aboutsummaryrefslogtreecommitdiff
path: root/src/Util/Tactics.v
diff options
context:
space:
mode:
Diffstat (limited to 'src/Util/Tactics.v')
-rw-r--r--src/Util/Tactics.v333
1 files changed, 18 insertions, 315 deletions
diff --git a/src/Util/Tactics.v b/src/Util/Tactics.v
index d6ab637aa..88dcb0aa8 100644
--- a/src/Util/Tactics.v
+++ b/src/Util/Tactics.v
@@ -1,331 +1,34 @@
(** * Generic Tactics *)
Require Export Crypto.Util.FixCoqMistakes.
Require Export Crypto.Util.Tactics.BreakMatch.
+Require Export Crypto.Util.Tactics.Contains.
+Require Export Crypto.Util.Tactics.ConvoyDestruct.
+Require Export Crypto.Util.Tactics.ClearDuplicates.
Require Export Crypto.Util.Tactics.Head.
+Require Export Crypto.Util.Tactics.DebugPrint.
Require Export Crypto.Util.Tactics.DestructHyps.
Require Export Crypto.Util.Tactics.DestructHead.
+Require Export Crypto.Util.Tactics.DestructTrivial.
Require Export Crypto.Util.Tactics.DoWithHyp.
+Require Export Crypto.Util.Tactics.ESpecialize.
Require Export Crypto.Util.Tactics.ETransitivity.
Require Export Crypto.Util.Tactics.EvarExists.
+Require Export Crypto.Util.Tactics.Forward.
+Require Export Crypto.Util.Tactics.GetGoal.
+Require Export Crypto.Util.Tactics.OnSubterms.
+Require Export Crypto.Util.Tactics.Not.
+Require Export Crypto.Util.Tactics.Revert.
Require Export Crypto.Util.Tactics.RewriteHyp.
+Require Export Crypto.Util.Tactics.SetEvars.
+Require Export Crypto.Util.Tactics.SetoidSubst.
+Require Export Crypto.Util.Tactics.SideConditionsBeforeToAfter.
+Require Export Crypto.Util.Tactics.SimplifyProjections.
+Require Export Crypto.Util.Tactics.SimplifyRepeatedIfs.
Require Export Crypto.Util.Tactics.SpecializeBy.
Require Export Crypto.Util.Tactics.SplitInContext.
+Require Export Crypto.Util.Tactics.SubstEvars.
Require Export Crypto.Util.Tactics.SubstLet.
+Require Export Crypto.Util.Tactics.Test.
Require Export Crypto.Util.Tactics.UnifyAbstractReflexivity.
Require Export Crypto.Util.Tactics.UniquePose.
Require Export Crypto.Util.Tactics.VM.
-
-(** Test if a tactic succeeds, but always roll-back the results *)
-Tactic Notation "test" tactic3(tac) :=
- try (first [ tac | fail 2 tac "does not succeed" ]; fail 0 tac "succeeds"; [](* test for [t] solved all goals *)).
-
-(** [not tac] is equivalent to [fail tac "succeeds"] if [tac] succeeds, and is equivalent to [idtac] if [tac] fails *)
-Tactic Notation "not" tactic3(tac) := try ((test tac); fail 1 tac "succeeds").
-
-Ltac get_goal :=
- match goal with |- ?G => G end.
-
-(** [contains x expr] succeeds iff [x] appears in [expr] *)
-Ltac contains search_for in_term :=
- idtac;
- lazymatch in_term with
- | appcontext[search_for] => idtac
- end.
-
-Ltac debuglevel := constr:(0%nat).
-
-Ltac solve_debugfail tac :=
- solve [tac] ||
- ( let dbg := debuglevel in
- match dbg with
- | O => idtac
- | _ => match goal with |- ?G => idtac "couldn't prove" G end
- end;
- fail).
-
-Ltac set_evars :=
- repeat match goal with
- | [ |- appcontext[?E] ] => is_evar E; let e := fresh "e" in set (e := E)
- end.
-
-Ltac subst_evars :=
- repeat match goal with
- | [ e := ?E |- _ ] => is_evar E; subst e
- end.
-
-Ltac free_in x y :=
- idtac;
- match y with
- | appcontext[x] => fail 1 x "appears in" y
- | _ => idtac
- end.
-
-Ltac setoid_subst'' R x :=
- is_var x;
- match goal with
- | [ H : R x ?y |- _ ]
- => free_in x y; rewrite ?H in *; clear x H
- | [ H : R ?y x |- _ ]
- => free_in x y; rewrite <- ?H in *; clear x H
- end.
-
-Ltac setoid_subst' x :=
- is_var x;
- match goal with
- | [ H : ?R x _ |- _ ] => setoid_subst'' R x
- | [ H : ?R _ x |- _ ] => setoid_subst'' R x
- end.
-
-Ltac setoid_subst_rel' R :=
- idtac;
- match goal with
- | [ H : R ?x _ |- _ ] => setoid_subst'' R x
- | [ H : R _ ?x |- _ ] => setoid_subst'' R x
- end.
-
-Ltac setoid_subst_rel R := repeat setoid_subst_rel' R.
-
-Ltac setoid_subst_all :=
- repeat match goal with
- | [ H : ?R ?x ?y |- _ ] => is_var x; setoid_subst'' R x
- | [ H : ?R ?x ?y |- _ ] => is_var y; setoid_subst'' R y
- end.
-
-Tactic Notation "setoid_subst" ident(x) := setoid_subst' x.
-Tactic Notation "setoid_subst" := setoid_subst_all.
-
-Ltac destruct_trivial_step :=
- match goal with
- | [ H : unit |- _ ] => clear H || destruct H
- | [ H : True |- _ ] => clear H || destruct H
- end.
-Ltac destruct_trivial := repeat destruct_trivial_step.
-
-Ltac clear_duplicates_step :=
- match goal with
- | [ H : ?T, H' : ?T |- _ ] => clear H'
- | [ H := ?T, H' := ?T |- _ ] => clear H'
- end.
-Ltac clear_duplicates := repeat clear_duplicates_step.
-
-
-(** given a [matcher] that succeeds on some hypotheses and fails on
- others, destruct any matching hypotheses, and then execute [tac]
- after each [destruct].
-
- The [tac] part exists so that you can, e.g., [simpl in *], to
- speed things up. *)
-Ltac do_one_match_then matcher do_tac tac :=
- idtac;
- match goal with
- | [ H : ?T |- _ ]
- => matcher T; do_tac H;
- try match type of H with
- | T => clear H
- end;
- tac
- end.
-
-Ltac do_all_matches_then matcher do_tac tac :=
- repeat do_one_match_then matcher do_tac tac.
-
-Ltac destruct_all_matches_then matcher tac :=
- do_all_matches_then matcher ltac:(fun H => destruct H) tac.
-Ltac destruct_one_match_then matcher tac :=
- do_one_match_then matcher ltac:(fun H => destruct H) tac.
-
-Ltac inversion_all_matches_then matcher tac :=
- do_all_matches_then matcher ltac:(fun H => inversion H; subst) tac.
-Ltac inversion_one_match_then matcher tac :=
- do_one_match_then matcher ltac:(fun H => inversion H; subst) tac.
-
-Ltac destruct_all_matches matcher :=
- destruct_all_matches_then matcher ltac:( simpl in * ).
-Ltac destruct_one_match matcher := destruct_one_match_then matcher ltac:( simpl in * ).
-Ltac destruct_all_matches' matcher := destruct_all_matches_then matcher idtac.
-
-Ltac inversion_all_matches matcher := inversion_all_matches_then matcher ltac:( simpl in * ).
-Ltac inversion_one_match matcher := inversion_one_match_then matcher ltac:( simpl in * ).
-Ltac inversion_all_matches' matcher := inversion_all_matches_then matcher idtac.
-
-(** If [tac_in H] operates in [H] and leaves side-conditions before
- the original goal, then
- [side_conditions_before_to_side_conditions_after tac_in H] does
- the same thing to [H], but leaves side-conditions after the
- original goal. *)
-Ltac side_conditions_before_to_side_conditions_after tac_in H :=
- let HT := type of H in
- let HTT := type of HT in
- let H' := fresh in
- rename H into H';
- let HT' := fresh in
- evar (HT' : HTT);
- cut HT';
- [ subst HT'; intro H
- | tac_in H';
- [ ..
- | subst HT'; eexact H' ] ];
- instantiate; (* required in 8.4 for the [move] to succeed, because evar dependencies *)
- [ (* We preserve the order of the hypotheses. We need to do this
- here, after evars are instantiated, and not above. *)
- move H after H'; clear H'
- | .. ].
-
-(** Execute [progress tac] on all subterms of the goal. Useful for things like [ring_simplify]. *)
-Ltac tac_on_subterms tac :=
- repeat match goal with
- | [ |- context[?t] ]
- => progress tac t
- end.
-
-(** Like [Coq.Program.Tactics.revert_last], but only for non-dependent hypotheses *)
-Ltac revert_last_nondep :=
- match goal with
- | [ H : _ |- _ ]
- => lazymatch goal with
- | [ H' : appcontext[H] |- _ ] => fail
- | [ |- appcontext[H] ] => fail
- | _ => idtac
- end;
- revert H
- end.
-
-Ltac reverse_nondep := repeat revert_last_nondep.
-
-Ltac simplify_repeated_ifs_step :=
- match goal with
- | [ |- context G[if ?b then ?x else ?y] ]
- => let x' := match x with
- | context x'[b] => let x'' := context x'[true] in x''
- end in
- let G' := context G[if b then x' else y] in
- cut G'; [ destruct b; exact (fun z => z) | cbv iota ]
- | [ |- context G[if ?b then ?x else ?y] ]
- => let y' := match y with
- | context y'[b] => let y'' := context y'[false] in y''
- end in
- let G' := context G[if b then x else y'] in
- cut G'; [ destruct b; exact (fun z => z) | cbv iota ]
- end.
-Ltac simplify_repeated_ifs := repeat simplify_repeated_ifs_step.
-
-(** Like [specialize] but allows holes that get filled with evars. *)
-Tactic Notation "especialize" open_constr(H) := specialize H.
-
-(** [forward H] specializes non-dependent binders in a hypothesis [H]
- with side-conditions. Side-conditions come after the main goal,
- like with [replace] and [rewrite].
-
- [eforward H] is like [forward H], but also specializes dependent
- binders with evars.
-
- Both tactics do nothing on hypotheses they cannot handle. *)
-Ltac forward_step H :=
- match type of H with
- | ?A -> ?B => let a := fresh in cut A; [ intro a; specialize (H a); clear a | ]
- end.
-Ltac eforward_step H :=
- match type of H with
- | _ => forward_step H
- | forall x : ?A, _
- => let x_or_fresh := fresh x in
- evar (x_or_fresh : A);
- specialize (H x_or_fresh); subst x_or_fresh
- end.
-Ltac forward H := try (forward_step H; [ forward H | .. ]).
-Ltac eforward H := try (eforward_step H; [ eforward H | .. ]).
-
-(** [simplify_projections] reduces terms of the form [fst (_, _)] (for
- any projection from [prod], [sig], [sigT], or [and]) *)
-Ltac pre_simplify_projection proj proj' uproj' :=
- pose proj as proj';
- pose proj as uproj';
- unfold proj in uproj';
- change proj with proj'.
-Ltac do_simplify_projection_2Targ_4carg_step proj proj' uproj' construct :=
- change proj' with uproj' at 1;
- lazymatch goal with
- | [ |- appcontext[uproj' _ _ (construct _ _ _ _)] ]
- => cbv beta iota delta [uproj']
- | _ => change uproj' with proj
- end.
-Ltac do_simplify_projection_2Targ_4carg proj proj' uproj' construct :=
- repeat do_simplify_projection_2Targ_4carg_step proj proj' uproj' construct.
-Ltac simplify_projection_2Targ_4carg proj construct :=
- let proj' := fresh "proj" in
- let uproj' := fresh "proj" in
- pre_simplify_projection proj proj' uproj';
- do_simplify_projection_2Targ_4carg proj proj' uproj' construct;
- clear proj' uproj'.
-
-Ltac simplify_projections :=
- repeat (simplify_projection_2Targ_4carg @fst @pair
- || simplify_projection_2Targ_4carg @snd @pair
- || simplify_projection_2Targ_4carg @proj1_sig @exist
- || simplify_projection_2Targ_4carg @proj2_sig @exist
- || simplify_projection_2Targ_4carg @projT1 @existT
- || simplify_projection_2Targ_4carg @projT2 @existT
- || simplify_projection_2Targ_4carg @proj1 @conj
- || simplify_projection_2Targ_4carg @proj2 @conj).
-
-(** constr-based [idtac] *)
-Class cidtac {T} (msg : T) := Build_cidtac : True.
-Hint Extern 0 (cidtac ?msg) => idtac msg; exact I : typeclass_instances.
-(** constr-based [idtac] *)
-Class cidtac2 {T1 T2} (msg1 : T1) (msg2 : T2) := Build_cidtac2 : True.
-Hint Extern 0 (cidtac2 ?msg1 ?msg2) => idtac msg1 msg2; exact I : typeclass_instances.
-Class cidtac3 {T1 T2 T3} (msg1 : T1) (msg2 : T2) (msg3 : T3) := Build_cidtac3 : True.
-Hint Extern 0 (cidtac3 ?msg1 ?msg2 ?msg3) => idtac msg1 msg2 msg3; exact I : typeclass_instances.
-
-Class cfail {T} (msg : T) := Build_cfail : True.
-Hint Extern 0 (cfail ?msg) => idtac "Error:" msg; exact I : typeclass_instances.
-Class cfail2 {T1 T2} (msg1 : T1) (msg2 : T2) := Build_cfail2 : True.
-Hint Extern 0 (cfail2 ?msg1 ?msg2) => idtac "Error:" msg1 msg2; exact I : typeclass_instances.
-Class cfail3 {T1 T2 T3} (msg1 : T1) (msg2 : T2) (msg3 : T3) := Build_cfail3 : True.
-Hint Extern 0 (cfail3 ?msg1 ?msg2 ?msg3) => idtac "Error:" msg1 msg2 msg3; exact I : typeclass_instances.
-
-Ltac cidtac msg := constr:(_ : cidtac msg).
-Ltac cidtac2 msg1 msg2 := constr:(_ : cidtac2 msg1 msg2).
-Ltac cidtac3 msg1 msg2 msg3 := constr:(_ : cidtac2 msg1 msg2 msg3).
-Ltac cfail msg := let dummy := constr:(_ : cfail msg) in constr:(I : I).
-Ltac cfail2 msg1 msg2 := let dummy := constr:(_ : cfail2 msg1 msg2) in constr:(I : I).
-Ltac cfail3 msg1 msg2 msg3 := let dummy := constr:(_ : cfail2 msg1 msg2 msg3) in constr:(I : I).
-
-Ltac idtac_goal := lazymatch goal with |- ?G => idtac "Goal:" G end.
-Ltac idtac_context :=
- try (repeat match goal with H : _ |- _ => revert H end;
- idtac_goal;
- lazymatch goal with |- ?G => idtac "Context:" G end;
- fail).
-
-(** Destruct the convoy pattern ([match e as x return x = e -> _ with _ => _ end eq_refl] *)
-Ltac convoy_destruct_gen T change_in :=
- let e' := fresh in
- let H' := fresh in
- match T with
- | context G[?f eq_refl]
- => match f with
- | match ?e with _ => _ end
- => pose e as e';
- match f with
- | context F[e]
- => let F' := context F[e'] in
- first [ pose (eq_refl : e = e') as H';
- let G' := context G[F' H'] in
- change_in G';
- clearbody H' e'
- | pose (eq_refl : e' = e) as H';
- let G' := context G[F' H'] in
- change_in G';
- clearbody H' e' ]
- end
- end;
- destruct e'
- end.
-
-Ltac convoy_destruct_in H :=
- let T := type of H in
- convoy_destruct_gen T ltac:(fun T' => change T' in H).
-Ltac convoy_destruct :=
- let T := get_goal in
- convoy_destruct_gen T ltac:(fun T' => change T').