftr_upper_bound : zarith.
-
- Lemma lor_shiftl : forall a b n, 0 <= n -> 0 <= a < 2 ^ n ->
- Z.lor a (Z.shiftl b n) = a + (Z.shiftl b n).
- Proof.
- intros a b n H H0.
- apply Z.bits_inj'; intros t ?.
- rewrite Z.lor_spec, Z.shiftl_spec by assumption.
- destruct (Z_lt_dec t n).
- + rewrite Z.testbit_add_shiftl_low by omega.
- rewrite Z.testbit_neg_r with (n := t - n) by omega.
- apply Bool.orb_false_r.
- + rewrite testbit_add_shiftl_high by omega.
- replace (Z.testbit a t) with false; [ apply Bool.orb_false_l | ].
- symmetry.
- apply Z.testbit_false; try omega.
- rewrite Z.div_small; try reflexivity.
- split; try eapply Z.lt_le_trans with (m := 2 ^ n); try omega.
- apply Z.pow_le_mono_r; omega.
- Qed.
- Hint Rewrite <- Z.lor_shiftl using zutil_arith : convert_to_Ztestbit.
-
- Lemma lor_shiftl' : forall a b n, 0 <= n -> 0 <= a < 2 ^ n ->
- Z.lor (Z.shiftl b n) a = (Z.shiftl b n) + a.
- Proof.
- intros; rewrite Z.lor_comm, Z.add_comm; apply lor_shiftl; assumption.
- Qed.
- Hint Rewrite <- Z.lor_shiftl' using zutil_arith : convert_to_Ztestbit.
-
- Lemma shiftl_spec_full a n m
- : Z.testbit (a << n) m = if Z_lt_dec m n
- then false
- else if Z_le_dec 0 m
- then Z.testbit a (m - n)
- else false.
- Proof.
- repeat break_match; auto using Z.shiftl_spec_low, Z.shiftl_spec, Z.testbit_neg_r with omega.
- Qed.
- Hint Rewrite shiftl_spec_full : Ztestbit_full.
-
- Lemma shiftr_spec_full a n m
- : Z.testbit (a >> n) m = if Z_lt_dec m (-n)
- then false
- else if Z_le_dec 0 m
- then Z.testbit a (m + n)
- else false.
- Proof.
- rewrite <- Z.shiftl_opp_r, shiftl_spec_full, Z.sub_opp_r; reflexivity.
- Qed.
- Hint Rewrite shiftr_spec_full : Ztestbit_full.
-
- Lemma lnot_sub1 x : Z.lnot (x-1) = (-x).
- Proof.
- replace (-x) with (- (1) - (x - 1)) by omega.
- rewrite <-(Z.add_lnot_diag (x-1)); omega.
- Qed.
-
- Lemma lnot_opp x : Z.lnot (- x) = x-1.
- Proof.
- rewrite <-Z.lnot_involutive, lnot_sub1; reflexivity.
- Qed.
-
- Lemma testbit_sub_pow2 n i x (i_range:0 <= i < n) (x_range:0 < x < 2 ^ n) :
- Z.testbit (2 ^ n - x) i = negb (Z.testbit (x - 1) i).
- Proof.
- rewrite <-Z.lnot_spec, lnot_sub1 by omega.
- rewrite <-(Z.mod_pow2_bits_low (-x) _ _ (proj2 i_range)).
- f_equal.
- rewrite Z.mod_opp_l_nz; autorewrite with zsimplify; omega.
- Qed.
-
- Lemma ones_nonneg : forall i, (0 <= i) -> 0 <= Z.ones i.
- Proof.
- apply natlike_ind.
- + unfold Z.ones. simpl; omega.
- + intros.
- rewrite Z.ones_succ by assumption.
- Z.zero_bounds.
- Qed.
- Hint Resolve ones_nonneg : zarith.
-
- Lemma ones_pos_pos : forall i, (0 < i) -> 0 < Z.ones i.
- Proof.
- intros.
- unfold Z.ones.
- rewrite Z.shiftl_1_l.
- apply Z.lt_succ_lt_pred.
- apply Z.pow_gt_1; omega.
- Qed.
- Hint Resolve ones_pos_pos : zarith.
-
- Lemma pow2_mod_id_iff : forall a n, 0 <= n ->
- (Z.pow2_mod a n = a <-> 0 <= a < 2 ^ n).
- Proof.
- intros a n H.
- rewrite Z.pow2_mod_spec by assumption.
- assert (0 < 2 ^ n) by Z.zero_bounds.
- rewrite Z.mod_small_iff by omega.
- split; intros; intuition omega.
- Qed.
-
- Lemma testbit_false_bound : forall a x, 0 <= x ->
- (forall n, ~ (n < x) -> Z.testbit a n = false) ->
- a < 2 ^ x.
- Proof.
- intros a x H H0.
- assert (H1 : a = Z.pow2_mod a x). {
- apply Z.bits_inj'; intros.
- rewrite Z.testbit_pow2_mod by omega; break_match; auto.
- }
- rewrite H1.
- rewrite Z.pow2_mod_spec; try apply Z.mod_pos_bound; Z.zero_bounds.
- Qed.
-
- Lemma lor_range : forall x y n, 0 <= x < 2 ^ n -> 0 <= y < 2 ^ n ->
- 0 <= Z.lor x y < 2 ^ n.
- Proof.
- intros x y n H H0; assert (0 <= n) by auto with zarith omega.
- repeat match goal with
- | |- _ => progress intros
- | |- _ => rewrite Z.lor_spec
- | |- _ => rewrite Z.testbit_eqb by auto with zarith omega
- | |- _ => rewrite !Z.div_small by (split; try omega; eapply Z.lt_le_trans;
- [ intuition eassumption | apply Z.pow_le_mono_r; omega])
- | |- _ => split
- | |- _ => apply testbit_false_bound
- | |- _ => solve [auto with zarith]
- | |- _ => solve [apply Z.lor_nonneg; intuition auto]
- end.
- Qed.
- Hint Resolve lor_range : zarith.
-
- Lemma lor_shiftl_bounds : forall x y n m,
- (0 <= n)%Z -> (0 <= m)%Z ->
- (0 <= x < 2 ^ m)%Z ->
- (0 <= y < 2 ^ n)%Z ->
- (0 <= Z.lor y (Z.shiftl x n) < 2 ^ (n + m))%Z.
- Proof.
- intros x y n m H H0 H1 H2.
- apply Z.lor_range.
- { split; try omega.
- apply Z.lt_le_trans with (m := (2 ^ n)%Z); try omega.
- apply Z.pow_le_mono_r; omega. }
- { rewrite Z.shiftl_mul_pow2 by omega.
- rewrite Z.pow_add_r by omega.
- split; Z.zero_bounds.
- rewrite Z.mul_comm.
- apply Z.mul_lt_mono_pos_l; omega. }
- Qed.
-
- Lemma N_le_1_l : forall p, (1 <= N.pos p)%N.
- Proof.
- destruct p; cbv; congruence.
- Qed.
-
- Lemma Pos_land_upper_bound_l : forall a b, (Pos.land a b <= N.pos a)%N.
- Proof.
- induction a as [a IHa|a IHa|]; destruct b as [b|b|]; try solve [cbv; congruence];
- simpl; specialize (IHa b); case_eq (Pos.land a b); intro p; simpl;
- try (apply N_le_1_l || apply N.le_0_l); intro land_eq;
- rewrite land_eq in *; unfold N.le, N.compare in *;
- rewrite ?Pos.compare_xI_xI, ?Pos.compare_xO_xI, ?Pos.compare_xO_xO;
- try assumption.
- destruct (p ?=a)%positive; cbv; congruence.
- Qed.
-
- Lemma land_upper_bound_l : forall a b, (0 <= a) -> (0 <= b) ->
- Z.land a b <= a.
- Proof.
- intros a b H H0.
- destruct a, b; try solve [exfalso; auto]; try solve [cbv; congruence].
- cbv [Z.land].
- rewrite <-N2Z.inj_pos, <-N2Z.inj_le.
- auto using Pos_land_upper_bound_l.
- Qed.
-
- Lemma land_upper_bound_r : forall a b, (0 <= a) -> (0 <= b) ->
- Z.land a b <= b.
- Proof.
- intros.
- rewrite Z.land_comm.
- auto using Z.land_upper_bound_l.
- Qed.
-
- Lemma le_fold_right_max : forall low l x, (forall y, In y l -> low <= y) ->
- In x l -> x <= fold_right Z.max low l.
- Proof.
- induction l as [|a l IHl]; intros ? lower_bound In_list; [cbv [In] in *; intuition | ].
- simpl.
- destruct (in_inv In_list); subst.
- + apply Z.le_max_l.
- + etransitivity.
- - apply IHl; auto; intuition auto with datatypes.
- - apply Z.le_max_r.
- Qed.
-
- Lemma le_fold_right_max_initial : forall low l, low <= fold_right Z.max low l.
- Proof.
- induction l as [|a l IHl]; intros; try reflexivity.
- etransitivity; [ apply IHl | apply Z.le_max_r ].
- Qed.
-
- Lemma add_compare_mono_r: forall n m p, (n + p ?= m + p) = (n ?= m).
- Proof.
- intros n m p.
- rewrite <-!(Z.add_comm p).
- apply Z.add_compare_mono_l.
- Qed.
-
- Lemma compare_add_shiftl : forall x1 y1 x2 y2 n, 0 <= n ->
- Z.pow2_mod x1 n = x1 -> Z.pow2_mod x2 n = x2 ->
- x1 + (y1 << n) ?= x2 + (y2 << n) =
- if Z.eq_dec y1 y2
- then x1 ?= x2
- else y1 ?= y2.
- Proof.
- repeat match goal with
- | |- _ => progress intros
- | |- _ => progress subst y1
- | |- _ => rewrite Z.shiftl_mul_pow2 by omega
- | |- _ => rewrite add_compare_mono_r
- | |- _ => rewrite <-Z.mul_sub_distr_r
- | |- _ => break_innermost_match_step
- | H : Z.pow2_mod _ _ = _ |- _ => rewrite pow2_mod_id_iff in H by omega
- | H : ?a <> ?b |- _ = (?a ?= ?b) =>
- case_eq (a ?= b); rewrite ?Z.compare_eq_iff, ?Z.compare_gt_iff, ?Z.compare_lt_iff
- | |- _ + (_ * _) > _ + (_ * _) => cbv [Z.gt]
- | |- _ + (_ * ?x) < _ + (_ * ?x) =>
- apply Z.lt_sub_lt_add; apply Z.lt_le_trans with (m := 1 * x); [omega|]
- | |- _ => apply Z.mul_le_mono_nonneg_r; omega
- | |- _ => reflexivity
- | |- _ => congruence
- end.
- Qed.
-
- Lemma ones_le x y : x <= y -> Z.ones x <= Z.ones y.
- Proof.
- rewrite !Z.ones_equiv; auto with zarith.
- Qed.
- Hint Resolve ones_le : zarith.
-
- Lemma mul_div_le x y z
- (Hx : 0 <= x) (Hy : 0 <= y) (Hz : 0 < z)
- (Hyz : y <= z)
- : x * y / z <= x.
- Proof.
- transitivity (x * z / z); [ | rewrite Z.div_mul by lia; lia ].
- apply Z_div_le; nia.
- Qed.
-
- Hint Resolve mul_div_le : zarith.
-
- Lemma div_mul_diff_exact a b c
- (Ha : 0 <= a) (Hb : 0 < b) (Hc : 0 <= c)
- : c * a / b = c * (a / b) + (c * (a mod b)) / b.
- Proof.
- rewrite (Z_div_mod_eq a b) at 1 by lia.
- rewrite Z.mul_add_distr_l.
- replace (c * (b * (a / b))) with ((c * (a / b)) * b) by lia.
- rewrite Z.div_add_l by lia.
- lia.
- Qed.
-
- Lemma div_mul_diff_exact' a b c
- (Ha : 0 <= a) (Hb : 0 < b) (Hc : 0 <= c)
- : c * (a / b) = c * a / b - (c * (a mod b)) / b.
- Proof.
- rewrite div_mul_diff_exact by assumption; lia.
- Qed.
-
- Lemma div_mul_diff_exact'' a b c
- (Ha : 0 <= a) (Hb : 0 < b) (Hc : 0 <= c)
- : a * c / b = (a / b) * c + (c * (a mod b)) / b.
- Proof.
- rewrite (Z.mul_comm a c), div_mul_diff_exact by lia; lia.
- Qed.
-
- Lemma div_mul_diff_exact''' a b c
- (Ha : 0 <= a) (Hb : 0 < b) (Hc : 0 <= c)
- : (a / b) * c = a * c / b - (c * (a mod b)) / b.
- Proof.
- rewrite (Z.mul_comm a c), div_mul_diff_exact by lia; lia.
- Qed.
-
- Lemma div_mul_diff a b c
- (Ha : 0 <= a) (Hb : 0 < b) (Hc : 0 <= c)
- : c * a / b - c * (a / b) <= c.
- Proof.
- rewrite div_mul_diff_exact by assumption.
- ring_simplify; auto with zarith.
- Qed.
-
- Lemma div_mul_le_le a b c
- : 0 <= a -> 0 < b -> 0 <= c -> c * (a / b) <= c * a / b <= c * (a / b) + c.
- Proof.
- pose proof (Z.div_mul_diff a b c); split; try apply Z.div_mul_le; lia.
- Qed.
-
- Lemma div_mul_le_le_offset a b c
- : 0 <= a -> 0 < b -> 0 <= c -> c * a / b - c <= c * (a / b).
- Proof.
- pose proof (Z.div_mul_le_le a b c); lia.
- Qed.
-
- Hint Resolve Zmult_le_compat_r Zmult_le_compat_l Z_div_le Z.div_mul_le_le_offset Z.add_le_mono Z.sub_le_mono : zarith.
-
- Lemma log2_nonneg' n a : n <= 0 -> n <= Z.log2 a.
- Proof.
- intros; transitivity 0; auto with zarith.
- Qed.
-
- Hint Resolve log2_nonneg' : zarith.
-
- Lemma le_lt_to_log2 x y z : 0 <= z -> 0 < y -> 2^x <= y < 2^z -> x <= Z.log2 y < z.
- Proof.
- destruct (Z_le_gt_dec 0 x); auto with concl_log2 lia.
- Qed.
-
- Lemma div_x_y_x x y : 0 < x -> 0 < y -> x / y / x = 1 / y.
- Proof.
- intros; rewrite Z.div_div, (Z.mul_comm y x), <- Z.div_div, Z.div_same by lia.
- reflexivity.
- Qed.
-
- Hint Rewrite div_x_y_x using zutil_arith : zsimplify.
-
- Lemma mod_opp_l_z_iff a b (H : b <> 0) : a mod b = 0 <-> (-a) mod b = 0.
- Proof.
- split; intro H'; apply Z.mod_opp_l_z in H'; rewrite ?Z.opp_involutive in H'; assumption.
- Qed.
-
- Lemma opp_eq_0_iff a : -a = 0 <-> a = 0.
- Proof. omega. Qed.
-
- Hint Rewrite <- mod_opp_l_z_iff using zutil_arith : zsimplify.
- Hint Rewrite opp_eq_0_iff : zsimplify.
-
- Lemma sub_pos_bound a b X : 0 <= a < X -> 0 <= b < X -> -X < a - b < X.
- Proof. lia. Qed.
-
- Lemma shiftl_opp_l a n
- : Z.shiftl (-a) n = - Z.shiftl a n - (if Z_zerop (a mod 2 ^ (- n)) then 0 else 1).
- Proof.
- destruct (Z_dec 0 n) as [ [?|?] | ? ];
- subst;
- rewrite ?Z.pow_neg_r by omega;
- autorewrite with zsimplify_const;
- [ | | simpl; omega ].
- { rewrite !Z.shiftl_mul_pow2 by omega.
- nia. }
- { rewrite !Z.shiftl_div_pow2 by omega.
- rewrite Z.div_opp_l_complete by auto with zarith.
- reflexivity. }
- Qed.
- Hint Rewrite shiftl_opp_l : push_Zshift.
- Hint Rewrite <- shiftl_opp_l : pull_Zshift.
-
- Lemma shiftr_opp_l a n
- : Z.shiftr (-a) n = - Z.shiftr a n - (if Z_zerop (a mod 2 ^ n) then 0 else 1).
- Proof.
- unfold Z.shiftr; rewrite shiftl_opp_l at 1; rewrite Z.opp_involutive.
- reflexivity.
- Qed.
- Hint Rewrite shiftr_opp_l : push_Zshift.
- Hint Rewrite <- shiftr_opp_l : pull_Zshift.
-
- Lemma sub_pos_bound_div a b X : 0 <= a < X -> 0 <= b < X -> -1 <= (a - b) / X <= 0.
- Proof.
- intros H0 H1; pose proof (Z.sub_pos_bound a b X H0 H1).
- assert (Hn : -X <= a - b) by lia.
- assert (Hp : a - b <= X - 1) by lia.
- split; etransitivity; [ | apply Z_div_le, Hn; lia | apply Z_div_le, Hp; lia | ];
- instantiate; autorewrite with zsimplify; try reflexivity.
- Qed.
-
- Hint Resolve (fun a b X H0 H1 => proj1 (Z.sub_pos_bound_div a b X H0 H1))
- (fun a b X H0 H1 => proj1 (Z.sub_pos_bound_div a b X H0 H1)) : zarith.
-
- Lemma sub_pos_bound_div_eq a b X : 0 <= a < X -> 0 <= b < X -> (a - b) / X = if a <? b then -1 else 0.
- Proof.
- intros H0 H1; pose proof (Z.sub_pos_bound_div a b X H0 H1).
- destruct (a <? b) eqn:?; Z.ltb_to_lt.
- { cut ((a - b) / X <> 0); [ lia | ].
- autorewrite with zstrip_div; auto with zarith lia. }
- { autorewrite with zstrip_div; auto with zarith lia. }
- Qed.
-
- Lemma add_opp_pos_bound_div_eq a b X : 0 <= a < X -> 0 <= b < X -> (-b + a) / X = if a <? b then -1 else 0.
- Proof.
- rewrite !(Z.add_comm (-_)), !Z.add_opp_r.
- apply Z.sub_pos_bound_div_eq.
- Qed.
-
- Hint Rewrite Z.sub_pos_bound_div_eq Z.add_opp_pos_bound_div_eq using zutil_arith : zstrip_div.
-
- Lemma div_small_sym a b : 0 <= a < b -> 0 = a / b.
- Proof. intros; symmetry; apply Z.div_small; assumption. Qed.
-
- Lemma mod_small_sym a b : 0 <= a < b -> a = a mod b.
- Proof. intros; symmetry; apply Z.mod_small; assumption. Qed.
-
- Hint Resolve div_small_sym mod_small_sym : zarith.
-
- Lemma mod_eq_le_to_eq a b : 0 < a <= b -> a mod b = 0 -> a = b.
- Proof.
- intros H H'.
- assert (a = b * (a / b)) by auto with zarith lia.
- assert (a / b = 1) by nia.
- nia.
- Qed.
- Hint Resolve mod_eq_le_to_eq : zarith.
-
- Lemma mod_eq_le_div_1 a b : 0 < a <= b -> a mod b = 0 -> a / b = 1.
- Proof. auto with zarith. Qed.
- Hint Resolve mod_eq_le_div_1 : zarith.
- Hint Rewrite mod_eq_le_div_1 using zutil_arith : zsimplify.
-
- Lemma mod_neq_0_le_to_neq a b : a mod b <> 0 -> a <> b.
- Proof. repeat intro; subst; autorewrite with zsimplify in *; lia. Qed.
- Hint Resolve mod_neq_0_le_to_neq : zarith.
-
- Lemma div_small_neg x y : 0 < -x <= y -> x / y = -1.
- Proof.
- intro H; rewrite <- (Z.opp_involutive x).
- rewrite Z.div_opp_l_complete by lia.
- generalize dependent (-x); clear x; intros x H.
- pose proof (mod_neq_0_le_to_neq x y).
- autorewrite with zsimplify; edestruct Z_zerop; autorewrite with zsimplify in *; lia.
- Qed.
- Hint Rewrite div_small_neg using zutil_arith : zsimplify.
-
- Lemma div_sub_small x y z : 0 <= x < z -> 0 <= y <= z -> (x - y) / z = if x <? y then -1 else 0.
- Proof.
- pose proof (Zlt_cases x y).
- (destruct (x <? y) eqn:?);
- intros; autorewrite with zsimplify; try lia.
- Qed.
- Hint Rewrite div_sub_small using zutil_arith : zsimplify.
-
- Lemma le_lt_trans n m p : n <= m -> m < p -> n < p.
- Proof. lia. Qed.
-
- Lemma mul_div_lt_by_le x y z b : 0 <= y < z -> 0 <= x < b -> x * y / z < b.
- Proof.
- intros [? ?] [? ?]; eapply Z.le_lt_trans; [ | eassumption ].
- auto with zarith.
- Qed.
- Hint Resolve mul_div_lt_by_le : zarith.
-
- Definition pow_sub_r'
- := fun a b c y H0 H1 => @Logic.eq_trans _ _ _ y (@Z.pow_sub_r a b c H0 H1).
- Definition pow_sub_r'_sym
- := fun a b c y p H0 H1 => Logic.eq_sym (@Logic.eq_trans _ y _ _ (Logic.eq_sym p) (@Z.pow_sub_r a b c H0 H1)).
- Hint Resolve pow_sub_r' pow_sub_r'_sym Z.eq_le_incl : zarith.
- Hint Resolve (fun b => f_equal (fun e => b ^ e)) (fun e => f_equal (fun b => b ^ e)) : zarith.
- Definition mul_div_le'
- := fun x y z w p H0 H1 H2 H3 => @Z.le_trans _ _ w (@Z.mul_div_le x y z H0 H1 H2 H3) p.
- Hint Resolve mul_div_le' : zarith.
- Lemma mul_div_le'' x y z w : y <= w -> 0 <= x -> 0 <= y -> 0 < z -> x <= z -> x * y / z <= w.
- Proof.
- rewrite (Z.mul_comm x y); intros; apply mul_div_le'; assumption.
- Qed.
- Hint Resolve mul_div_le'' : zarith.
-
- Lemma two_p_two_eq_four : 2^(2) = 4.
- Proof. reflexivity. Qed.
- Hint Rewrite <- two_p_two_eq_four : push_Zpow.
-
- Lemma base_pow_neg b n : n < 0 -> b^n = 0.
- Proof.
- destruct n; intro H; try reflexivity; compute in H; congruence.
- Qed.
- Hint Rewrite base_pow_neg using zutil_arith : zsimplify.
-
- Lemma div_mod' a b : b <> 0 -> a = (a / b) * b + a mod b.
- Proof. intro; etransitivity; [ apply (Z.div_mod a b); assumption | lia ]. Qed.
- Hint Rewrite <- div_mod' using zutil_arith : zsimplify.
-
- Lemma div_mod'' a b : b <> 0 -> a = a mod b + b * (a / b).
- Proof. intro; etransitivity; [ apply (Z.div_mod a b); assumption | lia ]. Qed.
- Hint Rewrite <- div_mod'' using zutil_arith : zsimplify.
-
- Lemma div_mod''' a b : b <> 0 -> a = a mod b + (a / b) * b.
- Proof. intro; etransitivity; [ apply (Z.div_mod a b); assumption | lia ]. Qed.
- Hint Rewrite <- div_mod''' using zutil_arith : zsimplify.
-
- Definition opp_distr_if (b : bool) x y : -(if b then x else y) = if b then -x else -y.
- Proof. destruct b; reflexivity. Qed.
- Hint Rewrite opp_distr_if : push_Zopp.
- Hint Rewrite <- opp_distr_if : pull_Zopp.
-
- Lemma mul_r_distr_if (b : bool) x y z : z * (if b then x else y) = if b then z * x else z * y.
- Proof. destruct b; reflexivity. Qed.
- Hint Rewrite mul_r_distr_if : push_Zmul.
- Hint Rewrite <- mul_r_distr_if : pull_Zmul.
-
- Lemma mul_l_distr_if (b : bool) x y z : (if b then x else y) * z = if b then x * z else y * z.
- Proof. destruct b; reflexivity. Qed.
- Hint Rewrite mul_l_distr_if : push_Zmul.
- Hint Rewrite <- mul_l_distr_if : pull_Zmul.
-
- Lemma add_r_distr_if (b : bool) x y z : z + (if b then x else y) = if b then z + x else z + y.
- Proof. destruct b; reflexivity. Qed.
- Hint Rewrite add_r_distr_if : push_Zadd.
- Hint Rewrite <- add_r_distr_if : pull_Zadd.
-
- Lemma add_l_distr_if (b : bool) x y z : (if b then x else y) + z = if b then x + z else y + z.
- Proof. destruct b; reflexivity. Qed.
- Hint Rewrite add_l_distr_if : push_Zadd.
- Hint Rewrite <- add_l_distr_if : pull_Zadd.
-
- Lemma sub_r_distr_if (b : bool) x y z : z - (if b then x else y) = if b then z - x else z - y.
- Proof. destruct b; reflexivity. Qed.
- Hint Rewrite sub_r_distr_if : push_Zsub.
- Hint Rewrite <- sub_r_distr_if : pull_Zsub.
-
- Lemma sub_l_distr_if (b : bool) x y z : (if b then x else y) - z = if b then x - z else y - z.
- Proof. destruct b; reflexivity. Qed.
- Hint Rewrite sub_l_distr_if : push_Zsub.
- Hint Rewrite <- sub_l_distr_if : pull_Zsub.
-
- Lemma div_r_distr_if (b : bool) x y z : z / (if b then x else y) = if b then z / x else z / y.
- Proof. destruct b; reflexivity. Qed.
- Hint Rewrite div_r_distr_if : push_Zdiv.
- Hint Rewrite <- div_r_distr_if : pull_Zdiv.
-
- Lemma div_l_distr_if (b : bool) x y z : (if b then x else y) / z = if b then x / z else y / z.
- Proof. destruct b; reflexivity. Qed.
- Hint Rewrite div_l_distr_if : push_Zdiv.
- Hint Rewrite <- div_l_distr_if : pull_Zdiv.
-
- Lemma sub_mod_mod_0 x d : (x - x mod d) mod d = 0.
- Proof.
- destruct (Z_zerop d); subst; autorewrite with push_Zmod zsimplify; reflexivity.
- Qed.
- Hint Resolve sub_mod_mod_0 : zarith.
- Hint Rewrite sub_mod_mod_0 : zsimplify.
-
- Lemma div_between n a b : 0 <= n -> b <> 0 -> n * b <= a < (1 + n) * b -> a / b = n.
- Proof. intros; Z.div_mod_to_quot_rem_in_goal; nia. Qed.
- Hint Rewrite div_between using zutil_arith : zsimplify.
-
- Lemma mod_small_n n a b : 0 <= n -> b <> 0 -> n * b <= a < (1 + n) * b -> a mod b = a - n * b.
- Proof. intros; erewrite Zmod_eq_full, div_between by eassumption. reflexivity. Qed.
- Hint Rewrite mod_small_n using zutil_arith : zsimplify.
-
- Lemma div_between_1 a b : b <> 0 -> b <= a < 2 * b -> a / b = 1.
- Proof. intros; rewrite (div_between 1) by lia; reflexivity. Qed.
- Hint Rewrite div_between_1 using zutil_arith : zsimplify.
-
- Lemma mod_small_1 a b : b <> 0 -> b <= a < 2 * b -> a mod b = a - b.
- Proof. intros; rewrite (mod_small_n 1) by lia; lia. Qed.
- Hint Rewrite mod_small_1 using zutil_arith : zsimplify.
-
- Lemma div_between_if n a b : 0 <= n -> b <> 0 -> n * b <= a < (2 + n) * b -> (a / b = if (1 + n) * b <=? a then 1 + n else n)%Z.
- Proof.
- intros.
- break_match; Z.ltb_to_lt;
- apply div_between; lia.
- Qed.
-
- Lemma mod_small_n_if n a b : 0 <= n -> b <> 0 -> n * b <= a < (2 + n) * b -> a mod b = a - (if (1 + n) * b <=? a then (1 + n) else n) * b.
- Proof. intros; erewrite Zmod_eq_full, div_between_if by eassumption; autorewrite with zsimplify_const. reflexivity. Qed.
-
- Lemma div_between_0_if a b : b <> 0 -> 0 <= a < 2 * b -> a / b = if b <=? a then 1 else 0.
- Proof. intros; rewrite (div_between_if 0) by lia; autorewrite with zsimplify_const; reflexivity. Qed.
-
- Lemma mod_small_0_if a b : b <> 0 -> 0 <= a < 2 * b -> a mod b = a - if b <=? a then b else 0.
- Proof. intros; rewrite (mod_small_n_if 0) by lia; autorewrite with zsimplify_const. break_match; lia. Qed.
-
- Lemma mul_mod_distr_r_full a b c : (a * c) mod (b * c) = (a mod b * c).
- Proof.
- destruct (Z_zerop b); [ | destruct (Z_zerop c) ]; subst;
- autorewrite with zsimplify; auto using Z.mul_mod_distr_r.
- Qed.
-
- Lemma mul_mod_distr_l_full a b c : (c * a) mod (c * b) = c * (a mod b).
- Proof.
- destruct (Z_zerop b); [ | destruct (Z_zerop c) ]; subst;
- autorewrite with zsimplify; auto using Z.mul_mod_distr_l.
- Qed.
-
- Lemma lt_mul_2_mod_sub : forall a b, b <> 0 -> b <= a < 2 * b -> a mod b = a - b.
- Proof.
- intros a b H H0.
- replace (a mod b) with ((1 * b + (a - b)) mod b) by (f_equal; ring).
- rewrite Z.mod_add_l by auto.
- apply Z.mod_small.
- omega.
- Qed.
-
-
- Lemma leb_add_same x y : (x <=? y + x) = (0 <=? y).
- Proof. destruct (x <=? y + x) eqn:?, (0 <=? y) eqn:?; Z.ltb_to_lt; try reflexivity; omega. Qed.
- Hint Rewrite leb_add_same : zsimplify.
-
- Lemma ltb_add_same x y : (x <? y + x) = (0 <? y).
- Proof. destruct (x <? y + x) eqn:?, (0 <? y) eqn:?; Z.ltb_to_lt; try reflexivity; omega. Qed.
- Hint Rewrite ltb_add_same : zsimplify.
-
- Lemma geb_add_same x y : (x >=? y + x) = (0 >=? y).
- Proof. destruct (x >=? y + x) eqn:?, (0 >=? y) eqn:?; Z.ltb_to_lt; try reflexivity; omega. Qed.
- Hint Rewrite geb_add_same : zsimplify.
-
- Lemma gtb_add_same x y : (x >? y + x) = (0 >? y).
- Proof. destruct (x >? y + x) eqn:?, (0 >? y) eqn:?; Z.ltb_to_lt; try reflexivity; omega. Qed.
- Hint Rewrite gtb_add_same : zsimplify.
-
- Lemma shiftl_add x y z : 0 <= z -> (x + y) << z = (x << z) + (y << z).
- Proof. intros; autorewrite with Zshift_to_pow; lia. Qed.
- Hint Rewrite shiftl_add using zutil_arith : push_Zshift.
- Hint Rewrite <- shiftl_add using zutil_arith : pull_Zshift.
-
- Lemma shiftr_add x y z : z <= 0 -> (x + y) >> z = (x >> z) + (y >> z).
- Proof. intros; autorewrite with Zshift_to_pow; lia. Qed.
- Hint Rewrite shiftr_add using zutil_arith : push_Zshift.
- Hint Rewrite <- shiftr_add using zutil_arith : pull_Zshift.
-
- Lemma shiftl_sub x y z : 0 <= z -> (x - y) << z = (x << z) - (y << z).
- Proof. intros; autorewrite with Zshift_to_pow; lia. Qed.
- Hint Rewrite shiftl_sub using zutil_arith : push_Zshift.
- Hint Rewrite <- shiftl_sub using zutil_arith : pull_Zshift.
-
- Lemma shiftr_sub x y z : z <= 0 -> (x - y) >> z = (x >> z) - (y >> z).
- Proof. intros; autorewrite with Zshift_to_pow; lia. Qed.
- Hint Rewrite shiftr_sub using zutil_arith : push_Zshift.
- Hint Rewrite <- shiftr_sub using zutil_arith : pull_Zshift.
-
- Lemma shl_shr_lt x y n m (Hx : 0 <= x < 2^n) (Hy : 0 <= y < 2^n) (Hm : 0 <= m <= n)
- : 0 <= (x >> (n - m)) + ((y << m) mod 2^n) < 2^n.
- Proof.
- cut (0 <= (x >> (n - m)) + ((y << m) mod 2^n) <= 2^n - 1); [ omega | ].
- assert (0 <= x <= 2^n - 1) by omega.
- assert (0 <= y <= 2^n - 1) by omega.
- assert (0 < 2 ^ (n - m)) by auto with zarith.
- assert (0 <= y mod 2 ^ (n - m) < 2^(n-m)) by auto with zarith.
- assert (0 <= y mod 2 ^ (n - m) <= 2 ^ (n - m) - 1) by omega.
- assert (0 <= (y mod 2 ^ (n - m)) * 2^m <= (2^(n-m) - 1)*2^m) by auto with zarith.
- assert (0 <= x / 2^(n-m) < 2^n / 2^(n-m)).
- { split; Z.zero_bounds.
- apply Z.div_lt_upper_bound; autorewrite with pull_Zpow zsimplify; nia. }
- autorewrite with Zshift_to_pow.
- split; Z.zero_bounds.
- replace (2^n) with (2^(n-m) * 2^m) by (autorewrite with pull_Zpow; f_equal; omega).
- rewrite Zmult_mod_distr_r.
- autorewrite with pull_Zpow zsimplify push_Zmul in * |- .
- nia.
- Qed.
-
- Lemma add_shift_mod x y n m
- (Hx : 0 <= x < 2^n) (Hy : 0 <= y)
- (Hn : 0 <= n) (Hm : 0 < m)
- : (x + y << n) mod (m * 2^n) = x + (y mod m) << n.
- Proof.
- pose proof (Z.mod_bound_pos y m).
- specialize_by omega.
- assert (0 < 2^n) by auto with zarith.
- autorewrite with Zshift_to_pow.
- rewrite Zplus_mod, !Zmult_mod_distr_r.
- rewrite Zplus_mod, !Zmod_mod, <- Zplus_mod.
- rewrite !(Zmod_eq (_ + _)) by nia.
- etransitivity; [ | apply Z.add_0_r ].
- rewrite <- !Z.add_opp_r, <- !Z.add_assoc.
- repeat apply f_equal.
- ring_simplify.
- cut (((x + y mod m * 2 ^ n) / (m * 2 ^ n)) = 0); [ nia | ].
- apply Z.div_small; split; nia.
- Qed.
-
- Lemma add_mul_mod x y n m
- (Hx : 0 <= x < 2^n) (Hy : 0 <= y)
- (Hn : 0 <= n) (Hm : 0 < m)
- : (x + y * 2^n) mod (m * 2^n) = x + (y mod m) * 2^n.
- Proof.
- generalize (add_shift_mod x y n m).
- autorewrite with Zshift_to_pow; auto.
- Qed.
-
- Lemma lt_pow_2_shiftr : forall a n, 0 <= a < 2 ^ n -> a >> n = 0.
- Proof.
- intros a n H.
- destruct (Z_le_dec 0 n).
- + rewrite Z.shiftr_div_pow2 by assumption.
- auto using Z.div_small.
- + assert (2 ^ n = 0) by (apply Z.pow_neg_r; omega).
- omega.
- Qed.
-
- Hint Rewrite Z.pow2_bits_eqb using zutil_arith : Ztestbit.
- Lemma pow_2_shiftr : forall n, 0 <= n -> (2 ^ n) >> n = 1.
- Proof.
- intros; apply Z.bits_inj'; intros.
- replace 1 with (2 ^ 0) by ring.
- repeat match goal with
- | |- _ => progress intros
- | |- _ => progress rewrite ?Z.eqb_eq, ?Z.eqb_neq in *
- | |- _ => progress autorewrite with Ztestbit
- | |- context[Z.eqb ?a ?b] => case_eq (Z.eqb a b)
- | |- _ => reflexivity || omega
- end.
- Qed.
-
- Lemma lt_mul_2_pow_2_shiftr : forall a n, 0 <= a < 2 * 2 ^ n ->
- a >> n = if Z_lt_dec a (2 ^ n) then 0 else 1.
- Proof.
- intros a n H; break_match; [ apply lt_pow_2_shiftr; omega | ].
- destruct (Z_le_dec 0 n).
- + replace (2 * 2 ^ n) with (2 ^ (n + 1)) in *
- by (rewrite Z.pow_add_r; try omega; ring).
- pose proof (Z.shiftr_ones a (n + 1) n H).
- pose proof (Z.shiftr_le (2 ^ n) a n).
- specialize_by omega.
- replace (n + 1 - n) with 1 in * by ring.
- replace (Z.ones 1) with 1 in * by reflexivity.
- rewrite pow_2_shiftr in * by omega.
- omega.
- + assert (2 ^ n = 0) by (apply Z.pow_neg_r; omega).
- omega.
- Qed.
-
- Lemma shiftr_nonneg_le : forall a n, 0 <= a -> 0 <= n -> a >> n <= a.
- Proof.
- intros.
- repeat match goal with
- | [ H : _ <= _ |- _ ]
- => rewrite Z.lt_eq_cases in H
- | [ H : _ \/ _ |- _ ] => destruct H
- | _ => progress subst
- | _ => progress autorewrite with zsimplify Zshift_to_pow
- | _ => solve [ auto with zarith omega ]
- end.
- Qed.
- Hint Resolve shiftr_nonneg_le : zarith.
-
- Lemma log2_pred_pow2_full a : Z.log2 (Z.pred (2^a)) = Z.max 0 (Z.pred a).
- Proof.
- destruct (Z_dec 0 a) as [ [?|?] | ?].
- { rewrite Z.log2_pred_pow2 by assumption.
- apply Z.max_case_strong; omega. }
- { autorewrite with zsimplify; simpl.
- apply Z.max_case_strong; omega. }
- { subst; compute; reflexivity. }
- Qed.
- Hint Rewrite log2_pred_pow2_full : zsimplify.
-
- Lemma log2_up_le_full a : a <= 2^Z.log2_up a.
- Proof.
- destruct (Z_dec 1 a) as [ [ ? | ? ] | ? ];
- first [ apply Z.log2_up_spec; assumption
- | rewrite Z.log2_up_eqn0 by omega; simpl; omega ].
- Qed.
-
- Lemma log2_up_le_pow2_full : forall a b : Z, (0 <= b)%Z -> (a <= 2 ^ b)%Z <-> (Z.log2_up a <= b)%Z.
- Proof.
- intros a b H.
- destruct (Z_lt_le_dec 0 a); [ apply Z.log2_up_le_pow2; assumption | ].
- split; transitivity 0%Z; try omega; auto with zarith.
- rewrite Z.log2_up_eqn0 by omega.
- reflexivity.
- Qed.
-
- Lemma ones_lt_pow2 x y : 0 <= x <= y -> Z.ones x < 2^y.
- Proof.
- rewrite Z.ones_equiv, Z.lt_pred_le.
- auto with zarith.
- Qed.
- Hint Resolve ones_lt_pow2 : zarith.
-
- Lemma log2_ones_full x : Z.log2 (Z.ones x) = Z.max 0 (Z.pred x).
- Proof.
- rewrite Z.ones_equiv, log2_pred_pow2_full; reflexivity.
- Qed.
- Hint Rewrite log2_ones_full : zsimplify.
-
- Lemma log2_ones_lt x y : 0 < x <= y -> Z.log2 (Z.ones x) < y.
- Proof.
- rewrite log2_ones_full; apply Z.max_case_strong; omega.
- Qed.
- Hint Resolve log2_ones_lt : zarith.
-
- Lemma log2_ones_le x y : 0 <= x <= y -> Z.log2 (Z.ones x) <= y.
- Proof.
- rewrite log2_ones_full; apply Z.max_case_strong; omega.
- Qed.
- Hint Resolve log2_ones_le : zarith.
-
- Lemma log2_ones_lt_nonneg x y : 0 < y -> x <= y -> Z.log2 (Z.ones x) < y.
- Proof.
- rewrite log2_ones_full; apply Z.max_case_strong; omega.
- Qed.
- Hint Resolve log2_ones_lt_nonneg : zarith.
-
- Lemma log2_lt_pow2_alt a b : 0 < b -> (a < 2^b <-> Z.log2 a < b).
- Proof.
- destruct (Z_lt_le_dec 0 a); auto using Z.log2_lt_pow2; [].
- rewrite Z.log2_nonpos by omega.
- split; auto with zarith; [].
- intro; eapply le_lt_trans; [ eassumption | ].
- auto with zarith.
- Qed.
-
- Section ZInequalities.
- Lemma land_le : forall x y, (0 <= x)%Z -> (Z.land x y <= x)%Z.
- Proof.
- intros x y H; apply Z.ldiff_le; [assumption|].
- rewrite Z.ldiff_land, Z.land_comm, Z.land_assoc.
- rewrite <- Z.land_0_l with (a := y); f_equal.
- rewrite Z.land_comm, Z.land_lnot_diag.
- reflexivity.
- Qed.
-
- Lemma lor_lower : forall x y, (0 <= x)%Z -> (0 <= y)%Z -> (x <= Z.lor x y)%Z.
- Proof.
- intros x y H H0; apply Z.ldiff_le; [apply Z.lor_nonneg; auto|].
- rewrite Z.ldiff_land.
- apply Z.bits_inj_iff'; intros k Hpos; apply Z.le_ge in Hpos.
- rewrite Z.testbit_0_l, Z.land_spec, Z.lnot_spec, Z.lor_spec;
- [|apply Z.ge_le; assumption].
- induction (Z.testbit x k), (Z.testbit y k); cbv; reflexivity.
- Qed.
-
- Lemma lor_le : forall x y z,
- (0 <= x)%Z
- -> (x <= y)%Z
- -> (y <= z)%Z
- -> (Z.lor x y <= (2 ^ Z.log2_up (z+1)) - 1)%Z.
- Proof.
- intros x y z H H0 H1; apply Z.ldiff_le.
-
- - apply Z.le_add_le_sub_r.
- replace 1%Z with (2 ^ 0)%Z by (cbv; reflexivity).
- rewrite Z.add_0_l.
- apply Z.pow_le_mono_r; [cbv; reflexivity|].
- apply Z.log2_up_nonneg.
-
- - destruct (Z_lt_dec 0 z).
-
- + assert (forall a, a - 1 = Z.pred a)%Z as HP by (intro; omega);
- rewrite HP, <- Z.ones_equiv; clear HP.
- apply Z.ldiff_ones_r_low; [apply Z.lor_nonneg; split; omega|].
- rewrite Z.log2_up_eqn, Z.log2_lor; try omega.
- apply Z.lt_succ_r.
- apply Z.max_case_strong; intros; apply Z.log2_le_mono; omega.
-
- + replace z with 0%Z by omega.
- replace y with 0%Z by omega.
- replace x with 0%Z by omega.
- cbv; reflexivity.
- Qed.
-
- Lemma pow2_ge_0: forall a, (0 <= 2 ^ a)%Z.
- Proof.
- intros; apply Z.pow_nonneg; omega.
- Qed.
-
- Lemma pow2_gt_0: forall a, (0 <= a)%Z -> (0 < 2 ^ a)%Z.
- Proof.
- intros; apply Z.pow_pos_nonneg; [|assumption]; omega.
- Qed.
-
- Local Ltac solve_pow2 :=
- repeat match goal with
- | [|- _ /\ _] => split
- | [|- (0 < 2 ^ _)%Z] => apply pow2_gt_0
- | [|- (0 <= 2 ^ _)%Z] => apply pow2_ge_0
- | [|- (2 ^ _ <= 2 ^ _)%Z] => apply Z.pow_le_mono_r
- | [|- (_ <= _)%Z] => omega
- | [|- (_ < _)%Z] => omega
- end.
-
- Lemma pow2_mod_range : forall a n m,
- (0 <= n) ->
- (n <= m) ->
- (0 <= Z.pow2_mod a n < 2 ^ m).
- Proof.
- intros; unfold Z.pow2_mod.
- rewrite Z.land_ones; [|assumption].
- split; [apply Z.mod_pos_bound, pow2_gt_0; assumption|].
- eapply Z.lt_le_trans; [apply Z.mod_pos_bound, pow2_gt_0; assumption|].
- apply Z.pow_le_mono; [|assumption].
- split; simpl; omega.
- Qed.
-
- Lemma shiftr_range : forall a n m,
- (0 <= n)%Z ->
- (0 <= m)%Z ->
- (0 <= a < 2 ^ (n + m))%Z ->
- (0 <= Z.shiftr a n < 2 ^ m)%Z.
- Proof.
- intros a n m H0 H1 H2; destruct H2.
- split; [apply Z.shiftr_nonneg; assumption|].
- rewrite Z.shiftr_div_pow2; [|assumption].
- apply Z.div_lt_upper_bound; [apply pow2_gt_0; assumption|].
- eapply Z.lt_le_trans; [eassumption|apply Z.eq_le_incl].
- apply Z.pow_add_r; omega.
- Qed.
-
-
- Lemma shiftr_le_mono: forall a b c d,
- (0 <= a)%Z
- -> (0 <= d)%Z
- -> (a <= c)%Z
- -> (d <= b)%Z
- -> (Z.shiftr a b <= Z.shiftr c d)%Z.
- Proof.
- intros.
- repeat rewrite Z.shiftr_div_pow2; [|omega|omega].
- etransitivity; [apply Z.div_le_compat_l | apply Z.div_le_mono]; solve_pow2.
- Qed.
-
- Lemma shiftl_le_mono: forall a b c d,
- (0 <= a)%Z
- -> (0 <= b)%Z
- -> (a <= c)%Z
- -> (b <= d)%Z
- -> (Z.shiftl a b <= Z.shiftl c d)%Z.
- Proof.
- intros.
- repeat rewrite Z.shiftl_mul_pow2; [|omega|omega].
- etransitivity; [apply Z.mul_le_mono_nonneg_l|apply Z.mul_le_mono_nonneg_r]; solve_pow2.
- Qed.
- End ZInequalities.
-
- Lemma max_log2_up x y : Z.max (Z.log2_up x) (Z.log2_up y) = Z.log2_up (Z.max x y).
- Proof. apply Z.max_monotone; intros ??; apply Z.log2_up_le_mono. Qed.
- Hint Rewrite max_log2_up : push_Zmax.
- Hint Rewrite <- max_log2_up : pull_Zmax.
-
- Lemma lor_bounds x y : 0 <= x -> 0 <= y
- -> Z.max x y <= Z.lor x y <= 2^Z.log2_up (Z.max x y + 1) - 1.
- Proof.
- apply Z.max_case_strong; intros; split;
- try solve [ eauto using lor_lower, Z.le_trans, lor_le with omega
- | rewrite Z.lor_comm; eauto using lor_lower, Z.le_trans, lor_le with omega ].
- Qed.
- Lemma lor_bounds_lower x y : 0 <= x -> 0 <= y
- -> Z.max x y <= Z.lor x y.
- Proof. intros; apply lor_bounds; assumption. Qed.
- Lemma lor_bounds_upper x y : Z.lor x y <= 2^Z.log2_up (Z.max x y + 1) - 1.
- Proof.
- pose proof (proj2 (Z.lor_neg x y)).
- destruct (Z_lt_le_dec x 0), (Z_lt_le_dec y 0);
- try solve [ intros; apply lor_bounds; assumption ];
- transitivity (2^0-1);
- try apply Z.sub_le_mono_r, Z.pow_le_mono_r, Z.log2_up_nonneg;
- simpl; omega.
- Qed.
- Lemma lor_bounds_gen_lower x y l : 0 <= x -> 0 <= y -> l <= Z.max x y
- -> l <= Z.lor x y.
- Proof.
- intros; etransitivity;
- solve [ apply lor_bounds; auto
- | eauto ].
- Qed.
- Lemma lor_bounds_gen_upper x y u : x <= u -> y <= u
- -> Z.lor x y <= 2^Z.log2_up (u + 1) - 1.
- Proof.
- intros; etransitivity; [ apply lor_bounds_upper | ].
- apply Z.sub_le_mono_r, Z.pow_le_mono_r, Z.log2_up_le_mono, Z.max_case_strong;
- omega.
- Qed.
- Lemma lor_bounds_gen x y l u : 0 <= x -> 0 <= y -> l <= Z.max x y -> x <= u -> y <= u
- -> l <= Z.lor x y <= 2^Z.log2_up (u + 1) - 1.
- Proof. auto using lor_bounds_gen_lower, lor_bounds_gen_upper. Qed.
-
- Lemma log2_up_le_full_max a : Z.max a 1 <= 2^Z.log2_up a.
- Proof.
- apply Z.max_case_strong; auto using Z.log2_up_le_full.
- intros; rewrite Z.log2_up_eqn0 by assumption; reflexivity.
- Qed.
- Lemma log2_up_le_1 a : Z.log2_up a <= 1 <-> a <= 2.
- Proof.
- pose proof (Z.log2_nonneg (Z.pred a)).
- destruct (Z_dec a 2) as [ [ ? | ? ] | ? ].
- { rewrite (proj2 (Z.log2_up_null a)) by omega; split; omega. }
- { rewrite Z.log2_up_eqn by omega.
- split; try omega; intro.
- assert (Z.log2 (Z.pred a) = 0) by omega.
- assert (Z.pred a <= 1) by (apply Z.log2_null; omega).
- omega. }
- { subst; cbv -[Z.le]; split; omega. }
- Qed.
- Lemma log2_up_1_le a : 1 <= Z.log2_up a <-> 2 <= a.
- Proof.
- pose proof (Z.log2_nonneg (Z.pred a)).
- destruct (Z_dec a 2) as [ [ ? | ? ] | ? ].
- { rewrite (proj2 (Z.log2_up_null a)) by omega; split; omega. }
- { rewrite Z.log2_up_eqn by omega; omega. }
- { subst; cbv -[Z.le]; split; omega. }
- Qed.
-
- Lemma shiftl_le_Proper2 y
- : Proper (Z.le ==> Z.le) (fun x => Z.shiftl x y).
- Proof.
- unfold Basics.flip in *.
- pose proof (Zle_cases 0 y) as Hx.
- intros x x' H.
- pose proof (Zle_cases 0 x) as Hy.
- pose proof (Zle_cases 0 x') as Hy'.
- destruct (0 <=? y), (0 <=? x), (0 <=? x');
- autorewrite with Zshift_to_pow;
- Z.replace_all_neg_with_pos;
- autorewrite with pull_Zopp;
- rewrite ?Z.div_opp_l_complete;
- repeat destruct (Z_zerop _);
- autorewrite with zsimplify_const pull_Zopp;
- auto with zarith;
- repeat match goal with
- | [ |- context[-?x - ?y] ]
- => replace (-x - y) with (-(x + y)) by omega
- | _ => rewrite <- Z.opp_le_mono
- | _ => rewrite <- Z.add_le_mono_r
- | _ => solve [ auto with zarith ]
- | [ |- ?x <= ?y + 1 ]
- => cut (x <= y); [ omega | solve [ auto with zarith ] ]
- | [ |- -_ <= _ ]
- => solve [ transitivity (-0); auto with zarith ]
- end.
- { repeat match goal with H : context[_ mod _] |- _ => revert H end;
- Z.div_mod_to_quot_rem_in_goal; nia. }
- Qed.
-
- Lemma shiftl_le_Proper1 x
- (R := fun b : bool => if b then Z.le else Basics.flip Z.le)
- : Proper (R (0 <=? x) ==> Z.le) (Z.shiftl x).
- Proof.
- unfold Basics.flip in *.
- pose proof (Zle_cases 0 x) as Hx.
- intros y y' H.
- pose proof (Zle_cases 0 y) as Hy.
- pose proof (Zle_cases 0 y') as Hy'.
- destruct (0 <=? x), (0 <=? y), (0 <=? y'); subst R; cbv beta iota in *;
- autorewrite with Zshift_to_pow;
- Z.replace_all_neg_with_pos;
- autorewrite with pull_Zopp;
- rewrite ?Z.div_opp_l_complete;
- repeat destruct (Z_zerop _);
- autorewrite with zsimplify_const pull_Zopp;
- auto with zarith;
- repeat match goal with
- | [ |- context[-?x - ?y] ]
- => replace (-x - y) with (-(x + y)) by omega
- | _ => rewrite <- Z.opp_le_mono
- | _ => rewrite <- Z.add_le_mono_r
- | _ => solve [ auto with zarith ]
- | [ |- ?x <= ?y + 1 ]
- => cut (x <= y); [ omega | solve [ auto with zarith ] ]
- | [ |- context[2^?x] ]
- => lazymatch goal with
- | [ H : 1 < 2^x |- _ ] => fail
- | [ H : 0 < 2^x |- _ ] => fail
- | [ H : 0 <= 2^x |- _ ] => fail
- | _ => first [ assert (1 < 2^x) by auto with zarith
- | assert (0 < 2^x) by auto with zarith
- | assert (0 <= 2^x) by auto with zarith ]
- end
- | [ H : ?x <= ?y |- _ ]
- => is_var x; is_var y;
- lazymatch goal with
- | [ H : 2^x <= 2^y |- _ ] => fail
- | [ H : 2^x < 2^y |- _ ] => fail
- | _ => assert (2^x <= 2^y) by auto with zarith
- end
- | [ H : ?x <= ?y, H' : ?f ?x = ?k, H'' : ?f ?y <> ?k |- _ ]
- => let Hn := fresh in
- assert (Hn : x <> y) by congruence;
- assert (x < y) by omega; clear H Hn
- | [ H : ?x <= ?y, H' : ?f ?x <> ?k, H'' : ?f ?y = ?k |- _ ]
- => let Hn := fresh in
- assert (Hn : x <> y) by congruence;
- assert (x < y) by omega; clear H Hn
- | _ => solve [ repeat match goal with H : context[_ mod _] |- _ => revert H end;
- Z.div_mod_to_quot_rem_in_goal; subst;
- lazymatch goal with
- | [ |- _ <= (?a * ?q + ?r) * ?q' ]
- => transitivity (q * (a * q') + r * q');
- [ assert (0 < a * q') by nia; nia
- | nia ]
- end ]
- end.
- { replace y' with (y + (y' - y)) by omega.
- rewrite Z.pow_add_r, <- Zdiv_Zdiv by auto with zarith.
- assert (y < y') by (assert (y <> y') by congruence; omega).
- assert (1 < 2^(y'-y)) by auto with zarith.
- assert (0 < x / 2^y)
- by (repeat match goal with H : context[_ mod _] |- _ => revert H end;
- Z.div_mod_to_quot_rem_in_goal; nia).
- assert (2^y <= x)
- by (repeat match goal with H : context[_ / _] |- _ => revert H end;
- Z.div_mod_to_quot_rem_in_goal; nia).
- match goal with
- | [ |- ?x + 1 <= ?y ] => cut (x < y); [ omega | ]
- end.
- auto with zarith. }
- Qed.
-
- Lemma shiftr_le_Proper2 y
- : Proper (Z.le ==> Z.le) (fun x => Z.shiftr x y).
- Proof. apply shiftl_le_Proper2. Qed.
-
- Lemma shiftr_le_Proper1 x
- (R := fun b : bool => if b then Z.le else Basics.flip Z.le)
- : Proper (R (x <? 0) ==> Z.le) (Z.shiftr x).
- Proof.
- subst R; intros y y' H'; unfold Z.shiftr; apply shiftl_le_Proper1.
- unfold Basics.flip in *.
- pose proof (Zle_cases 0 x).
- pose proof (Zlt_cases x 0).
- destruct (0 <=? x), (x <? 0); try omega.
- Qed.
-End Z.
-
-Module N2Z.
- Lemma inj_land n m : Z.of_N (N.land n m) = Z.land (Z.of_N n) (Z.of_N m).
- Proof. destruct n, m; reflexivity. Qed.
- Hint Rewrite inj_land : push_Zof_N.
- Hint Rewrite <- inj_land : pull_Zof_N.
-
- Lemma inj_lor n m : Z.of_N (N.lor n m) = Z.lor (Z.of_N n) (Z.of_N m).
- Proof. destruct n, m; reflexivity. Qed.
- Hint Rewrite inj_lor : push_Zof_N.
- Hint Rewrite <- inj_lor : pull_Zof_N.
-
- Lemma inj_shiftl: forall x y, Z.of_N (N.shiftl x y) = Z.shiftl (Z.of_N x) (Z.of_N y).
- Proof.
- intros x y.
- apply Z.bits_inj_iff'; intros k Hpos.
- rewrite Z2N.inj_testbit; [|assumption].
- rewrite Z.shiftl_spec; [|assumption].
-
- assert ((Z.to_N k) >= y \/ (Z.to_N k) < y)%N as g by (
- unfold N.ge, N.lt; induction (N.compare (Z.to_N k) y); [left|auto|left];
- intro H; inversion H).
-
- destruct g as [g|g];
- [ rewrite N.shiftl_spec_high; [|apply N2Z.inj_le; rewrite Z2N.id|apply N.ge_le]
- | rewrite N.shiftl_spec_low]; try assumption.
-
- - rewrite <- N2Z.inj_testbit; f_equal.
- rewrite N2Z.inj_sub, Z2N.id; [reflexivity|assumption|apply N.ge_le; assumption].
-
- - apply N2Z.inj_lt in g.
- rewrite Z2N.id in g; [symmetry|assumption].
- apply Z.testbit_neg_r; omega.
- Qed.
- Hint Rewrite inj_shiftl : push_Zof_N.
- Hint Rewrite <- inj_shiftl : pull_Zof_N.
-
- Lemma inj_shiftr: forall x y, Z.of_N (N.shiftr x y) = Z.shiftr (Z.of_N x) (Z.of_N y).
- Proof.
- intros.
- apply Z.bits_inj_iff'; intros k Hpos.
- rewrite Z2N.inj_testbit; [|assumption].
- rewrite Z.shiftr_spec, N.shiftr_spec; [|apply N2Z.inj_le; rewrite Z2N.id|]; try assumption.
- rewrite <- N2Z.inj_testbit; f_equal.
- rewrite N2Z.inj_add; f_equal.
- apply Z2N.id; assumption.
- Qed.
- Hint Rewrite inj_shiftr : push_Zof_N.
- Hint Rewrite <- inj_shiftr : pull_Zof_N.
-End N2Z.
-
-Module Export BoundsTactics.
- Ltac prime_bound := Z.prime_bound.
- Ltac zero_bounds := Z.zero_bounds.
-End BoundsTactics.
+Require Coq.ZArith.Zpower Coq.ZArith.Znumtheory Coq.ZArith.ZArith Coq.ZArith.Zdiv.
+Require Coq.omega.Omega Coq.micromega.Psatz Coq.Numbers.Natural.Peano.NPeano Coq.Arith.Arith.
+Require Crypto.Util.ZUtil.AddGetCarry.
+Require Crypto.Util.ZUtil.AddModulo.
+Require Crypto.Util.ZUtil.CC.
+Require Crypto.Util.ZUtil.CPS.
+Require Crypto.Util.ZUtil.Definitions.
+Require Crypto.Util.ZUtil.DistrIf.
+Require Crypto.Util.ZUtil.Div.
+Require Crypto.Util.ZUtil.Div.Bootstrap.
+Require Crypto.Util.ZUtil.Divide.
+Require Crypto.Util.ZUtil.EquivModulo.
+Require Crypto.Util.ZUtil.Ge.
+Require Crypto.Util.ZUtil.Hints.
+Require Crypto.Util.ZUtil.Hints.Core.
+Require Crypto.Util.ZUtil.Hints.PullPush.
+Require Crypto.Util.ZUtil.Hints.ZArith.
+Require Crypto.Util.ZUtil.Hints.Ztestbit.
+Require Crypto.Util.ZUtil.Land.
+Require Crypto.Util.ZUtil.LandLorBounds.
+Require Crypto.Util.ZUtil.LandLorShiftBounds.
+Require Crypto.Util.ZUtil.Le.
+Require Crypto.Util.ZUtil.Lnot.
+Require Crypto.Util.ZUtil.Log2.
+Require Crypto.Util.ZUtil.ModInv.
+Require Crypto.Util.ZUtil.Modulo.
+Require Crypto.Util.ZUtil.Modulo.Bootstrap.
+Require Crypto.Util.ZUtil.Modulo.PullPush.
+Require Crypto.Util.ZUtil.Morphisms.
+Require Crypto.Util.ZUtil.Mul.
+Require Crypto.Util.ZUtil.MulSplit.
+Require Crypto.Util.ZUtil.N2Z.
+Require Crypto.Util.ZUtil.Notations.
+Require Crypto.Util.ZUtil.Odd.
+Require Crypto.Util.ZUtil.Ones.
+Require Crypto.Util.ZUtil.Opp.
+Require Crypto.Util.ZUtil.Peano.
+Require Crypto.Util.ZUtil.Pow.
+Require Crypto.Util.ZUtil.Pow2.
+Require Crypto.Util.ZUtil.Pow2Mod.
+Require Crypto.Util.ZUtil.Quot.
+Require Crypto.Util.ZUtil.Rshi.
+Require Crypto.Util.ZUtil.Sgn.
+Require Crypto.Util.ZUtil.Shift.
+Require Crypto.Util.ZUtil.Sorting.
+Require Crypto.Util.ZUtil.Stabilization.
+Require Crypto.Util.ZUtil.Tactics.
+Require Crypto.Util.ZUtil.Tactics.CompareToSgn.
+Require Crypto.Util.ZUtil.Tactics.DivModToQuotRem.
+Require Crypto.Util.ZUtil.Tactics.DivideExistsMul.
+Require Crypto.Util.ZUtil.Tactics.LinearSubstitute.
+Require Crypto.Util.ZUtil.Tactics.LtbToLt.
+Require Crypto.Util.ZUtil.Tactics.PeelLe.
+Require Crypto.Util.ZUtil.Tactics.PrimeBound.
+Require Crypto.Util.ZUtil.Tactics.PullPush.
+Require Crypto.Util.ZUtil.Tactics.PullPush.Modulo.
+Require Crypto.Util.ZUtil.Tactics.ReplaceNegWithPos.
+Require Crypto.Util.ZUtil.Tactics.RewriteModSmall.
+Require Crypto.Util.ZUtil.Tactics.SimplifyFractionsLe.
+Require Crypto.Util.ZUtil.Tactics.SplitMinMax.
+Require Crypto.Util.ZUtil.Tactics.ZeroBounds.
+Require Crypto.Util.ZUtil.Tactics.Ztestbit.
+Require Crypto.Util.ZUtil.Testbit.
+Require Crypto.Util.ZUtil.Z2Nat.
+Require Crypto.Util.ZUtil.ZSimplify.
+Require Crypto.Util.ZUtil.ZSimplify.Autogenerated.
+Require Crypto.Util.ZUtil.ZSimplify.Core.
+Require Crypto.Util.ZUtil.ZSimplify.Simple.
+Require Crypto.Util.ZUtil.Zselect.