aboutsummaryrefslogtreecommitdiff
path: root/src/Experiments/NewPipeline/AbstractInterpretationProofs.v
diff options
context:
space:
mode:
Diffstat (limited to 'src/Experiments/NewPipeline/AbstractInterpretationProofs.v')
-rw-r--r--src/Experiments/NewPipeline/AbstractInterpretationProofs.v764
1 files changed, 494 insertions, 270 deletions
diff --git a/src/Experiments/NewPipeline/AbstractInterpretationProofs.v b/src/Experiments/NewPipeline/AbstractInterpretationProofs.v
index ecc3dcc7b..e733d9f2d 100644
--- a/src/Experiments/NewPipeline/AbstractInterpretationProofs.v
+++ b/src/Experiments/NewPipeline/AbstractInterpretationProofs.v
@@ -23,6 +23,7 @@ Require Import Crypto.Util.ZUtil.Tactics.LtbToLt.
Require Import Crypto.Util.ZUtil.Tactics.SplitMinMax.
Require Import Crypto.Util.ZUtil.Tactics.ReplaceNegWithPos.
Require Import Crypto.Util.HProp.
+Require Import Crypto.Util.PER.
Require Import Crypto.Util.Tactics.BreakMatch.
Require Import Crypto.Util.Tactics.DestructHead.
Require Import Crypto.Util.Tactics.SplitInContext.
@@ -30,6 +31,7 @@ Require Import Crypto.Util.Tactics.UniquePose.
Require Import Crypto.Util.Tactics.SpecializeBy.
Require Import Crypto.Util.Tactics.SpecializeAllWays.
Require Import Crypto.Util.Tactics.Head.
+Require Import Crypto.Util.Tactics.DoWithHyp.
Require Import Crypto.Experiments.NewPipeline.Language.
Require Import Crypto.Experiments.NewPipeline.LanguageInversion.
Require Import Crypto.Experiments.NewPipeline.LanguageWf.
@@ -77,18 +79,22 @@ Module Compilers.
(ident_interp_Proper' : forall t, Proper (eq ==> type.eqv) (ident_interp t))
(abstract_domain'_R : forall t, abstract_domain' t -> abstract_domain' t -> Prop)
(abstraction_relation'_Proper : forall t, Proper (abstract_domain'_R t ==> eq ==> Basics.impl) (abstraction_relation' t))
- (abstract_domain'_R_Reflexive : forall t, Reflexive (abstract_domain'_R t)).
+ {abstract_domain'_R_transitive : forall t, Transitive (@abstract_domain'_R t)}
+ {abstract_domain'_R_symmetric : forall t, Symmetric (@abstract_domain'_R t)}
+ {bottom'_Proper : forall t, Proper (abstract_domain'_R t) (bottom' t)}
+ (abstract_domain'_R_of_related : forall t st v, @abstraction_relation' t st v -> @abstract_domain'_R t st st).
Local Notation abstract_domain := (@abstract_domain base_type abstract_domain').
Definition abstraction_relation {t} : abstract_domain t -> type.interp base_interp t -> Prop
:= type.related_hetero (@abstraction_relation').
Local Notation bottom := (@bottom base_type abstract_domain' (@bottom')).
Local Notation bottom_for_each_lhs_of_arrow := (@bottom_for_each_lhs_of_arrow base_type abstract_domain' (@bottom')).
+ Local Notation abstract_domain_R := (@abstract_domain_R base_type abstract_domain' abstract_domain'_R).
Local Notation var := (type.interp base_interp).
Local Notation expr := (@expr.expr base_type ident).
Local Notation UnderLets := (@UnderLets base_type ident).
Local Notation value := (@value base_type ident var abstract_domain').
Local Notation value_with_lets := (@value_with_lets base_type ident var abstract_domain').
- Local Notation state_of_value := (@state_of_value base_type ident var abstract_domain').
+ Local Notation state_of_value := (@state_of_value base_type ident var abstract_domain' bottom').
Context (annotate : forall (is_let_bound : bool) t, abstract_domain' t -> @expr var t -> @UnderLets var (@expr var t))
(interp_ident : forall t, ident t -> value_with_lets t)
(ident_extract : forall t, ident t -> abstract_domain t)
@@ -96,68 +102,29 @@ Module Compilers.
: forall is_let_bound t st e
(He : abstraction_relation' t st (expr.interp (t:=type.base t) (@ident_interp) e)),
expr.interp (@ident_interp) (UnderLets.interp (@ident_interp) (@annotate is_let_bound t st e))
- = expr.interp (@ident_interp) e).
+ = expr.interp (@ident_interp) e)
+ (ident_extract_Proper : forall t, Proper (eq ==> abstract_domain_R) (ident_extract t)).
Local Notation eta_expand_with_bound' := (@eta_expand_with_bound' base_type ident _ abstract_domain' annotate bottom').
Local Notation eval_with_bound' := (@partial.eval_with_bound' base_type ident _ abstract_domain' annotate bottom' interp_ident).
- Local Notation extract' := (@extract' base_type ident abstract_domain' ident_extract).
- Local Notation extract_gen := (@extract_gen base_type ident abstract_domain' ident_extract).
+ Local Notation extract' := (@extract' base_type ident abstract_domain' bottom' ident_extract).
+ Local Notation extract_gen := (@extract_gen base_type ident abstract_domain' bottom' ident_extract).
Local Notation reify := (@reify base_type ident _ abstract_domain' annotate bottom').
Local Notation reflect := (@reflect base_type ident _ abstract_domain' annotate bottom').
Local Notation interp := (@interp base_type ident var abstract_domain' annotate bottom' interp_ident).
+ Local Notation bottomify := (@bottomify base_type ident _ abstract_domain' bottom').
Lemma bottom_related t v : @abstraction_relation t bottom v.
Proof using bottom'_related. cbv [abstraction_relation]; induction t; cbn; cbv [respectful_hetero]; eauto. Qed.
+ Local Hint Resolve (@bottom_related) : core typeclass_instances.
+
Lemma bottom_for_each_lhs_of_arrow_related t v : type.and_for_each_lhs_of_arrow (@abstraction_relation) (@bottom_for_each_lhs_of_arrow t) v.
Proof using bottom'_related. induction t; cbn; eauto using bottom_related. Qed.
- (*
- Local Notation reify1 := (@reify base_type ident var1 abstract_domain' annotate1 bottom').
- Local Notation reify2 := (@reify base_type ident var2 abstract_domain' annotate2 bottom').
- Local Notation reflect1 := (@reflect base_type ident var1 abstract_domain' annotate1 bottom').
- Local Notation reflect2 := (@reflect base_type ident var2 abstract_domain' annotate2 bottom').
- Local Notation interp1 := (@interp base_type ident var1 abstract_domain' annotate1 bottom' interp_ident1).
- Local Notation interp2 := (@interp base_type ident var2 abstract_domain' annotate2 bottom' interp_ident2).
- Local Notation eval_with_bound'1 := (@eval_with_bound' base_type ident var1 abstract_domain' annotate1 bottom' interp_ident1).
- Local Notation eval_with_bound'2 := (@eval_with_bound' base_type ident var2 abstract_domain' annotate2 bottom' interp_ident2).
- Local Notation eval'1 := (@eval' base_type ident var1 abstract_domain' annotate1 bottom' interp_ident1).
- Local Notation eval'2 := (@eval' base_type ident var2 abstract_domain' annotate2 bottom' interp_ident2).
- Local Notation eta_expand_with_bound'1 := (@eta_expand_with_bound' base_type ident var1 abstract_domain' annotate1 bottom').
- Local Notation eta_expand_with_bound'2 := (@eta_expand_with_bound' base_type ident var2 abstract_domain' annotate2 bottom').
-*)
-(*
-
- Fixpoint value (t : type)
- := (abstract_domain t
- * match t return Type (* COQBUG(https://github.com/coq/coq/issues/7727) *) with
- | type.base t
- => @expr var t
- | type.arrow s d
- => value s -> UnderLets (value d)
- end)%type.
-
- Definition value_with_lets (t : type)
- := UnderLets (value t).
-
-
- Fixpoint bottom {t} : abstract_domain t
- := match t with
- | type.base t => bottom' t
- | type.arrow s d => fun _ => @bottom d
- end.
+ Local Notation bottom_Proper := (@bottom_Proper base_type abstract_domain' bottom' abstract_domain'_R bottom'_Proper).
+ Local Notation bottom_for_each_lhs_of_arrow_Proper := (@bottom_for_each_lhs_of_arrow_Proper base_type abstract_domain' bottom' abstract_domain'_R bottom'_Proper).
- Fixpoint bottom_for_each_lhs_of_arrow {t} : type.for_each_lhs_of_arrow abstract_domain t
- := match t return type.for_each_lhs_of_arrow abstract_domain t with
- | type.base t => tt
- | type.arrow s d => (bottom, @bottom_for_each_lhs_of_arrow d)
- end.
-
- Definition state_of_value {t} : value t -> abstract_domain t
- := match t return value t -> abstract_domain t with
- | type.base t => fun '(st, v) => st
- | type.arrow s d => fun '(st, v) => st
- end.
- *)
+ Local Hint Resolve (@bottom_Proper) (@bottom_for_each_lhs_of_arrow_Proper) : core typeclass_instances.
Fixpoint related_bounded_value {t} : abstract_domain t -> value t -> type.interp base_interp t -> Prop
:= match t return abstract_domain t -> value t -> type.interp base_interp t -> Prop with
@@ -167,20 +134,209 @@ Module Compilers.
/\ expr.interp ident_interp e = v
/\ abstraction_relation' t st v
| type.arrow s d
- => fun st '(e_st, e) v
- => (** XXX FIXME: DO WE NEED TO DO ANYTHING WITH e_st? *)
- forall st_s e_s v_s,
- @related_bounded_value s st_s e_s v_s
- -> @related_bounded_value d (st st_s) (UnderLets.interp ident_interp (e e_s)) (v v_s)
+ => fun st e v
+ => Proper type.eqv v
+ /\ forall st_s e_s v_s,
+ let st_s := match s with
+ | type.base _ => st_s
+ | type.arrow _ _ => bottom
+ end in
+ @related_bounded_value s st_s e_s v_s
+ -> @related_bounded_value d (st st_s) (UnderLets.interp ident_interp (e e_s)) (v v_s)
end.
Definition related_bounded_value_with_lets {t} : abstract_domain t -> value_with_lets t -> type.interp base_interp t -> Prop
:= fun st e v => related_bounded_value st (UnderLets.interp ident_interp e) v.
- Axiom proof_admitted : False.
- Notation admit := (match proof_admitted with end).
+ Definition related_of_related_bounded_value {t} st e v
+ : @related_bounded_value t st e v -> v == v.
+ Proof using Type. destruct t; [ reflexivity | intros [? ?]; assumption ]. Qed.
+
+ Lemma abstract_domain'_R_refl_of_rel_l t x y (H : @abstract_domain'_R t x y)
+ : @abstract_domain'_R t x x.
+ Proof using abstract_domain'_R_symmetric abstract_domain'_R_transitive. eapply PER_valid_l; eassumption. Qed.
+
+ Lemma abstract_domain'_R_refl_of_rel_r t x y (H : @abstract_domain'_R t x y)
+ : @abstract_domain'_R t y y.
+ Proof using abstract_domain'_R_symmetric abstract_domain'_R_transitive. eapply PER_valid_r; eassumption. Qed.
+
+ Local Hint Immediate abstract_domain'_R_refl_of_rel_l abstract_domain'_R_refl_of_rel_r.
+
+ Local Instance abstract_domain_R_Symmetric {t} : Symmetric (@abstract_domain_R t) := _ : Symmetric (type.related _).
+ Local Instance abstract_domain_R_Transitive {t} : Transitive (@abstract_domain_R t) := _ : Transitive (type.related _).
+
+ Lemma abstract_domain_R_refl_of_rel_l t x y (H : @abstract_domain_R t x y)
+ : @abstract_domain_R t x x.
+ Proof using abstract_domain'_R_symmetric abstract_domain'_R_transitive. eapply PER_valid_l; eassumption. Qed.
+
+ Lemma abstract_domain_R_refl_of_rel_r t x y (H : @abstract_domain_R t x y)
+ : @abstract_domain_R t y y.
+ Proof using abstract_domain'_R_symmetric abstract_domain'_R_transitive. eapply PER_valid_r; eassumption. Qed.
+
+ Local Hint Immediate abstract_domain_R_refl_of_rel_l abstract_domain_R_refl_of_rel_r.
+
+ Lemma related_bottom_for_each_lhs_of_arrow {t} v
+ : type.and_for_each_lhs_of_arrow (@abstraction_relation) (@bottom_for_each_lhs_of_arrow t) v.
+ Proof using bottom'_related. induction t; cbn; eauto. Qed.
+
+ Local Hint Immediate related_bottom_for_each_lhs_of_arrow.
+
+ Fixpoint fill_in_bottom_for_arrows {t} : abstract_domain t -> abstract_domain t
+ := match t with
+ | type.base t => fun x => x
+ | type.arrow s d
+ => fun f x => let x := match s with
+ | type.base _ => x
+ | type.arrow _ _ => bottom
+ end in
+ @fill_in_bottom_for_arrows d (f x)
+ end.
+
+ Lemma abstract_domain_R_bottom_fill_arrows {t}
+ : abstract_domain_R (@bottom t) (fill_in_bottom_for_arrows (@bottom t)).
+ Proof using bottom'_Proper.
+ cbv [abstract_domain_R]; induction t as [t|s IHs d IHd]; cbn [fill_in_bottom_for_arrows bottom type.related];
+ cbv [respectful Proper] in *; auto.
+ Qed.
+
+ Lemma fill_in_bottom_for_arrows_bottom_related {t} v
+ : abstraction_relation (fill_in_bottom_for_arrows (@bottom t)) v.
+ Proof using bottom'_related.
+ cbv [abstraction_relation]; induction t; cbn; cbv [respectful_hetero]; eauto.
+ Qed.
+
+ Hint Resolve fill_in_bottom_for_arrows_bottom_related.
+
+ Local Instance fill_in_bottom_for_arrows_Proper {t} : Proper (abstract_domain_R ==> abstract_domain_R) (@fill_in_bottom_for_arrows t).
+ Proof using bottom'_Proper.
+ pose proof (@bottom_Proper).
+ cbv [Proper respectful abstract_domain_R] in *; induction t; cbn in *; cbv [respectful] in *;
+ intros; break_innermost_match; eauto.
+ Qed.
+
+ Local Instance bottom_eqv_Proper_refl {t} : Proper type.eqv (@bottom t).
+ Proof using Type. cbv [Proper]; induction t; cbn in *; cbv [respectful] in *; eauto. Qed.
+
+ Lemma bottom_eqv_refl {t} : @bottom t == @bottom t.
+ Proof using Type. apply bottom_eqv_Proper_refl. Qed.
+ Local Hint Resolve bottom_eqv_refl.
+
+ Local Instance fill_in_bottom_for_arrows_Proper_eqv {t} : Proper (type.eqv ==> type.eqv) (@fill_in_bottom_for_arrows t).
+ Proof using Type.
+ cbv [Proper respectful] in *; induction t; cbn in *; cbv [respectful] in *;
+ intros; break_innermost_match; cbn in *; cbv [respectful] in *; eauto.
+ Qed.
+
+ Lemma state_of_value_related_fill {t} v (HP : Proper abstract_domain_R (@state_of_value t v))
+ : abstract_domain_R (@state_of_value t v) (fill_in_bottom_for_arrows (@state_of_value t v)).
+ Proof using bottom'_Proper. destruct t; [ assumption | apply abstract_domain_R_bottom_fill_arrows ]. Qed.
+
+ Lemma eqv_bottom_fill_bottom {t}
+ : @bottom t == fill_in_bottom_for_arrows bottom.
+ Proof using Type. induction t; cbn; [ reflexivity | ]; cbv [respectful]; auto. Qed.
+
+ Lemma eqv_fill_bottom_idempotent {t} v1 v2
+ : v1 == v2 -> fill_in_bottom_for_arrows (fill_in_bottom_for_arrows v1) == @fill_in_bottom_for_arrows t v2.
+ Proof using Type. induction t; cbn; cbv [respectful]; break_innermost_match; auto. Qed.
+
+ Lemma abstract_domain_R_fill_bottom_idempotent {t} v1 v2
+ : abstract_domain_R v1 v2
+ -> abstract_domain_R (fill_in_bottom_for_arrows (fill_in_bottom_for_arrows v1))
+ (@fill_in_bottom_for_arrows t v2).
+ Proof using bottom'_Proper.
+ pose proof (@bottom_Proper) as Hb.
+ induction t as [|s IHs d IHd]; cbn; cbv [respectful Proper abstract_domain_R] in *; break_innermost_match; auto.
+ Qed.
+
+ Lemma app_curried_state_of_value_fill {t} v x y
+ (H : type.and_for_each_lhs_of_arrow (@type.eqv) x y)
+ : type.app_curried (@state_of_value t v) x = type.app_curried (fill_in_bottom_for_arrows (@state_of_value t v)) y.
+ Proof using Type.
+ destruct t; [ reflexivity | cbv [state_of_value] ].
+ apply type.app_curried_Proper; [ apply eqv_bottom_fill_bottom | assumption ].
+ Qed.
+
+ Lemma first_order_app_curried_fill_in_bottom_for_arrows_eq {t} f xs
+ (Ht : type.is_not_higher_order t = true)
+ : type.app_curried (t:=t) f xs = type.app_curried (fill_in_bottom_for_arrows f) xs.
+ Proof using Type.
+ clear -Ht.
+ induction t as [| [|s' d'] IHs d IHd]; cbn in *; try discriminate; auto.
+ Qed.
+
+ Lemma first_order_abstraction_relation_fill_in_bottom_for_arrows_iff
+ {t} f v
+ (Ht : type.is_not_higher_order t = true)
+ : @abstraction_relation t f v
+ <-> @abstraction_relation t (fill_in_bottom_for_arrows f) v.
+ Proof using Type.
+ clear -Ht; cbv [abstraction_relation].
+ split; induction t as [| [|s' d'] IHs d IHd];
+ cbn in *; cbv [respectful_hetero]; try discriminate; auto.
+ Qed.
+
+ Lemma related_state_of_value_of_related_bounded_value {t} st e v
+ : @related_bounded_value t st e v -> abstract_domain_R match t with
+ | type.base _ => st
+ | type.arrow _ _ => bottom
+ end (state_of_value e).
+ Proof using bottom'_Proper. intro H; destruct t; cbn in *; [ destruct e; apply H | repeat intro; refine bottom_Proper ]. Qed.
+
+ Lemma related_state_of_value_of_related_bounded_value2 {t} st e v (st' := match t with
+ | type.base _ => st
+ | type.arrow _ _ => bottom
+ end)
+ : @related_bounded_value t st' e v -> abstract_domain_R st' (state_of_value e).
+ Proof using bottom'_Proper. intro H; destruct t; cbn in *; [ destruct e; apply H | repeat intro; refine bottom_Proper ]. Qed.
+
+ Lemma related_bounded_value_Proper {t} st1 st2 (Hst : abstract_domain_R (fill_in_bottom_for_arrows st1) (fill_in_bottom_for_arrows st2))
+ a a1 a2
+ (Ha' : type.eqv a1 a2)
+ : @related_bounded_value t st1 a a1 -> @related_bounded_value t st2 a a2.
+ Proof using abstraction_relation'_Proper abstract_domain'_R_transitive abstract_domain'_R_symmetric bottom'_Proper.
+ induction t as [t|s IHs d IHd]; cbn [related_bounded_value type.related] in *; cbv [respectful abstract_domain_R] in *.
+ all: cbn [type.andb_each_lhs_of_arrow] in *.
+ all: rewrite ?Bool.andb_true_iff in *.
+ all: destruct_head'_and.
+ { intros; break_innermost_match; subst;
+ destruct_head'_and; repeat apply conj; auto.
+ { etransitivity; (idtac + symmetry); eassumption. }
+ { eapply abstraction_relation'_Proper; (eassumption + reflexivity). } }
+ { intros [? Hrel].
+ split; [ repeat intro; etransitivity; (idtac + symmetry); eapply Ha'; (eassumption + (etransitivity; (idtac + symmetry); eassumption)) | ].
+ pose proof (@bottom_Proper s) as Hsbot.
+ intros ?? v_s; destruct s; intros Hx; cbn [type.related] in *;
+ cbn [fill_in_bottom_for_arrows] in *; cbv [respectful] in *.
+ { specialize_by_assumption; cbn in *.
+ eapply IHd; [ cbn in Hst |- *; eapply Hst | apply Ha'; reflexivity | eapply Hrel, Hx ]; cbv [respectful].
+ cbn [related_bounded_value] in *.
+ break_innermost_match_hyps; destruct_head'_and.
+ eauto. }
+ { eapply IHd; [ eapply Hst | apply Ha' | eapply Hrel, Hx ];
+ [ eexact Hsbot | refine (@related_of_related_bounded_value _ _ _ v_s _); eassumption | refine bottom ]. } }
+ Qed.
+
+ Lemma related_bounded_value_fill_bottom_iff {t} st1 st2 (Hst : abstract_domain_R st1 st2)
+ a a1 a2
+ (Ha' : type.eqv a1 a2)
+ : @related_bounded_value t st1 a a1 <-> @related_bounded_value t (fill_in_bottom_for_arrows st2) a a2.
+ Proof using abstraction_relation'_Proper abstract_domain'_R_transitive abstract_domain'_R_symmetric bottom'_Proper.
+ split; eapply related_bounded_value_Proper; try solve [ (idtac + symmetry); assumption ].
+ all: (idtac + symmetry); apply abstract_domain_R_fill_bottom_idempotent.
+ all: (idtac + symmetry); assumption.
+ Qed.
+
+ Lemma related_bounded_value_Proper1 {t}
+ : Proper (abstract_domain_R ==> eq ==> eq ==> Basics.impl) (@related_bounded_value t).
+ Proof using abstraction_relation'_Proper abstract_domain'_R_transitive abstract_domain'_R_symmetric bottom'_Proper.
+ repeat intro; subst; eapply related_bounded_value_Proper.
+ { eapply fill_in_bottom_for_arrows_Proper; eassumption. }
+ { eapply related_of_related_bounded_value; eassumption. }
+ { assumption. }
+ Qed.
Fixpoint interp_reify
is_let_bound {t} st e v b_in
+ (Hb : Proper (type.and_for_each_lhs_of_arrow (@abstract_domain_R)) b_in)
(H : related_bounded_value st e v) {struct t}
: (forall arg1 arg2
(Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
@@ -192,192 +348,241 @@ Module Compilers.
(Harg11 : Proper (type.and_for_each_lhs_of_arrow (@type.eqv)) arg1),
abstraction_relation'
_
- (type.app_curried st b_in)
+ (type.app_curried (fill_in_bottom_for_arrows st) b_in)
(type.app_curried (expr.interp ident_interp (UnderLets.interp ident_interp (@reify is_let_bound t e b_in))) arg1))
with interp_reflect
{t} st e v
+ (Hst_Proper : Proper abstract_domain_R st)
(H_val : expr.interp ident_interp e == v)
- (Hst : abstraction_relation st (expr.interp ident_interp e))
+ (Hst1 : abstraction_relation (fill_in_bottom_for_arrows st) (expr.interp ident_interp e))
{struct t}
: related_bounded_value
st
(@reflect t e st)
v.
- Proof using interp_annotate abstraction_relation'_Proper abstract_domain'_R_Reflexive bottom'_related.
+ Proof using interp_annotate abstraction_relation'_Proper bottom'_related bottom'_Proper abstract_domain'_R_transitive abstract_domain'_R_symmetric.
all: destruct t as [t|s d];
[ clear interp_reify interp_reflect
| pose proof (fun is_let_bound => interp_reify is_let_bound s) as interp_reify_s;
pose proof (fun is_let_bound => interp_reify is_let_bound d) as interp_reify_d;
pose proof (interp_reflect s) as interp_reflect_s;
pose proof (interp_reflect d) as interp_reflect_d;
- clear interp_reify interp_reflect ].
- all: cbn [reify reflect]; fold (@reify) (@reflect).
+ clear interp_reify interp_reflect;
+ pose proof (@abstract_domain_R_bottom_fill_arrows s);
+ pose proof (@abstract_domain_R_bottom_fill_arrows d) ].
+ all: cbn [reify reflect] in *; fold (@reify) (@reflect) in *.
+ all: cbn [related_bounded_value type.related type.app_curried] in *.
+ all: cbn [UnderLets.interp expr.interp type.final_codomain type.andb_each_lhs_of_arrow type.is_base fst snd fill_in_bottom_for_arrows type.map_for_each_lhs_of_arrow type.for_each_lhs_of_arrow type.and_for_each_lhs_of_arrow partial.bottom_for_each_lhs_of_arrow partial.bottom] in *.
all: repeat first [ reflexivity
| progress eta_expand
- | progress cbn [related_bounded_value UnderLets.interp expr.interp type.final_codomain type.related] in *
- | progress fold (@type.interp)
+ | progress cbv [type.is_not_higher_order] in *
+ | progress cbn [UnderLets.interp expr.interp type.final_codomain fst snd] in *
+ | progress subst
| progress destruct_head'_and
+ | progress destruct_head'_prod
| progress destruct_head_hnf' and
+ | progress destruct_head_hnf' prod
| progress destruct_head_hnf' unit
| progress split_and
+ | progress subst
+ | discriminate
| rewrite UnderLets.interp_splice
| rewrite UnderLets.interp_to_expr
| rewrite interp_annotate
- | solve [ cbv [Proper respectful Basics.impl] in *; eauto ]
+ | match goal with
+ | [ H : context[andb _ _ = true] |- _ ] => rewrite !Bool.andb_true_iff in H
+ | [ |- context[andb _ _ = true] ] => rewrite !Bool.andb_true_iff
+ end
+ | match goal with
+ | [ H : fst ?x = _ |- _ ] => is_var x; destruct x
+ | [ H : Proper _ ?st |- ?R (?st _) (?st _) ] => apply H
+ | [ |- ?R (state_of_value _) (state_of_value _) ] => cbv [state_of_value] in *
+ end
+ | solve [ repeat intro; apply bottom_Proper
+ | auto; cbv [Proper respectful Basics.impl] in *; eauto ]
| progress (repeat apply conj; intros * )
- | progress subst
- | progress cbn [type.app_curried type.and_for_each_lhs_of_arrow] in *
- | progress intros ].
- replace (state_of_value e_s) with st_s.
- eapply interp_reflect_d.
- all: eauto.
- all: cbn [expr.interp].
- move e at bottom.
- eapply H_val.
- all: cbv [respectful] in *.
- all: cbv [abstraction_relation] in *.
- all: cbn [type.related_hetero] in *.
- 2:eapply Hst.
- all: eauto.
- rewrite type.related_iff_app_curried.
- intros.
- eapply H1.
- eauto.
- eauto.
- apply bottom_for_each_lhs_of_arrow_related.
- rewrite type.related_hetero_iff_app_curried.
- intros.
- replace x with (@bottom_for_each_lhs_of_arrow s).
- eapply H2.
- all: eauto using bottom_for_each_lhs_of_arrow_related.
- exact admit.
- exact admit.
- exact admit.
+ | progress intros
+ | progress destruct_head'_or
+ | do_with_exactly_one_hyp ltac:(fun H => eapply H; clear H);
+ try assumption; auto; []
+ | match goal with
+ | [ |- Proper ?R _ ] => (eapply PER_valid_l + eapply PER_valid_r); eassumption
+ | [ |- @related_bounded_value ?t ?st1 (reflect _ ?st2) _ ]
+ => (tryif first [ constr_eq st1 st2 | has_evar st1 | has_evar st2 ]
+ then fail
+ else (eapply (@related_bounded_value_Proper1 t st2 st1);
+ try reflexivity))
+ | [ H : ?R ?x ?y |- ?R ?y ?x ] => symmetry; assumption
+ end
+ | break_innermost_match_step
+ | do_with_exactly_one_hyp ltac:(fun H => eapply H; clear H);
+ try assumption; auto
+ | match goal with
+ | [ |- abstraction_relation (fill_in_bottom_for_arrows (?f (state_of_value ?e))) _ ]
+ => replace (state_of_value e) with (match s with
+ | type.base _ => state_of_value e
+ | type.arrow _ _ => bottom
+ end) by (destruct s; reflexivity)
+ end
+ | progress fold (@reify) (@reflect) (@type.interp) (@type.related) (@type.related_hetero) in *
+ | match goal with
+ | [ |- type.related _ (expr.interp _ (UnderLets.interp _ (reify _ _ _))) _ ]
+ => rewrite type.related_iff_app_curried
+ | [ |- type.related_hetero _ (@state_of_value ?t _) _ ]
+ => is_var t; destruct t; cbv [state_of_value]; [ cbn | apply bottom_related ]
+ end ].
+ Qed.
+
+ Lemma interp_reify_first_order
+ is_let_bound {t} st e v b_in
+ (Ht : type.is_not_higher_order t = true)
+ (Hb : Proper (type.and_for_each_lhs_of_arrow (@abstract_domain_R)) b_in)
+ (H : related_bounded_value st e v)
+ : (forall arg1 arg2
+ (Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
+ (Harg1 : type.and_for_each_lhs_of_arrow (@abstraction_relation) b_in arg1),
+ type.app_curried (expr.interp ident_interp (UnderLets.interp ident_interp (@reify is_let_bound t e b_in))) arg1
+ = type.app_curried v arg2)
+ /\ (forall arg1
+ (Harg1 : type.and_for_each_lhs_of_arrow (@abstraction_relation) b_in arg1)
+ (Harg11 : Proper (type.and_for_each_lhs_of_arrow (@type.eqv)) arg1),
+ abstraction_relation'
+ _
+ (type.app_curried st b_in)
+ (type.app_curried (expr.interp ident_interp (UnderLets.interp ident_interp (@reify is_let_bound t e b_in))) arg1)).
+ Proof using interp_annotate abstraction_relation'_Proper bottom'_related bottom'_Proper abstract_domain'_R_transitive abstract_domain'_R_symmetric.
+ rewrite first_order_app_curried_fill_in_bottom_for_arrows_eq by assumption.
+ apply interp_reify; assumption.
+ Qed.
+
+ Lemma interp_reflect_first_order
+ {t} st e v
+ (Ht : type.is_not_higher_order t = true)
+ (Hst_Proper : Proper abstract_domain_R st)
+ (H_val : expr.interp ident_interp e == v)
+ (Hst : abstraction_relation st (expr.interp ident_interp e))
+ : related_bounded_value
+ st
+ (@reflect t e st)
+ v.
+ Proof using interp_annotate abstraction_relation'_Proper bottom'_related bottom'_Proper abstract_domain'_R_transitive abstract_domain'_R_symmetric.
+ rewrite first_order_abstraction_relation_fill_in_bottom_for_arrows_iff in Hst by assumption.
+ apply interp_reflect; assumption.
+ Qed.
+
+ Lemma related_bounded_value_annotate_base {t}
+ v_st st v
+ : @related_bounded_value (type.base t) v_st st v
+ -> @related_bounded_value (type.base t) v_st (fst st, UnderLets.interp ident_interp (annotate true t (fst st) (snd st))) v.
+ Proof using interp_annotate abstraction_relation'_Proper.
+ clear -interp_annotate abstraction_relation'_Proper.
+ cbv [Proper respectful Basics.impl] in *.
+ cbn; break_innermost_match; cbn; intros.
+ destruct_head'_and; subst; repeat apply conj; auto.
+ rewrite interp_annotate by eauto; reflexivity.
+ Qed.
+
+ Lemma related_bounded_value_bottomify {t} v_st st v
+ : @related_bounded_value t v_st st v
+ -> @related_bounded_value t bottom (UnderLets.interp ident_interp (bottomify st)) v.
+ Proof using bottom'_Proper bottom'_related.
+ induction t; cbn in *;
+ repeat first [ progress subst
+ | progress cbv [respectful] in *
+ | progress cbn [UnderLets.interp] in *
+ | progress destruct_head'_and
+ | break_innermost_match_step
+ | progress intros
+ | apply conj
+ | reflexivity
+ | apply bottom'_Proper
+ | apply bottom'_related
+ | solve [ eauto ]
+ | rewrite UnderLets.interp_splice ].
Qed.
- (*
- Fixpoint reify (is_let_bound : bool) {t} : value t -> type.for_each_lhs_of_arrow abstract_domain t -> UnderLets (@expr var t)
- := match t return value t -> type.for_each_lhs_of_arrow abstract_domain t -> UnderLets (@expr var t) with
- | type.base t
- => fun '(st, v) 'tt
- => annotate is_let_bound t st v
- | type.arrow s d
- => fun '(f_st, f_e) '(sv, dv)
- => Base
- (λ x , (UnderLets.to_expr
- (fx <-- f_e (@reflect _ (expr.Var x) sv);
- @reify false _ fx dv)))
- end%core%expr
- with reflect {t} : @expr var t -> abstract_domain t -> value t
- := match t return @expr var t -> abstract_domain t -> value t with
- | type.base t
- => fun e st => (st, e)
- | type.arrow s d
- => fun e absf
- => (absf,
- (fun v
- => let stv := state_of_value v in
- (rv <-- (@reify false s v bottom_for_each_lhs_of_arrow);
- Base (@reflect d (e @ rv) (absf stv))%expr)))
- end%under_lets.
- *)
Context (interp_ident_Proper
: forall t idc,
related_bounded_value (ident_extract t idc) (UnderLets.interp ident_interp (interp_ident t idc)) (ident_interp t idc)).
Lemma interp_interp
- G {t} (e_st e1 e2 : expr t)
+ G G' {t} (e_st e1 e2 e3 : expr t)
(HG : forall t v1 v2 v3, List.In (existT _ t (v1, v2, v3)) G
-> related_bounded_value_with_lets v1 v2 v3)
+ (HG' : forall t v1 v2, List.In (existT _ t (v1, v2)) G' -> v1 == v2)
(Hwf : expr.wf3 G e_st e1 e2)
+ (Hwf' : expr.wf G' e2 e3)
: related_bounded_value_with_lets
(extract' e_st)
(interp e1)
(expr.interp (@ident_interp) e2).
- Proof using interp_ident_Proper interp_annotate abstraction_relation'_Proper.
+ Proof using interp_ident_Proper interp_annotate abstraction_relation'_Proper ident_interp_Proper' abstract_domain'_R_transitive abstract_domain'_R_symmetric bottom'_Proper bottom'_related.
+ clear -ident_interp_Proper' interp_ident_Proper interp_annotate abstraction_relation'_Proper abstract_domain'_R_transitive abstract_domain'_R_symmetric bottom'_Proper bottom'_related HG HG' Hwf Hwf'.
cbv [related_bounded_value_with_lets] in *;
- induction Hwf; cbn [extract' interp expr.interp related_bounded_value UnderLets.interp List.In] in *.
+ revert dependent G'; induction Hwf; intros;
+ cbn [extract' interp expr.interp UnderLets.interp List.In related_bounded_value reify reflect] in *.
all: repeat first [ progress intros
| progress subst
| progress inversion_sigma
| progress inversion_prod
| progress destruct_head'_and
| progress destruct_head'_or
+ | progress destruct_head'_sig
+ | progress destruct_head'_sigT
+ | progress destruct_head'_prod
| progress eta_expand
+ | exfalso; assumption
| progress cbn [UnderLets.interp List.In eq_rect fst snd projT1 projT2] in *
| rewrite UnderLets.interp_splice
| rewrite interp_annotate
- | solve [ cbv [Proper respectful Basics.impl] in *; eauto ]
+ | solve [ cbv [Proper respectful Basics.impl] in *; eauto using related_of_related_bounded_value, related_bounded_value_bottomify ]
| progress specialize_by_assumption
| progress cbv [Let_In extract'] in *
- | progress cbn [reify reflect state_of_value related_bounded_value] in *
+ | progress cbn [state_of_value] in *
+ | progress expr.invert_subst
| match goal with
- | [ H : _ |- _ ] => tryif constr_eq H HG then fail else (apply H; clear H)
+ | [ |- abstract_domain ?t ] => exact (@bottom t)
+ | [ H : expr.wf _ _ _ |- Proper type.eqv _ ]
+ => apply expr.wf_interp_Proper_gen1 in H;
+ [ cbv [Proper]; etransitivity; (idtac + symmetry); exact H | auto ]
+ | [ H : _ |- _ ]
+ => (tryif first [ constr_eq H HG | constr_eq H HG' ]
+ then fail
+ else (apply H; clear H))
+ | [ |- related_bounded_value _ (fst _, UnderLets.interp _ (annotate _ _ _ _)) _ ]
+ => apply related_bounded_value_annotate_base
+ | [ H : context[match ?v with None => _ | _ => _ end] |- _ ] => destruct v eqn:?
end
- | break_innermost_match_step
| apply conj
| match goal with
| [ H : _ = _ |- _ ] => rewrite H
+ end
+ | break_innermost_match_step
+ | progress expr.inversion_wf_one_constr
+ | match goal with
+ | [ H : _ |- _ ]
+ => (tryif first [ constr_eq H HG | constr_eq H HG' ]
+ then fail
+ else (eapply H; clear H;
+ lazymatch goal with
+ | [ |- expr.wf _ _ _ ]
+ => solve [ eassumption
+ | match goal with
+ | [ H : forall v1 v2, expr.wf _ _ _ |- expr.wf _ (?f ?x) _ ]
+ => apply (H x x)
+ end ]
+ | _ => idtac
+ end))
end ].
Qed.
- (*
-
- Definition eval_with_bound' {t} (e : @expr value_with_lets t)
- (st : type.for_each_lhs_of_arrow abstract_domain t)
- : expr t
- := UnderLets.to_expr (e' <-- interp e; reify false e' st).
-
- Definition eval' {t} (e : @expr value_with_lets t) : expr t
- := eval_with_bound' e bottom_for_each_lhs_of_arrow.
-
- Definition eta_expand_with_bound' {t} (e : @expr var t)
- (st : type.for_each_lhs_of_arrow abstract_domain t)
- : expr t
- := UnderLets.to_expr (reify false (reflect e bottom) st).
-
- Section extract.
- Context (ident_extract : forall t, ident t -> abstract_domain t).
-
- Definition extract' {t} (e : @expr abstract_domain t) : abstract_domain t
- := expr.interp (@ident_extract) e.
-
- Definition extract_gen {t} (e : @expr abstract_domain t) (bound : type.for_each_lhs_of_arrow abstract_domain t)
- : abstract_domain' (type.final_codomain t)
- := type.app_curried (extract' e) bound.
- End extract.
- End with_var.
-
-
-
- Section extract.
- Context (ident_extract : forall t, ident t -> abstract_domain t)
- {ident_extract_Proper : forall {t}, Proper (eq ==> abstract_domain_R) (ident_extract t)}.
-
- Local Notation extract' := (@extract' base_type ident abstract_domain' ident_extract).
- Local Notation extract_gen := (@extract_gen base_type ident abstract_domain' ident_extract).
-
- Lemma extract'_Proper G
- (HG : forall t v1 v2, List.In (existT _ t (v1, v2)) G -> @abstract_domain_R t v1 v2)
- {t}
- : Proper (expr.wf G ==> abstract_domain_R) (@extract' t).
- Proof using ident_extract_Proper. apply expr.wf_interp_Proper_gen1, HG. Qed.
-
- Lemma extract_gen_Proper G
- (HG : forall t v1 v2, List.In (existT _ t (v1, v2)) G -> @abstract_domain_R t v1 v2)
- {t}
- : Proper (expr.wf G ==> type.and_for_each_lhs_of_arrow (@abstract_domain_R) ==> abstract_domain'_R (type.final_codomain t)) (@extract_gen t).
- Proof using ident_extract_Proper.
- intros ?? Hwf; cbv [extract_gen respectful abstract_domain_R].
- rewrite <- type.related_iff_app_curried.
- eapply extract'_Proper; eassumption.
- Qed.
- End extract.
- *)
Lemma interp_eval_with_bound'
{t} (e_st e1 e2 : expr t)
(Hwf : expr.wf3 nil e_st e1 e2)
+ (Hwf' : expr.wf nil e2 e2)
+ (Ht : type.is_not_higher_order t = true)
(st : type.for_each_lhs_of_arrow abstract_domain t)
+ (Hst : Proper (type.and_for_each_lhs_of_arrow (@abstract_domain_R)) st)
: (forall arg1 arg2
(Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
(Harg1 : type.and_for_each_lhs_of_arrow (@abstraction_relation) st arg1),
@@ -390,10 +595,10 @@ Module Compilers.
_
(extract_gen e_st st)
(type.app_curried (expr.interp ident_interp (eval_with_bound' e1 st)) arg1)).
- Proof using interp_annotate abstraction_relation'_Proper abstract_domain'_R_Reflexive bottom'_related interp_ident_Proper.
+ Proof using interp_annotate abstraction_relation'_Proper abstract_domain'_R_transitive abstract_domain'_R_symmetric bottom'_related interp_ident_Proper bottom'_Proper ident_interp_Proper'.
cbv [extract_gen extract' eval_with_bound'].
split; intros; rewrite UnderLets.interp_to_expr, UnderLets.interp_splice.
- all: eapply interp_reify; eauto.
+ all: eapply interp_reify_first_order; eauto.
all: eapply interp_interp; eauto; wf_t.
Qed.
@@ -401,11 +606,12 @@ Module Compilers.
{t} (e1 e2 : expr t)
(Hwf : expr.wf nil e1 e2)
(b_in : type.for_each_lhs_of_arrow abstract_domain t)
+ (Hb_in : Proper (type.and_for_each_lhs_of_arrow (@abstract_domain_R)) b_in)
: forall arg1 arg2
(Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
(Harg1 : type.and_for_each_lhs_of_arrow (@abstraction_relation) b_in arg1),
type.app_curried (expr.interp ident_interp (eta_expand_with_bound' e1 b_in)) arg1 = type.app_curried (expr.interp ident_interp e2) arg2.
- Proof using interp_annotate ident_interp_Proper' bottom'_related abstraction_relation'_Proper abstract_domain'_R_Reflexive.
+ Proof using interp_annotate ident_interp_Proper' bottom'_related abstraction_relation'_Proper bottom'_Proper abstract_domain'_R_transitive abstract_domain'_R_symmetric.
cbv [eta_expand_with_bound'].
intros; rewrite UnderLets.interp_to_expr.
eapply interp_reify; eauto.
@@ -413,20 +619,31 @@ Module Compilers.
eapply @expr.wf_interp_Proper_gen; auto using Hwf.
Qed.
- (*
- Definition eval_with_bound' {t} (e : @expr value_with_lets t)
- (st : type.for_each_lhs_of_arrow abstract_domain t)
- : expr t
- := UnderLets.to_expr (e' <-- interp e; reify false e' st).
-
- Definition eval' {t} (e : @expr value_with_lets t) : expr t
- := eval_with_bound' e bottom_for_each_lhs_of_arrow.
+ Lemma interp_extract'_from_wf_gen G
+ (HG : forall t v1 v2, List.In (existT _ t (v1, v2)) G -> abstract_domain_R v1 v2)
+ {t} (e1 e2 : expr t)
+ (Hwf : expr.wf G e1 e2)
+ : abstract_domain_R (extract' e1) (extract' e2).
+ Proof using ident_extract_Proper bottom'_Proper.
+ cbv [abstract_domain_R] in *; induction Hwf; cbn [extract']; break_innermost_match.
+ all: repeat first [ progress subst
+ | progress inversion_sigma
+ | progress inversion_prod
+ | solve [ cbv [Proper respectful] in *; eauto ]
+ | progress cbv [respectful Let_In] in *
+ | progress cbn [type.related List.In eq_rect partial.bottom] in *
+ | progress intros
+ | progress destruct_head'_or
+ | apply bottom_Proper
+ | match goal with H : _ |- type.related _ _ _ => apply H; clear H end ].
+ Qed.
- Definition eta_expand_with_bound' {t} (e : @expr var t)
- (st : type.for_each_lhs_of_arrow abstract_domain t)
- : expr t
- := UnderLets.to_expr (reify false (reflect e bottom) st).
-*)
+ Lemma interp_extract'_from_wf {t} (e1 e2 : expr t)
+ (Hwf : expr.wf nil e1 e2)
+ : abstract_domain_R (extract' e1) (extract' e2).
+ Proof using ident_extract_Proper bottom'_Proper.
+ eapply interp_extract'_from_wf_gen; revgoals; wf_t.
+ Qed.
End with_type.
Module ident.
@@ -445,12 +662,15 @@ Module Compilers.
(abstraction_relation' : forall t, abstract_domain' t -> base.interp t -> Prop)
(abstract_domain'_R : forall t, abstract_domain' t -> abstract_domain' t -> Prop)
(abstraction_relation'_Proper : forall t, Proper (abstract_domain'_R t ==> eq ==> Basics.impl) (abstraction_relation' t))
- (abstract_domain'_R_Reflexive : forall t, Reflexive (abstract_domain'_R t))
(bottom'_related : forall t v, abstraction_relation' t (bottom' t) v)
- (cast_outside_of_range : zrange -> Z -> Z).
+ {bottom'_Proper : forall t, Proper (abstract_domain'_R t) (bottom' t)}
+ (cast_outside_of_range : zrange -> Z -> Z)
+ {abstract_domain'_R_transitive : forall t, Transitive (@abstract_domain'_R t)}
+ {abstract_domain'_R_symmetric : forall t, Symmetric (@abstract_domain'_R t)}.
Local Notation abstraction_relation := (@abstraction_relation base.type abstract_domain' base.interp abstraction_relation').
Local Notation ident_interp := (@ident.gen_interp cast_outside_of_range).
Local Notation abstract_domain_R := (@abstract_domain_R base.type abstract_domain' abstract_domain'_R).
+ Local Notation fill_in_bottom_for_arrows := (@fill_in_bottom_for_arrows base.type abstract_domain' bottom').
Context {abstract_interp_ident_Proper : forall t, Proper (eq ==> @abstract_domain_R t) (abstract_interp_ident t)}
(interp_annotate_ident
: forall t st idc,
@@ -460,16 +680,6 @@ Module Compilers.
(interp_update_literal_with_state
: forall (t : base.type.base) (st : abstract_domain' t) (v : base.interp t),
abstraction_relation' t st v -> update_literal_with_state t st v = v)
- (*is_annotation_abstraction_relation_weaken
- : forall t st idc v,
- is_annotation _ idc = true
- -> abstraction_relation' _ st v
- -> abstraction_relation' _ (abstract_interp_ident (type.base t -> type.base t)%etype idc st) v*)
- (*interp_annotate_ident_commute
- : forall t st v cst0 cst1,
- is_annotation (type.base t -> type.base t) cst0 = true ->
- annotate_ident t (abstract_interp_ident (type.base t -> type.base t) cst0 st) = Some cst1 ->
- abstraction_relation' t st (ident_interp cst0 v) -> ident_interp cst1 v = ident_interp cst0 v)*)
(abstract_interp_ident_Proper'
: forall t idc, type.related_hetero (@abstraction_relation') (abstract_interp_ident t idc) (ident_interp idc))
(extract_list_state_related
@@ -489,10 +699,22 @@ Module Compilers.
Local Notation annotate_base := (@ident.annotate_base _ abstract_domain' annotate_ident update_literal_with_state is_annotated_for).
Local Notation annotate := (@ident.annotate _ abstract_domain' annotate_ident abstract_interp_ident update_literal_with_state extract_list_state is_annotated_for).
Local Notation interp_ident := (@ident.interp_ident _ abstract_domain' annotate_ident bottom' abstract_interp_ident update_literal_with_state extract_list_state is_annotated_for).
- Local Notation related_bounded_value := (@related_bounded_value base.type ident abstract_domain' base.interp (@ident_interp) abstraction_relation' abstract_domain'_R).
+ Local Notation related_bounded_value := (@related_bounded_value base.type ident abstract_domain' base.interp (@ident_interp) abstraction_relation' bottom' abstract_domain'_R).
Local Notation reify := (@reify base.type ident _ abstract_domain' annotate bottom').
Local Notation reflect := (@reflect base.type ident _ abstract_domain' annotate bottom').
+ Lemma abstract_interp_ident_Proper'' t idc
+ : type.related_hetero (@abstraction_relation') (fill_in_bottom_for_arrows (abstract_interp_ident t idc)) (ident_interp idc).
+ Proof using abstract_interp_ident_Proper' bottom'_related.
+ generalize (abstract_interp_ident_Proper' t idc); clear -bottom'_related.
+ generalize (ident_interp idc), (abstract_interp_ident t idc); clear idc.
+ intros v st H.
+ induction t as [| [|s' d'] IHs d IHd]; cbn in *; cbv [respectful_hetero] in *;
+ auto.
+ intros; apply IHd, H; clear IHd H.
+ intros; apply bottom_related; assumption.
+ Qed.
+
Lemma interp_update_annotation t st e
(He : abstraction_relation' t st (expr.interp (t:=type.base t) (@ident_interp) e))
: expr.interp (@ident_interp) (@update_annotation t st e)
@@ -533,7 +755,7 @@ Module Compilers.
(He : abstraction_relation' t st (expr.interp (t:=type.base t) (@ident_interp) e))
: expr.interp (@ident_interp) (UnderLets.interp (@ident_interp) (@annotate is_let_bound t st e))
= expr.interp (@ident_interp) e.
- Proof using interp_update_literal_with_state interp_annotate_ident abstract_interp_ident_Proper' extract_list_state_related extract_list_state_length_good.
+ Proof using interp_update_literal_with_state interp_annotate_ident abstract_interp_ident_Proper' extract_list_state_related extract_list_state_length_good bottom'_related.
induction t; cbn [annotate]; auto using interp_annotate_base.
all: repeat first [ reflexivity
| progress subst
@@ -557,8 +779,8 @@ Module Compilers.
| match goal with
| [ H : context[expr.interp _ (reify_list _)] |- _ ] => rewrite expr.interp_reify_list in H
| [ H : abstraction_relation' (_ * _) _ (_, _) |- _ ]
- => pose proof (abstract_interp_ident_Proper' _ ident.fst _ _ H);
- pose proof (abstract_interp_ident_Proper' _ ident.snd _ _ H);
+ => pose proof (abstract_interp_ident_Proper'' _ ident.fst _ _ H);
+ pose proof (abstract_interp_ident_Proper'' _ ident.snd _ _ H);
clear H
| [ H : context[_ = _] |- _ = _ ] => rewrite H by assumption
| [ |- List.map ?f (List.combine ?l1 ?l2) = List.map ?g ?l2 ]
@@ -603,18 +825,19 @@ Module Compilers.
Lemma interp_ident_Proper_not_nth_default t idc
: related_bounded_value (abstract_interp_ident t idc) (UnderLets.interp (@ident_interp) (Base (reflect (expr.Ident idc) (abstract_interp_ident _ idc)))) (ident_interp idc).
- Proof using abstract_domain'_R_Reflexive abstract_interp_ident_Proper' abstraction_relation'_Proper bottom'_related extract_list_state_length_good extract_list_state_related interp_annotate_ident interp_update_literal_with_state.
+ Proof using abstract_interp_ident_Proper' abstraction_relation'_Proper bottom'_related extract_list_state_length_good extract_list_state_related interp_annotate_ident interp_update_literal_with_state abstract_interp_ident_Proper bottom'_Proper abstract_domain'_R_transitive abstract_domain'_R_symmetric.
cbn [UnderLets.interp].
eapply interp_reflect;
try first [ apply ident.gen_interp_Proper
- | apply abstract_interp_ident_Proper'
+ | apply abstract_interp_ident_Proper''
+ | eapply abstract_interp_ident_Proper; reflexivity
| apply interp_annotate ];
eauto.
Qed.
Lemma interp_ident_Proper_nth_default T (idc:=@ident.List_nth_default T)
: related_bounded_value (abstract_interp_ident _ idc) (UnderLets.interp (@ident_interp) (interp_ident idc)) (ident_interp idc).
- Proof using abstract_interp_ident_Proper abstract_interp_ident_Proper' abstraction_relation'_Proper extract_list_state_length_good extract_list_state_related interp_annotate_ident interp_update_literal_with_state.
+ Proof using abstract_interp_ident_Proper abstract_interp_ident_Proper' abstraction_relation'_Proper extract_list_state_length_good extract_list_state_related interp_annotate_ident interp_update_literal_with_state bottom'_related.
subst idc; cbn [interp_ident reify reflect fst snd UnderLets.interp ident_interp related_bounded_value abstract_domain value].
cbv [abstract_domain]; cbn [type.interp bottom_for_each_lhs_of_arrow state_of_value fst snd].
repeat first [ progress intros
@@ -631,7 +854,7 @@ Module Compilers.
| solve [ cbv [Proper respectful Basics.impl] in *; eauto ]
| split; [ apply (@abstract_interp_ident_Proper _ (@ident.List_nth_default T) _ eq_refl) | ]
| split; [ reflexivity | ]
- | apply (@abstract_interp_ident_Proper' _ (@ident.List_nth_default T))
+ | apply (@abstract_interp_ident_Proper'' _ (@ident.List_nth_default T))
| apply conj
| rewrite map_nth_default_always
| match goal with
@@ -641,6 +864,7 @@ Module Compilers.
=> rewrite expr.interp_reify_list in H
| [ H : _ = reify_list _ |- _ ] => apply (f_equal (expr.interp (@ident_interp))) in H
| [ H : expr.interp _ ?x = _ |- context[expr.interp _ ?x] ] => rewrite H
+ | [ |- Proper _ _ ] => cbv [Proper type.related respectful]
end ].
Qed.
@@ -652,21 +876,17 @@ Module Compilers.
| refine (@interp_ident_Proper_nth_default _) ].
Qed.
- (*Context {annotate_ident_Proper : forall t, Proper (abstract_domain'_R t ==> eq) (annotate_ident t)}
- {abstract_interp_ident_Proper : forall t, Proper (eq ==> @abstract_domain_R t) (abstract_interp_ident t)}
- {bottom'_Proper : forall t, Proper (abstract_domain'_R t) (bottom' t)}
- {update_literal_with_state_Proper : forall t, Proper (abstract_domain'_R (base.type.type_base t) ==> eq ==> eq) (update_literal_with_state t)}
- (extract_list_state_length : forall t v1 v2, abstract_domain'_R _ v1 v2 -> option_map (@length _) (extract_list_state t v1) = option_map (@length _) (extract_list_state t v2))
- (extract_list_state_rel : forall t v1 v2, abstract_domain'_R _ v1 v2 -> forall l1 l2, extract_list_state t v1 = Some l1 -> extract_list_state t v2 = Some l2 -> forall vv1 vv2, List.In (vv1, vv2) (List.combine l1 l2) -> @abstract_domain'_R t vv1 vv2).
- *)
Local Notation eval_with_bound := (@partial.ident.eval_with_bound _ abstract_domain' annotate_ident bottom' abstract_interp_ident update_literal_with_state extract_list_state is_annotated_for).
Local Notation eta_expand_with_bound := (@partial.ident.eta_expand_with_bound _ abstract_domain' annotate_ident bottom' abstract_interp_ident update_literal_with_state extract_list_state is_annotated_for).
- Local Notation extract := (@ident.extract abstract_domain' abstract_interp_ident).
+ Local Notation extract := (@ident.extract abstract_domain' bottom' abstract_interp_ident).
Lemma interp_eval_with_bound
{t} (e_st e1 e2 : expr t)
(Hwf : expr.wf3 nil e_st e1 e2)
+ (Hwf' : expr.wf nil e2 e2)
+ (Ht : type.is_not_higher_order t = true)
(st : type.for_each_lhs_of_arrow abstract_domain t)
+ (Hst : Proper (type.and_for_each_lhs_of_arrow (@abstract_domain_R)) st)
: (forall arg1 arg2
(Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
(Harg1 : type.and_for_each_lhs_of_arrow (@abstraction_relation) st arg1),
@@ -679,36 +899,19 @@ Module Compilers.
_
(extract e_st st)
(type.app_curried (expr.interp (@ident_interp) (eval_with_bound e1 st)) arg1)).
- Proof. cbv [extract eval_with_bound]; apply @interp_eval_with_bound' with (abstract_domain'_R:=abstract_domain'_R); auto using interp_annotate, interp_ident_Proper. Qed.
+ Proof. cbv [extract eval_with_bound]; apply @interp_eval_with_bound' with (abstract_domain'_R:=abstract_domain'_R); auto using interp_annotate, interp_ident_Proper, ident.gen_interp_Proper. Qed.
Lemma interp_eta_expand_with_bound
{t} (e1 e2 : expr t)
(Hwf : expr.wf nil e1 e2)
+ (Ht : type.is_not_higher_order t = true)
(b_in : type.for_each_lhs_of_arrow abstract_domain t)
+ (Hb_in : Proper (type.and_for_each_lhs_of_arrow (@abstract_domain_R)) b_in)
: forall arg1 arg2
(Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
(Harg1 : type.and_for_each_lhs_of_arrow (@abstraction_relation) b_in arg1),
type.app_curried (expr.interp (@ident_interp) (eta_expand_with_bound e1 b_in)) arg1 = type.app_curried (expr.interp (@ident_interp) e2) arg2.
Proof. cbv [partial.ident.eta_expand_with_bound]; eapply interp_eta_expand_with_bound'; eauto using interp_annotate, ident.gen_interp_Proper. Qed.
-
-(*
- Definition eval {t} (e : @expr value_with_lets t) : @expr var t
- := @eval' base.type ident var abstract_domain' annotate bottom' (@interp_ident) t e.
-
-
-*)
- (*
- Section extract.
- Local Notation extract := (@ident.extract abstract_domain' abstract_interp_ident).
-
- Lemma extract_Proper G
- (HG : forall t v1 v2, List.In (existT _ t (v1, v2)) G -> @abstract_domain_R t v1 v2)
- {t}
- : Proper (expr.wf G ==> type.and_for_each_lhs_of_arrow (@abstract_domain_R) ==> abstract_domain'_R (type.final_codomain t)) (@extract t).
- Proof using abstract_interp_ident_Proper.
- apply @extract_gen_Proper; eauto.
- Qed.
- End extract.*)
End with_type.
End ident.
@@ -718,6 +921,7 @@ Module Compilers.
Local Notation abstract_domain := (@partial.abstract_domain base.type abstract_domain').
Local Notation abstract_domain'_R t := (@eq (abstract_domain' t)) (only parsing).
Local Notation abstract_domain_R := (@abstract_domain_R base.type abstract_domain' (fun t => abstract_domain'_R t)).
+ Local Notation fill_in_bottom_for_arrows := (@fill_in_bottom_for_arrows base.type abstract_domain' bottom').
Definition abstraction_relation' {t} : abstract_domain' t -> base.interp t -> Prop
:= fun st v => @ZRange.type.base.option.is_bounded_by t st v = true.
@@ -782,10 +986,11 @@ Module Compilers.
: partial.Extract (GeneralizeVar.FromFlat (GeneralizeVar.ToFlat e)) b_in1
= partial.Extract e b_in2.
Proof.
- cbv [partial.Extract partial.ident.extract partial.extract_gen partial.extract'].
+ cbv [partial.Extract partial.ident.extract partial.extract_gen].
revert b_in1 b_in2 Hb.
rewrite <- (@type.related_iff_app_curried base.type ZRange.type.base.option.interp (fun _ => eq)).
- apply GeneralizeVar.Interp_gen1_FromFlat_ToFlat, Hwf.
+ apply interp_extract'_from_wf; auto with wf typeclass_instances.
+ apply GeneralizeVar.wf_from_flat_to_flat, Hwf.
Qed.
Lemma Extract_FromFlat_ToFlat {t} (e : Expr t) (Hwf : Wf e) b_in
@@ -794,21 +999,14 @@ Module Compilers.
= partial.Extract e b_in.
Proof. apply Extract_FromFlat_ToFlat'; assumption. Qed.
- (* Definition eval {var} {t} (e : @expr _ t) : expr t
- := (@partial.ident.eval)
- var abstract_domain' annotate_ident bottom' abstract_interp_ident update_literal_with_state extract_list_state is_annotation t e.
- Definition Eval {t} (e : Expr t) : Expr t
- := fun var => eval (e _).
- Definition Extract {t} (e : Expr t) (bound : type.for_each_lhs_of_arrow abstract_domain t) : abstract_domain' (type.final_codomain t)
- := @partial.ident.extract abstract_domain' abstract_interp_ident t (e _) bound.
- *)
-
Local Hint Resolve interp_annotate_ident interp_update_literal_with_state abstract_interp_ident_related.
Lemma interp_eval_with_bound
cast_outside_of_range
{t} (e_st e1 e2 : expr t)
(Hwf : expr.wf3 nil e_st e1 e2)
+ (Hwf' : expr.wf nil e2 e2)
+ (Ht : type.is_not_higher_order t = true)
(st : type.for_each_lhs_of_arrow abstract_domain t)
: (forall arg1 arg2
(Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
@@ -833,7 +1031,8 @@ Module Compilers.
Lemma interp_eta_expand_with_bound
{t} (e1 e2 : expr t)
(Hwf : expr.wf nil e1 e2)
- (b_in : type.for_each_lhs_of_arrow ZRange.type.option.interp t)
+ (Ht : type.is_not_higher_order t = true)
+ (b_in : type.for_each_lhs_of_arrow abstract_domain t)
: forall arg1 arg2
(Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
(Harg1 : type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by) b_in arg1 = true),
@@ -850,7 +1049,10 @@ Module Compilers.
cast_outside_of_range
{t} (e : Expr t)
(Hwf : expr.Wf3 e)
+ (Hwf' : expr.Wf e)
+ (Ht : type.is_not_higher_order t = true)
(st : type.for_each_lhs_of_arrow abstract_domain t)
+ (Hst : Proper (type.and_for_each_lhs_of_arrow (@abstract_domain_R)) st)
: (forall arg1 arg2
(Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
(Harg1 : type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by) st arg1 = true),
@@ -862,17 +1064,18 @@ Module Compilers.
abstraction_relation'
(Extract e st)
(type.app_curried (expr.Interp (@ident.gen_interp cast_outside_of_range) (EvalWithBound e st)) arg1)).
- Proof using Type. cbv [Extract EvalWithBound]; apply interp_eval_with_bound, Hwf. Qed.
+ Proof using Type. cbv [Extract EvalWithBound]; apply interp_eval_with_bound; auto. Qed.
Lemma Interp_EtaExpandWithBound
{t} (E : Expr t)
(Hwf : Wf E)
- (b_in : type.for_each_lhs_of_arrow ZRange.type.option.interp t)
+ (Ht : type.is_not_higher_order t = true)
+ (b_in : type.for_each_lhs_of_arrow abstract_domain t)
: forall arg1 arg2
(Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
(Harg1 : type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by) b_in arg1 = true),
type.app_curried (Interp (partial.EtaExpandWithBound E b_in)) arg1 = type.app_curried (Interp E) arg2.
- Proof. cbv [partial.EtaExpandWithBound]; apply interp_eta_expand_with_bound, Hwf. Qed.
+ Proof. cbv [partial.EtaExpandWithBound]; apply interp_eta_expand_with_bound; eauto with typeclass_instances. Qed.
Lemma strip_ranges_is_looser t b v
: @ZRange.type.option.is_bounded_by t b v = true
@@ -898,10 +1101,29 @@ Module Compilers.
apply strip_ranges_is_looser; assumption.
Qed.
+ Lemma strip_ranges_Proper t
+ : Proper (abstract_domain_R ==> abstract_domain_R) (@ZRange.type.option.strip_ranges t).
+ Proof.
+ induction t as [t|s IHs d IHd]; cbn in *.
+ all: cbv [Proper respectful abstract_domain_R] in *; intros; subst; eauto.
+ Qed.
+
+ Lemma and_strip_ranges_Proper' t
+ : Proper (type.and_for_each_lhs_of_arrow (@abstract_domain_R) ==> type.and_for_each_lhs_of_arrow (@abstract_domain_R))
+ (type.map_for_each_lhs_of_arrow (@ZRange.type.option.strip_ranges) (t:=t)).
+ Proof.
+ induction t as [t|s IHs d IHd]; cbn [type.and_for_each_lhs_of_arrow type.map_for_each_lhs_of_arrow abstract_domain_R type.for_each_lhs_of_arrow] in *;
+ cbv [Proper respectful] in *; [ tauto | ].
+ intros; destruct_head'_prod; cbn [fst snd] in *; destruct_head'_and.
+ split; [ | solve [ auto ] ].
+ apply strip_ranges_Proper; auto.
+ Qed.
+
Lemma Interp_EtaExpandWithListInfoFromBound
{t} (E : Expr t)
(Hwf : Wf E)
- (b_in : type.for_each_lhs_of_arrow ZRange.type.option.interp t)
+ (Ht : type.is_not_higher_order t = true)
+ (b_in : type.for_each_lhs_of_arrow abstract_domain t)
: forall arg1 arg2
(Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
(Harg1 : type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by) b_in arg1 = true),
@@ -1039,6 +1261,7 @@ Module Compilers.
cast_outside_of_range
{t} (E : Expr t)
(Hwf : Wf E)
+ (Ht : type.is_not_higher_order t = true)
(b_in : type.for_each_lhs_of_arrow ZRange.type.option.interp t)
: forall arg1 arg2
(Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
@@ -1053,15 +1276,15 @@ Module Compilers.
assert (arg2_Proper : Proper (type.and_for_each_lhs_of_arrow (@type.related base.type base.interp (fun _ => eq))) arg2)
by (hnf; etransitivity; [ symmetry; eassumption | eassumption ]).
rewrite <- (@GeneralizeVar.Interp_gen1_GeneralizeVar _ _ _ _ _ E) by auto with wf.
- eapply Interp_EvalWithBound; eauto with wf.
+ eapply Interp_EvalWithBound; eauto with wf typeclass_instances.
Qed.
Lemma Interp_PartialEvaluateWithBounds_bounded
cast_outside_of_range
{t} (E : Expr t)
(Hwf : Wf E)
+ (Ht : type.is_not_higher_order t = true)
(b_in : type.for_each_lhs_of_arrow ZRange.type.option.interp t)
- {b_in_Proper : Proper (type.and_for_each_lhs_of_arrow (@abstract_domain_R _ _ (fun _ => eq))) b_in}
: forall arg1
(Harg11 : Proper (type.and_for_each_lhs_of_arrow (@type.eqv)) arg1)
(Harg1 : type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by) b_in arg1 = true),
@@ -1071,14 +1294,15 @@ Module Compilers.
= true.
Proof.
cbv [PartialEvaluateWithBounds].
- intros arg1 Harg1.
- rewrite <- Extract_FromFlat_ToFlat by auto with wf.
- eapply Interp_EvalWithBound; eauto with wf.
+ intros arg1 Harg11 Harg1.
+ rewrite <- Extract_FromFlat_ToFlat by auto with wf typeclass_instances.
+ eapply Interp_EvalWithBound; eauto with wf typeclass_instances.
Qed.
Lemma Interp_PartialEvaluateWithListInfoFromBounds
{t} (E : Expr t)
(Hwf : Wf E)
+ (Ht : type.is_not_higher_order t = true)
(b_in : type.for_each_lhs_of_arrow ZRange.type.option.interp t)
: forall arg1 arg2
(Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
@@ -1101,9 +1325,9 @@ Module Compilers.
-> is_tighter_than_bool z r' = true)
{t} (E : Expr t)
(Hwf : Wf E)
+ (Ht : type.is_not_higher_order t = true)
(b_in : type.for_each_lhs_of_arrow ZRange.type.option.interp t)
(b_out : ZRange.type.base.option.interp (type.final_codomain t))
- {b_in_Proper : Proper (type.and_for_each_lhs_of_arrow (@abstract_domain_R _ _ (fun _ => eq))) b_in}
rv (Hrv : CheckedPartialEvaluateWithBounds relax_zrange E b_in b_out = inl rv)
: (forall arg1 arg2
(Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
@@ -1129,17 +1353,17 @@ Module Compilers.
by (hnf; etransitivity; [ eassumption | symmetry; eassumption ]).
split.
all: repeat first [ rewrite !@GeneralizeVar.Interp_gen1_FromFlat_ToFlat by eauto with wf typeclass_instances
- | rewrite <- Extract_FromFlat_ToFlat by auto; apply Interp_PartialEvaluateWithBounds_bounded; auto
- | rewrite Extract_FromFlat_ToFlat by auto with wf
+ | rewrite <- Extract_FromFlat_ToFlat by auto with typeclass_instances; apply Interp_PartialEvaluateWithBounds_bounded; auto
+ | rewrite Extract_FromFlat_ToFlat by auto with wf typeclass_instances
| progress intros
| progress cbv [ident.interp]
| rewrite RelaxZRange.expr.Interp_Relax; eauto
| eapply ZRange.type.base.option.is_tighter_than_is_bounded_by; [ eassumption | ]
- | solve [ eauto with wf ]
+ | solve [ eauto with wf typeclass_instances ]
| erewrite !Interp_PartialEvaluateWithBounds
| apply type.app_curried_Proper
| apply expr.Wf_Interp_Proper_gen
| progress intros ]. }
- { auto with wf. }
+ { auto with wf typeclass_instances. }
Qed.
End Compilers.