aboutsummaryrefslogtreecommitdiff
path: root/src/Spec
diff options
context:
space:
mode:
Diffstat (limited to 'src/Spec')
-rw-r--r--src/Spec/Ed25519.v6
-rw-r--r--src/Spec/Encoding.v56
-rw-r--r--src/Spec/ModularWordEncoding.v31
-rw-r--r--src/Spec/PointEncoding.v226
4 files changed, 72 insertions, 247 deletions
diff --git a/src/Spec/Ed25519.v b/src/Spec/Ed25519.v
index 6ab47e8e5..30892c006 100644
--- a/src/Spec/Ed25519.v
+++ b/src/Spec/Ed25519.v
@@ -1,6 +1,6 @@
Require Import Coq.ZArith.ZArith Coq.ZArith.Zpower Coq.ZArith.ZArith Coq.ZArith.Znumtheory.
Require Import Coq.Numbers.Natural.Peano.NPeano Coq.NArith.NArith.
-Require Import Crypto.Spec.Encoding Crypto.Spec.PointEncoding.
+Require Import Crypto.Spec.PointEncoding Crypto.Spec.ModularWordEncoding.
Require Import Crypto.Spec.EdDSA.
Require Import Crypto.Spec.CompleteEdwardsCurve Crypto.CompleteEdwardsCurve.CompleteEdwardsCurveTheorems.
Require Import Crypto.ModularArithmetic.PrimeFieldTheorems Crypto.ModularArithmetic.ModularArithmeticTheorems.
@@ -114,6 +114,8 @@ Proof.
compute; omega.
Qed.
+Require Import Crypto.Spec.Encoding.
+
Lemma q_pos : (0 < q)%Z. q_bound. Qed.
Definition FqEncoding : encoding of (F q) as word (b-1) :=
@modular_word_encoding q (b - 1) q_pos b_valid.
@@ -140,7 +142,7 @@ Proof.
reflexivity.
Qed.
-Definition PointEncoding := @point_encoding curve25519params (b - 1) FqEncoding q_5mod8 sqrt_minus1_valid.
+Definition PointEncoding := @point_encoding curve25519params (b - 1) FqEncoding.
Definition H : forall n : nat, word n -> word (b + b). Admitted.
Definition B : point. Admitted. (* TODO: B = decodePoint (y=4/5, x="positive") *)
diff --git a/src/Spec/Encoding.v b/src/Spec/Encoding.v
index 14cf9d9d9..9a2d5e5ed 100644
--- a/src/Spec/Encoding.v
+++ b/src/Spec/Encoding.v
@@ -1,61 +1,7 @@
-Require Import Coq.ZArith.ZArith Coq.ZArith.Zpower Coq.ZArith.ZArith.
-Require Import Coq.Numbers.Natural.Peano.NPeano.
-Require Import Crypto.ModularArithmetic.PrimeFieldTheorems Crypto.ModularArithmetic.ModularArithmeticTheorems.
-Require Import Bedrock.Word.
-Require Import Crypto.Tactics.VerdiTactics.
-Require Import Crypto.Util.NatUtil.
-Require Import Crypto.Util.WordUtil.
-
Class Encoding (T B:Type) := {
enc : T -> B ;
dec : B -> option T ;
encoding_valid : forall x, dec (enc x) = Some x
}.
-Notation "'encoding' 'of' T 'as' B" := (Encoding T B) (at level 50).
-
-Local Open Scope nat_scope.
-
-Section ModularWordEncoding.
- Context {m : Z} {sz : nat} {m_pos : (0 < m)%Z} {bound_check : Z.to_nat m < 2 ^ sz}.
-
- Definition Fm_enc (x : F m) : word sz := natToWord sz (Z.to_nat (FieldToZ x)).
-
- Definition Fm_dec (x_ : word sz) : option (F m) :=
- let z := Z.of_nat (wordToNat (x_)) in
- if Z_lt_dec z m
- then Some (ZToField z)
- else None
- .
-
- Lemma bound_check_N : forall x : F m, (N.of_nat (Z.to_nat x) < Npow2 sz)%N.
- Proof.
- intro.
- pose proof (FieldToZ_range x m_pos) as x_range.
- rewrite <- Nnat.N2Nat.id.
- rewrite Npow2_nat.
- apply (Nat2N_inj_lt (Z.to_nat x) (pow2 sz)).
- rewrite Zpow_pow2.
- destruct x_range as [x_low x_high].
- apply Z2Nat.inj_lt in x_high; try omega.
- rewrite <- ZUtil.pow_Z2N_Zpow by omega.
- replace (Z.to_nat 2) with 2%nat by auto.
- omega.
- Qed.
-
- Lemma Fm_encoding_valid : forall x, Fm_dec (Fm_enc x) = Some x.
- Proof.
- unfold Fm_dec, Fm_enc; intros.
- pose proof (FieldToZ_range x m_pos).
- rewrite wordToNat_natToWord_idempotent by apply bound_check_N.
- rewrite Z2Nat.id by omega.
- rewrite ZToField_idempotent.
- break_if; auto; omega.
- Qed.
-
- Instance modular_word_encoding : encoding of F m as word sz := {
- enc := Fm_enc;
- dec := Fm_dec;
- encoding_valid := Fm_encoding_valid
- }.
-End ModularWordEncoding.
+Notation "'encoding' 'of' T 'as' B" := (Encoding T B) (at level 50). \ No newline at end of file
diff --git a/src/Spec/ModularWordEncoding.v b/src/Spec/ModularWordEncoding.v
new file mode 100644
index 000000000..9f7e3340b
--- /dev/null
+++ b/src/Spec/ModularWordEncoding.v
@@ -0,0 +1,31 @@
+Require Import Coq.ZArith.ZArith.
+Require Import Coq.Numbers.Natural.Peano.NPeano.
+Require Import Crypto.ModularArithmetic.PrimeFieldTheorems.
+Require Import Bedrock.Word.
+Require Import Crypto.Tactics.VerdiTactics.
+Require Import Crypto.Util.NatUtil.
+Require Import Crypto.Util.WordUtil.
+Require Import Crypto.Spec.Encoding.
+Require Crypto.Encoding.ModularWordEncodingPre.
+
+Local Open Scope nat_scope.
+
+Section ModularWordEncoding.
+ Context {m : Z} {sz : nat} {m_pos : (0 < m)%Z} {bound_check : Z.to_nat m < 2 ^ sz}.
+
+ Definition Fm_enc (x : F m) : word sz := NToWord sz (Z.to_N (FieldToZ x)).
+
+ Definition Fm_dec (x_ : word sz) : option (F m) :=
+ let z := Z.of_N (wordToN (x_)) in
+ if Z_lt_dec z m
+ then Some (ZToField z)
+ else None
+ .
+
+ Instance modular_word_encoding : encoding of F m as word sz := {
+ enc := Fm_enc;
+ dec := Fm_dec;
+ encoding_valid := @ModularWordEncodingPre.Fm_encoding_valid m sz m_pos bound_check
+ }.
+
+End ModularWordEncoding.
diff --git a/src/Spec/PointEncoding.v b/src/Spec/PointEncoding.v
index 251e50414..38b4b4224 100644
--- a/src/Spec/PointEncoding.v
+++ b/src/Spec/PointEncoding.v
@@ -1,196 +1,42 @@
-Require Import Coq.ZArith.ZArith Coq.ZArith.Zpower Coq.ZArith.ZArith Coq.ZArith.Znumtheory.
-Require Import Coq.Numbers.Natural.Peano.NPeano Coq.NArith.NArith.
-Require Import Crypto.Spec.Encoding Crypto.Encoding.EncodingTheorems.
-Require Import Crypto.Spec.CompleteEdwardsCurve Crypto.CompleteEdwardsCurve.CompleteEdwardsCurveTheorems.
-Require Import Crypto.ModularArithmetic.PrimeFieldTheorems Crypto.ModularArithmetic.ModularArithmeticTheorems.
-Require Import Crypto.Util.NatUtil Crypto.Util.ZUtil Crypto.Util.NumTheoryUtil.
-Require Import Bedrock.Word.
-Require Import Crypto.Tactics.VerdiTactics.
+Require Coq.ZArith.ZArith Coq.ZArith.Znumtheory.
+Require Coq.Numbers.Natural.Peano.NPeano.
+Require Crypto.Encoding.EncodingTheorems.
+Require Crypto.CompleteEdwardsCurve.CompleteEdwardsCurveTheorems.
+Require Crypto.ModularArithmetic.PrimeFieldTheorems.
+Require Bedrock.Word.
+Require Crypto.Tactics.VerdiTactics.
+Require Crypto.Encoding.PointEncodingPre.
+Obligation Tactic := eauto using PointEncodingPre.point_encoding_canonical.
+
+Require Import Crypto.Spec.Encoding Crypto.Spec.ModularArithmetic.
+Require Import Crypto.Spec.CompleteEdwardsCurve.
Local Open Scope F_scope.
Section PointEncoding.
- Context {prm:TwistedEdwardsParams} {sz : nat} {FqEncoding : encoding of F q as word sz} {q_5mod8 : q mod 8 = 5} {sqrt_minus1_valid : (@ZToField q 2 ^ Z.to_N (q / 4)) ^ 2 = opp 1}.
- Existing Instance prime_q.
-
- Add Field Ffield : (@Ffield_theory q _)
- (morphism (@Fring_morph q),
- preprocess [Fpreprocess],
- postprocess [Fpostprocess; try exact Fq_1_neq_0; try assumption],
- constants [Fconstant],
- div (@Fmorph_div_theory q),
- power_tac (@Fpower_theory q) [Fexp_tac]).
-
- Definition sqrt_valid (a : F q) := ((sqrt_mod_q a) ^ 2 = a)%F.
-
- Lemma solve_sqrt_valid : forall (p : point),
- sqrt_valid (solve_for_x2 (snd (proj1_sig p))).
- Proof.
- intros.
- destruct p as [[x y] onCurve_xy]; simpl.
- rewrite (solve_correct x y) in onCurve_xy.
- rewrite <- onCurve_xy.
- unfold sqrt_valid.
- eapply sqrt_mod_q_valid; eauto.
- unfold isSquare; eauto.
- Grab Existential Variables. eauto.
- Qed.
-
- Lemma solve_onCurve: forall (y : F q), sqrt_valid (solve_for_x2 y) ->
- onCurve (sqrt_mod_q (solve_for_x2 y), y).
- Proof.
- intros.
- unfold sqrt_valid in *.
- apply solve_correct; auto.
- Qed.
-
- Lemma solve_opp_onCurve: forall (y : F q), sqrt_valid (solve_for_x2 y) ->
- onCurve (opp (sqrt_mod_q (solve_for_x2 y)), y).
- Proof.
- intros y sqrt_valid_x2.
- unfold sqrt_valid in *.
- apply solve_correct.
- rewrite <- sqrt_valid_x2 at 2.
- ring.
- Qed.
-
-Definition sign_bit (x : F q) := (wordToN (enc (opp x)) <? wordToN (enc x))%N.
-Definition point_enc (p : point) : word (S sz) := let '(x,y) := proj1_sig p in
- WS (sign_bit x) (enc y).
-Definition point_dec_coordinates (w : word (S sz)) : option (F q * F q) :=
- match dec (wtl w) with
- | None => None
- | Some y => let x2 := solve_for_x2 y in
- let x := sqrt_mod_q x2 in
- if F_eq_dec (x ^ 2) x2
- then
- let p := (if Bool.eqb (whd w) (sign_bit x) then x else opp x, y) in
- Some p
- else None
- end.
-
-Definition point_dec (w : word (S sz)) : option point :=
- match dec (wtl w) with
- | None => None
- | Some y => let x2 := solve_for_x2 y in
- let x := sqrt_mod_q x2 in
- match (F_eq_dec (x ^ 2) x2) with
- | right _ => None
- | left EQ => if Bool.eqb (whd w) (sign_bit x)
- then Some (mkPoint (x, y) (solve_onCurve y EQ))
- else Some (mkPoint (opp x, y) (solve_opp_onCurve y EQ))
- end
- end.
-
-Lemma point_dec_coordinates_correct w
- : option_map (@proj1_sig _ _) (point_dec w) = point_dec_coordinates w.
-Proof.
- unfold point_dec, point_dec_coordinates.
- edestruct dec; [ | reflexivity ].
- edestruct @F_eq_dec; [ | reflexivity ].
- edestruct @Bool.eqb; reflexivity.
-Qed.
-
-Lemma y_decode : forall p, dec (wtl (point_enc p)) = Some (snd (proj1_sig p)).
-Proof.
- intros.
- destruct p as [[x y] onCurve_p]; simpl.
- exact (encoding_valid y).
-Qed.
-
-
-Lemma wordToN_enc_neq_opp : forall x, x <> 0 -> (wordToN (enc (opp x)) <> wordToN (enc x))%N.
-Proof.
- intros x x_nonzero.
- intro false_eq.
- apply x_nonzero.
- apply F_eq_opp_zero; try apply two_lt_q.
- apply wordToN_inj in false_eq.
- apply encoding_inj in false_eq.
- auto.
-Qed.
-
-Lemma sign_bit_opp_negb : forall x, x <> 0 -> negb (sign_bit x) = sign_bit (opp x).
-Proof.
- intros x x_nonzero.
- unfold sign_bit.
- rewrite <- N.leb_antisym.
- rewrite N.ltb_compare, N.leb_compare.
- rewrite F_opp_involutive.
- case_eq (wordToN (enc x) ?= wordToN (enc (opp x)))%N; auto.
- intro wordToN_enc_eq.
- pose proof (wordToN_enc_neq_opp x x_nonzero).
- apply N.compare_eq_iff in wordToN_enc_eq.
- congruence.
-Qed.
-
-Lemma sign_bit_opp : forall x y, y <> 0 ->
- (sign_bit x <> sign_bit y <-> sign_bit x = sign_bit (opp y)).
-Proof.
- split; intro sign_mismatch; case_eq (sign_bit x); case_eq (sign_bit y);
- try congruence; intros y_sign x_sign; rewrite <- sign_bit_opp_negb in * by auto;
- rewrite y_sign, x_sign in *; reflexivity || discriminate.
-Qed.
-
-Lemma sign_bit_squares : forall x y, y <> 0 -> x ^ 2 = y ^ 2 ->
- sign_bit x = sign_bit y -> x = y.
-Proof.
- intros ? ? y_nonzero squares_eq sign_match.
- destruct (sqrt_solutions _ _ squares_eq) as [? | eq_opp]; auto.
- assert (sign_bit x = sign_bit (opp y)) as sign_mismatch by (f_equal; auto).
- apply sign_bit_opp in sign_mismatch; auto.
- congruence.
-Qed.
-
-Lemma sign_bit_match : forall x x' y : F q, onCurve (x, y) -> onCurve (x', y) ->
- sign_bit x = sign_bit x' -> x = x'.
-Proof.
- intros ? ? ? onCurve_x onCurve_x' sign_match.
- apply solve_correct in onCurve_x.
- apply solve_correct in onCurve_x'.
- destruct (F_eq_dec x' 0).
- + subst.
- rewrite Fq_pow_zero in onCurve_x' by congruence.
- rewrite <- onCurve_x' in *.
- eapply Fq_root_zero; eauto.
- + apply sign_bit_squares; auto.
- rewrite onCurve_x, onCurve_x'.
- reflexivity.
-Qed.
-
-Lemma point_encoding_valid : forall p, point_dec (point_enc p) = Some p.
-Proof.
- intros.
- unfold point_dec.
- rewrite y_decode.
- pose proof solve_sqrt_valid p as solve_sqrt_valid_p.
- unfold sqrt_valid in *.
- destruct p as [[x y] onCurve_p].
- simpl in *.
- destruct (F_eq_dec ((sqrt_mod_q (solve_for_x2 y)) ^ 2) (solve_for_x2 y)); intuition.
- break_if; f_equal; apply point_eq.
- + rewrite Bool.eqb_true_iff in Heqb.
- pose proof (solve_onCurve y solve_sqrt_valid_p).
- f_equal.
- apply (sign_bit_match _ _ y); auto.
- + rewrite Bool.eqb_false_iff in Heqb.
- pose proof (solve_opp_onCurve y solve_sqrt_valid_p).
- f_equal.
- apply sign_bit_opp in Heqb.
- apply (sign_bit_match _ _ y); auto.
- intro eq_zero.
- apply solve_correct in onCurve_p.
- rewrite eq_zero in *.
- rewrite Fq_pow_zero in solve_sqrt_valid_p by congruence.
- rewrite <- solve_sqrt_valid_p in onCurve_p.
- apply Fq_root_zero in onCurve_p.
- rewrite onCurve_p in Heqb; auto.
-Qed.
-
-Instance point_encoding : encoding of point as (word (S sz)) := {
- enc := point_enc;
- dec := point_dec;
- encoding_valid := point_encoding_valid
-}.
+ Context {prm: CompleteEdwardsCurve.TwistedEdwardsParams} {sz : nat}
+ {FqEncoding : encoding of ModularArithmetic.F (CompleteEdwardsCurve.q) as Word.word sz}.
+
+ Definition sign_bit (x : F CompleteEdwardsCurve.q) :=
+ match (enc x) with
+ | Word.WO => false
+ | Word.WS b _ w' => b
+ end.
+
+ Definition point_enc (p : CompleteEdwardsCurve.point) : Word.word (S sz) := let '(x,y) := proj1_sig p in
+ Word.WS (sign_bit x) (enc y).
+
+ Program Definition point_dec_with_spec :
+ {point_dec : Word.word (S sz) -> option CompleteEdwardsCurve.point
+ | forall w x, point_dec w = Some x -> (point_enc x = w)
+ } := PointEncodingPre.point_dec.
+
+ Definition point_dec := Eval hnf in (proj1_sig point_dec_with_spec).
+
+ Instance point_encoding : encoding of CompleteEdwardsCurve.point as (Word.word (S sz)) := {
+ enc := point_enc;
+ dec := point_dec;
+ encoding_valid := PointEncodingPre.point_encoding_valid
+ }.
End PointEncoding.