aboutsummaryrefslogtreecommitdiff
path: root/src/ModularArithmetic/ExtendedBaseVector.v
diff options
context:
space:
mode:
Diffstat (limited to 'src/ModularArithmetic/ExtendedBaseVector.v')
-rw-r--r--src/ModularArithmetic/ExtendedBaseVector.v205
1 files changed, 100 insertions, 105 deletions
diff --git a/src/ModularArithmetic/ExtendedBaseVector.v b/src/ModularArithmetic/ExtendedBaseVector.v
index 0afd6b484..fcd871aae 100644
--- a/src/ModularArithmetic/ExtendedBaseVector.v
+++ b/src/ModularArithmetic/ExtendedBaseVector.v
@@ -1,18 +1,18 @@
-Require Import Zpower ZArith.
-Require Import List.
+Require Import Coq.ZArith.Zpower Coq.ZArith.ZArith.
+Require Import Coq.Lists.List.
Require Import Crypto.Util.ListUtil Crypto.Util.CaseUtil Crypto.Util.ZUtil.
Require Import Crypto.ModularArithmetic.PrimeFieldTheorems.
-Require Import VerdiTactics.
+Require Import Crypto.Tactics.VerdiTactics.
Require Import Crypto.ModularArithmetic.Pow2Base.
Require Import Crypto.ModularArithmetic.Pow2BaseProofs.
-Require Import Crypto.ModularArithmetic.PseudoMersenneBaseParams.
-Require Import Crypto.ModularArithmetic.PseudoMersenneBaseParamProofs.
Require Import Crypto.BaseSystemProofs.
Require Crypto.BaseSystem.
Local Open Scope Z_scope.
Section ExtendedBaseVector.
- Context `{prm : PseudoMersenneBaseParams}.
+ Context (limb_widths : list Z)
+ (limb_widths_nonnegative : forall x, In x limb_widths -> 0 <= x).
+ Local Notation k := (sum_firstn limb_widths (length limb_widths)).
Local Notation base := (base_from_limb_widths limb_widths).
(* This section defines a new BaseVector that has double the length of the BaseVector
@@ -43,50 +43,21 @@ Section ExtendedBaseVector.
Lemma ext_base_alt : ext_base = base ++ (map (Z.mul (2^k)) base).
Proof.
unfold ext_base, ext_limb_widths.
- rewrite base_from_limb_widths_app by auto using limb_widths_pos, Z.lt_le_incl.
+ rewrite base_from_limb_widths_app by auto.
rewrite two_p_equiv.
reflexivity.
Qed.
Lemma ext_base_positive : forall b, In b ext_base -> b > 0.
Proof.
- rewrite ext_base_alt. intros b In_b_base.
- rewrite in_app_iff in In_b_base.
- destruct In_b_base as [In_b_base | In_b_extbase].
- + eapply BaseSystem.base_positive.
- eapply In_b_base.
- + eapply in_map_iff in In_b_extbase.
- destruct In_b_extbase as [b' [b'_2k_b In_b'_base]].
- subst.
- specialize (BaseSystem.base_positive b' In_b'_base); intro base_pos.
- replace 0 with (2 ^ k * 0) by ring.
- apply (Zmult_gt_compat_l b' 0 (2 ^ k)); [| apply base_pos; intuition].
- rewrite Z.gt_lt_iff.
- apply Z.pow_pos_nonneg; intuition.
- pose proof k_nonneg; omega.
+ apply base_positive; unfold ext_limb_widths.
+ intros ? H. apply in_app_or in H; destruct H; auto.
Qed.
- Lemma base_length_nonzero : (0 < length base)%nat.
+ Lemma b0_1 : forall x, nth_default x base 0 = 1 -> nth_default x ext_base 0 = 1.
Proof.
- assert (nth_default 0 base 0 = 1) by (apply BaseSystem.b0_1).
- unfold nth_default in H.
- case_eq (nth_error base 0); intros;
- try (rewrite H0 in H; omega).
- apply (nth_error_value_length _ 0 base z); auto.
- Qed.
-
- Lemma b0_1 : forall x, nth_default x ext_base 0 = 1.
- Proof.
- intros. rewrite ext_base_alt.
- rewrite nth_default_app.
- assert (0 < length base)%nat by (apply base_length_nonzero).
- destruct (lt_dec 0 (length base)); try apply BaseSystem.b0_1; try omega.
- Qed.
-
- Lemma two_k_nonzero : 2^k <> 0.
- Proof.
- pose proof (Z.pow_eq_0 2 k k_nonneg).
- intuition.
+ intros. rewrite ext_base_alt, nth_default_app.
+ destruct base; assumption.
Qed.
Lemma map_nth_default_base_high : forall n, (n < (length base))%nat ->
@@ -97,76 +68,85 @@ Section ExtendedBaseVector.
erewrite map_nth_default; auto.
Qed.
- Lemma base_good_over_boundary : forall
- (i : nat)
- (l : (i < length base)%nat)
- (j' : nat)
- (Hj': (i + j' < length base)%nat)
- ,
- 2 ^ k * (nth_default 0 base i * nth_default 0 base j') =
- 2 ^ k * (nth_default 0 base i * nth_default 0 base j') /
- (2 ^ k * nth_default 0 base (i + j')) *
- (2 ^ k * nth_default 0 base (i + j'))
- .
- Proof.
- intros.
- remember (nth_default 0 base) as b.
- rewrite Zdiv_mult_cancel_l by (exact two_k_nonzero).
- replace (b i * b j' / b (i + j')%nat * (2 ^ k * b (i + j')%nat))
- with ((2 ^ k * (b (i + j')%nat * (b i * b j' / b (i + j')%nat)))) by ring.
- rewrite Z.mul_cancel_l by (exact two_k_nonzero).
- replace (b (i + j')%nat * (b i * b j' / b (i + j')%nat))
- with ((b i * b j' / b (i + j')%nat) * b (i + j')%nat) by ring.
- subst b.
- apply (BaseSystem.base_good i j'); omega.
- Qed.
+ Section base_good.
+ Context (two_k_nonzero : 2^k <> 0)
+ (base_good : forall i j, (i+j < length base)%nat ->
+ let b := nth_default 0 base in
+ let r := (b i * b j) / b (i+j)%nat in
+ b i * b j = r * b (i+j)%nat)
+ (limb_widths_match_modulus : forall i j,
+ (i < length limb_widths)%nat ->
+ (j < length limb_widths)%nat ->
+ (i + j >= length limb_widths)%nat ->
+ let w_sum := sum_firstn limb_widths in
+ k + w_sum (i + j - length limb_widths)%nat <= w_sum i + w_sum j).
- Lemma ext_base_good :
- forall i j, (i+j < length ext_base)%nat ->
- let b := nth_default 0 ext_base in
- let r := (b i * b j) / b (i+j)%nat in
- b i * b j = r * b (i+j)%nat.
- Proof.
- intros.
- subst b. subst r.
- rewrite ext_base_alt in *.
- rewrite app_length in H; rewrite map_length in H.
- repeat rewrite nth_default_app.
- repeat break_if; try omega.
- { (* i < length base, j < length base, i + j < length base *)
- auto using BaseSystem.base_good.
- } { (* i < length base, j < length base, i + j >= length base *)
- rewrite (map_nth_default _ _ _ _ 0) by omega.
- apply (base_matches_modulus i j); rewrite <-base_length by auto using limb_widths_nonneg; omega.
- } { (* i < length base, j >= length base, i + j >= length base *)
- do 2 rewrite map_nth_default_base_high by omega.
- remember (j - length base)%nat as j'.
- replace (i + j - length base)%nat with (i + j')%nat by omega.
- replace (nth_default 0 base i * (2 ^ k * nth_default 0 base j'))
- with (2 ^ k * (nth_default 0 base i * nth_default 0 base j'))
- by ring.
- eapply base_good_over_boundary; eauto; omega.
- } { (* i >= length base, j < length base, i + j >= length base *)
- do 2 rewrite map_nth_default_base_high by omega.
- remember (i - length base)%nat as i'.
- replace (i + j - length base)%nat with (j + i')%nat by omega.
- replace (2 ^ k * nth_default 0 base i' * nth_default 0 base j)
- with (2 ^ k * (nth_default 0 base j * nth_default 0 base i'))
- by ring.
- eapply base_good_over_boundary; eauto; omega.
- }
- Qed.
+ Lemma base_good_over_boundary
+ : forall (i : nat)
+ (l : (i < length base)%nat)
+ (j' : nat)
+ (Hj': (i + j' < length base)%nat),
+ 2 ^ k * (nth_default 0 base i * nth_default 0 base j') =
+ (2 ^ k * (nth_default 0 base i * nth_default 0 base j'))
+ / (2 ^ k * nth_default 0 base (i + j')) *
+ (2 ^ k * nth_default 0 base (i + j')).
+ Proof.
+ clear limb_widths_match_modulus.
+ intros.
+ remember (nth_default 0 base) as b.
+ rewrite Zdiv_mult_cancel_l by (exact two_k_nonzero).
+ replace (b i * b j' / b (i + j')%nat * (2 ^ k * b (i + j')%nat))
+ with ((2 ^ k * (b (i + j')%nat * (b i * b j' / b (i + j')%nat)))) by ring.
+ rewrite Z.mul_cancel_l by (exact two_k_nonzero).
+ replace (b (i + j')%nat * (b i * b j' / b (i + j')%nat))
+ with ((b i * b j' / b (i + j')%nat) * b (i + j')%nat) by ring.
+ subst b.
+ apply (base_good i j'); omega.
+ Qed.
- Instance ExtBaseVector : BaseSystem.BaseVector ext_base := {
- base_positive := ext_base_positive;
- b0_1 := b0_1;
- base_good := ext_base_good
- }.
+ Lemma ext_base_good :
+ forall i j, (i+j < length ext_base)%nat ->
+ let b := nth_default 0 ext_base in
+ let r := (b i * b j) / b (i+j)%nat in
+ b i * b j = r * b (i+j)%nat.
+ Proof.
+ intros.
+ subst b. subst r.
+ rewrite ext_base_alt in *.
+ rewrite app_length in H; rewrite map_length in H.
+ repeat rewrite nth_default_app.
+ repeat break_if; try omega.
+ { (* i < length base, j < length base, i + j < length base *)
+ auto using BaseSystem.base_good.
+ } { (* i < length base, j < length base, i + j >= length base *)
+ rewrite (map_nth_default _ _ _ _ 0) by omega.
+ apply base_matches_modulus; auto using limb_widths_nonnegative, limb_widths_match_modulus;
+ distr_length.
+ } { (* i < length base, j >= length base, i + j >= length base *)
+ do 2 rewrite map_nth_default_base_high by omega.
+ remember (j - length base)%nat as j'.
+ replace (i + j - length base)%nat with (i + j')%nat by omega.
+ replace (nth_default 0 base i * (2 ^ k * nth_default 0 base j'))
+ with (2 ^ k * (nth_default 0 base i * nth_default 0 base j'))
+ by ring.
+ eapply base_good_over_boundary; eauto; omega.
+ } { (* i >= length base, j < length base, i + j >= length base *)
+ do 2 rewrite map_nth_default_base_high by omega.
+ remember (i - length base)%nat as i'.
+ replace (i + j - length base)%nat with (j + i')%nat by omega.
+ replace (2 ^ k * nth_default 0 base i' * nth_default 0 base j)
+ with (2 ^ k * (nth_default 0 base j * nth_default 0 base i'))
+ by ring.
+ eapply base_good_over_boundary; eauto; omega.
+ }
+ Qed.
+ End base_good.
Lemma extended_base_length:
length ext_base = (length base + length base)%nat.
Proof.
- rewrite ext_base_alt, app_length, map_length; auto.
+ clear limb_widths_nonnegative.
+ unfold ext_base, ext_limb_widths; autorewrite with distr_length; reflexivity.
Qed.
Lemma firstn_us_base_ext_base : forall (us : BaseSystem.digits),
@@ -181,6 +161,21 @@ Section ExtendedBaseVector.
(length us <= length base)%nat ->
BaseSystem.decode base us = BaseSystem.decode ext_base us.
Proof. auto using decode_short_initial, firstn_us_base_ext_base. Qed.
+
+ Section BaseVector.
+ Context {bv : BaseSystem.BaseVector base}
+ (limb_widths_match_modulus : forall i j,
+ (i < length limb_widths)%nat ->
+ (j < length limb_widths)%nat ->
+ (i + j >= length limb_widths)%nat ->
+ let w_sum := sum_firstn limb_widths in
+ k + w_sum (i + j - length limb_widths)%nat <= w_sum i + w_sum j).
+
+ Instance ExtBaseVector : BaseSystem.BaseVector ext_base :=
+ { base_positive := ext_base_positive;
+ b0_1 x := b0_1 x (BaseSystem.b0_1 _);
+ base_good := ext_base_good (two_sum_firstn_limb_widths_nonzero limb_widths_nonnegative _) BaseSystem.base_good limb_widths_match_modulus }.
+ End BaseVector.
End ExtendedBaseVector.
Hint Rewrite @extended_base_length : distr_length.