aboutsummaryrefslogtreecommitdiff
path: root/src/Encoding/PointEncodingPre.v
diff options
context:
space:
mode:
Diffstat (limited to 'src/Encoding/PointEncodingPre.v')
-rw-r--r--src/Encoding/PointEncodingPre.v395
1 files changed, 395 insertions, 0 deletions
diff --git a/src/Encoding/PointEncodingPre.v b/src/Encoding/PointEncodingPre.v
new file mode 100644
index 000000000..2ad567c92
--- /dev/null
+++ b/src/Encoding/PointEncodingPre.v
@@ -0,0 +1,395 @@
+Require Import Coq.ZArith.ZArith Coq.ZArith.Znumtheory.
+Require Import Coq.Numbers.Natural.Peano.NPeano.
+Require Import Coq.Program.Equality.
+Require Import Crypto.CompleteEdwardsCurve.Pre.
+Require Import Crypto.CompleteEdwardsCurve.CompleteEdwardsCurveTheorems.
+Require Import Bedrock.Word.
+Require Import Crypto.Encoding.ModularWordEncodingTheorems.
+Require Import Crypto.Tactics.VerdiTactics.
+Require Import Crypto.Util.ZUtil.
+Require Import Crypto.Algebra.
+
+Require Import Crypto.Spec.Encoding Crypto.Spec.ModularWordEncoding Crypto.Spec.ModularArithmetic.
+
+Generalizable All Variables.
+Section PointEncodingPre.
+ Context {F eq zero one opp add sub mul inv div} `{field F eq zero one opp add sub mul inv div}.
+ Local Infix "==" := eq (at level 30) : type_scope.
+ Local Notation "a !== b" := (not (a == b)) (at level 30): type_scope.
+ Local Notation "0" := zero. Local Notation "1" := one.
+ Local Infix "+" := add. Local Infix "*" := mul.
+ Local Infix "-" := sub. Local Infix "/" := div.
+ Local Notation "x '^' 2" := (x*x) (at level 30).
+
+ Add Field EdwardsCurveField : (Field.field_theory_for_stdlib_tactic (T:=F)).
+
+ Context {eq_dec:forall x y : F, {x==y}+{x==y->False}}.
+ Definition F_eqb x y := if eq_dec x y then true else false.
+ Lemma F_eqb_iff : forall x y, F_eqb x y = true <-> x == y.
+ Proof.
+ unfold F_eqb; intros; destruct (eq_dec x y); split; auto; discriminate.
+ Qed.
+
+ Context {a d:F} {prm:@E.twisted_edwards_params F eq zero one add mul a d}.
+ Local Notation point := (@E.point F eq one add mul a d).
+ Local Notation onCurve := (@onCurve F eq one add mul a d).
+ Local Notation solve_for_x2 := (@E.solve_for_x2 F one sub mul div a d).
+
+ Context {sz : nat} (sz_nonzero : (0 < sz)%nat).
+ Context {sqrt : F -> F} (sqrt_square : forall x root, x == (root ^2) -> sqrt x == root)
+ (sqrt_subst : forall x y, x == y -> sqrt x == sqrt y).
+ Context (FEncoding : canonical encoding of F as (word sz)).
+ Context {sign_bit : F -> bool} (sign_bit_zero : forall x, x == 0 -> Logic.eq (sign_bit x) false)
+ (sign_bit_opp : forall x, x !== 0 -> Logic.eq (negb (sign_bit x)) (sign_bit (opp x)))
+ (sign_bit_subst : forall x y, x == y -> sign_bit x = sign_bit y).
+
+ Definition sqrt_ok (a : F) := (sqrt a) ^ 2 == a.
+
+ Lemma square_sqrt : forall y root, y == (root ^2) ->
+ sqrt_ok y.
+ Proof.
+ unfold sqrt_ok; intros ? ? root2_y.
+ pose proof root2_y.
+ apply sqrt_square in root2_y.
+ rewrite root2_y.
+ symmetry; assumption.
+ Qed.
+
+ Lemma solve_onCurve: forall x y : F, onCurve (x,y) ->
+ onCurve (sqrt (solve_for_x2 y), y).
+ Proof.
+ intros.
+ apply E.solve_correct.
+ eapply square_sqrt.
+ symmetry.
+ apply E.solve_correct; eassumption.
+ Qed.
+
+ (* TODO : move? *)
+ Lemma square_opp : forall x : F, (opp x ^2) == (x ^2).
+ Proof.
+ intros. ring.
+ Qed.
+
+ Lemma solve_opp_onCurve: forall x y : F, onCurve (x,y) ->
+ onCurve (opp (sqrt (solve_for_x2 y)), y).
+ Proof.
+ intros.
+ apply E.solve_correct.
+ etransitivity; [ apply square_opp | ].
+ eapply square_sqrt.
+ symmetry.
+ apply E.solve_correct; eassumption.
+ Qed.
+
+ Definition point_enc_coordinates (p : (F * F)) : Word.word (S sz) := let '(x,y) := p in
+ Word.WS (sign_bit x) (enc y).
+
+ Let point_enc (p : point) : Word.word (S sz) := point_enc_coordinates (E.coordinates p).
+
+ Definition point_dec_coordinates (w : Word.word (S sz)) : option (F * F) :=
+ match dec (Word.wtl w) with
+ | None => None
+ | Some y => let x2 := solve_for_x2 y in
+ let x := sqrt x2 in
+ if eq_dec (x ^ 2) x2
+ then
+ let p := (if Bool.eqb (whd w) (sign_bit x) then x else opp x, y) in
+ if (andb (F_eqb x 0) (whd w))
+ then None (* special case for 0, since its opposite has the same sign; if the sign bit of 0 is 1, produce None.*)
+ else Some p
+ else None
+ end.
+
+ (* Definition of product equality parameterized over equality of underlying types *)
+ Definition prod_eq {A B} eqA eqB (x y : (A * B)) := let (xA,xB) := x in let (yA,yB) := y in
+ (eqA xA yA) /\ (eqB xB yB).
+
+ Lemma prod_eq_dec : forall {A eq} (A_eq_dec : forall a a' : A, {eq a a'} + {not (eq a a')})
+ (x y : (A * A)), {prod_eq eq eq x y} + {not (prod_eq eq eq x y)}.
+ Proof.
+ intros.
+ destruct x as [x1 x2].
+ destruct y as [y1 y2].
+ match goal with
+ | |- {prod_eq _ _ (?x1, ?x2) (?y1,?y2)} + {not (prod_eq _ _ (?x1, ?x2) (?y1,?y2))} =>
+ destruct (A_eq_dec x1 y1); destruct (A_eq_dec x2 y2) end;
+ unfold prod_eq; intuition.
+ Qed.
+
+ Definition option_eq {A} eq (x y : option A) :=
+ match x with
+ | None => y = None
+ | Some ax => match y with
+ | None => False
+ | Some ay => eq ax ay
+ end
+ end.
+
+ Lemma option_eq_dec : forall {A eq} (A_eq_dec : forall a a' : A, {eq a a'} + {not (eq a a')})
+ (x y : option A), {option_eq eq x y} + {not (option_eq eq x y)}.
+ Proof.
+ unfold option_eq; intros; destruct x as [ax|], y as [ay|]; try tauto; auto.
+ right; congruence.
+ Qed.
+ Definition option_coordinates_eq := option_eq (prod_eq eq eq).
+
+ Lemma option_coordinates_eq_NS : forall x, option_coordinates_eq None (Some x) -> False.
+ Proof.
+ unfold option_coordinates_eq, option_eq.
+ intros; discriminate.
+ Qed.
+
+ Lemma inversion_option_coordinates_eq : forall x y,
+ option_coordinates_eq (Some x) (Some y) -> prod_eq eq eq x y.
+ Proof.
+ unfold option_coordinates_eq, option_eq; intros; assumption.
+ Qed.
+
+ Lemma prod_eq_onCurve : forall p q : F * F, prod_eq eq eq p q ->
+ onCurve p -> onCurve q.
+ Proof.
+ unfold prod_eq; intros.
+ destruct p; destruct q.
+ eauto using onCurve_subst.
+ Qed.
+
+ Lemma option_coordinates_eq_iff : forall x1 x2 y1 y2,
+ option_coordinates_eq (Some (x1,y1)) (Some (x2,y2)) <-> and (eq x1 x2) (eq y1 y2).
+ Proof.
+ unfold option_coordinates_eq, option_eq, prod_eq; tauto.
+ Qed.
+
+ Definition point_eq (p q : point) : Prop := prod_eq eq eq (proj1_sig p) (proj1_sig q).
+ Definition option_point_eq := option_eq (point_eq).
+
+ Lemma option_point_eq_iff : forall p q,
+ option_point_eq (Some p) (Some q) <->
+ option_coordinates_eq (Some (proj1_sig p)) (Some (proj1_sig q)).
+ Proof.
+ unfold option_point_eq, option_coordinates_eq, option_eq, point_eq; intros.
+ reflexivity.
+ Qed.
+
+ Lemma option_coordinates_eq_dec : forall p q,
+ {option_coordinates_eq p q} + {~ option_coordinates_eq p q}.
+ Proof.
+ intros.
+ apply option_eq_dec.
+ apply prod_eq_dec.
+ apply eq_dec.
+ Qed.
+
+ Lemma point_eq_dec : forall p q, {point_eq p q} + {~ point_eq p q}.
+ Proof.
+ intros.
+ apply prod_eq_dec.
+ apply eq_dec.
+ Qed.
+
+ Lemma option_point_eq_dec : forall p q,
+ {option_point_eq p q} + {~ option_point_eq p q}.
+ Proof.
+ intros.
+ apply option_eq_dec.
+ apply point_eq_dec.
+ Qed.
+
+ Lemma prod_eq_trans : forall p q r, prod_eq eq eq p q -> prod_eq eq eq q r ->
+ prod_eq eq eq p r.
+ Proof.
+ unfold prod_eq; intros.
+ repeat break_let.
+ intuition; etransitivity; eauto.
+ Qed.
+
+ Lemma option_coordinates_eq_trans : forall p q r, option_coordinates_eq p q ->
+ option_coordinates_eq q r -> option_coordinates_eq p r.
+ Proof.
+ unfold option_coordinates_eq, option_eq; intros.
+ repeat break_match; subst; congruence || eauto using prod_eq_trans.
+ Qed.
+
+ Lemma prod_eq_sym : forall p q, prod_eq eq eq p q -> prod_eq eq eq q p.
+ Proof.
+ unfold prod_eq; intros.
+ repeat break_let.
+ intuition; etransitivity; eauto.
+ Qed.
+
+ Lemma option_coordinates_eq_sym : forall p q, option_coordinates_eq p q ->
+ option_coordinates_eq q p.
+ Proof.
+ unfold option_coordinates_eq, option_eq; intros.
+ repeat break_match; subst; congruence || eauto using prod_eq_sym; intuition.
+ Qed.
+
+ Opaque option_coordinates_eq option_point_eq point_eq option_eq prod_eq.
+
+ Ltac inversion_Some_eq := match goal with [H: Some ?x = Some ?y |- _] => inversion H; subst end.
+
+ Ltac congruence_option_coord := exfalso; eauto using option_coordinates_eq_NS.
+
+ Lemma point_dec_coordinates_onCurve : forall w p, option_coordinates_eq (point_dec_coordinates w) (Some p) -> onCurve p.
+ Proof.
+ unfold point_dec_coordinates; intros.
+ edestruct dec; [ | congruence_option_coord ].
+ break_if; [ | congruence_option_coord].
+ break_if; [ congruence_option_coord | ].
+ apply E.solve_correct in e.
+ break_if; eapply prod_eq_onCurve;
+ eauto using inversion_option_coordinates_eq, solve_onCurve, solve_opp_onCurve.
+ Qed.
+
+ Definition point_dec' w p : option point :=
+ match (option_coordinates_eq_dec (point_dec_coordinates w) (Some p)) with
+ | left EQ => Some (exist _ p (point_dec_coordinates_onCurve w p EQ))
+ | right _ => None (* this case is never reached *)
+ end.
+
+ Definition point_dec (w : word (S sz)) : option point :=
+ match point_dec_coordinates w with
+ | Some p => point_dec' w p
+ | None => None
+ end.
+
+ Lemma point_coordinates_encoding_canonical : forall w p,
+ point_dec_coordinates w = Some p -> point_enc_coordinates p = w.
+ Proof.
+ unfold point_dec_coordinates, point_enc_coordinates; intros ? ? coord_dec_Some.
+ case_eq (dec (wtl w)); [ intros ? dec_Some | intros dec_None; rewrite dec_None in *; congruence ].
+ destruct p.
+ rewrite (shatter_word w).
+ f_equal; rewrite dec_Some in *;
+ do 2 (break_if; try congruence); inversion coord_dec_Some; subst.
+ + destruct (eq_dec (sqrt (solve_for_x2 f1)) 0) as [sqrt_0 | ?].
+ - break_if; rewrite sign_bit_zero in * by (assumption || (rewrite sqrt_0; ring));
+ auto using Bool.eqb_prop.
+ apply F_eqb_iff in sqrt_0.
+ rewrite sqrt_0 in *.
+ destruct (whd w); inversion Heqb0; auto.
+ - break_if.
+ symmetry; auto using Bool.eqb_prop.
+ rewrite <- sign_bit_opp by assumption.
+ destruct (whd w); inversion Heqb0; break_if; auto.
+ + inversion coord_dec_Some; subst.
+ auto using encoding_canonical.
+ Qed.
+
+ Lemma inversion_point_dec : forall w x, point_dec w = Some x ->
+ point_dec_coordinates w = Some (E.coordinates x).
+ Proof.
+ unfold point_dec, E.coordinates; intros.
+ break_match; [ | congruence].
+ unfold point_dec' in *; break_match; [ | congruence].
+ match goal with [ H : Some _ = Some _ |- _ ] => inversion H end.
+ reflexivity.
+ Qed.
+
+ Lemma point_encoding_canonical : forall w x, point_dec w = Some x -> point_enc x = w.
+ Proof.
+ unfold point_enc; intros.
+ apply point_coordinates_encoding_canonical.
+ auto using inversion_point_dec.
+ Qed.
+
+ Lemma y_decode : forall p, dec (wtl (point_enc_coordinates p)) = Some (snd p).
+ Proof.
+ intros; destruct p. cbv [point_enc_coordinates wtl snd].
+ exact (encoding_valid _).
+ Qed.
+
+ Lemma F_eqb_false : forall x y, x !== y -> F_eqb x y = false.
+ Proof.
+ intros; unfold F_eqb; destruct (eq_dec x y); congruence.
+ Qed.
+
+ Lemma eqb_sign_opp_r : forall x y, (y !== 0) ->
+ Bool.eqb (sign_bit x) (sign_bit y) = false ->
+ Bool.eqb (sign_bit x) (sign_bit (opp y)) = true.
+ Proof.
+ intros x y y_nonzero ?.
+ specialize (sign_bit_opp y y_nonzero).
+ destruct (sign_bit x), (sign_bit y); try discriminate;
+ rewrite <-sign_bit_opp; auto.
+ Qed.
+
+ Lemma sign_match : forall x y sqrt_y, sqrt_y !== 0 -> (x ^2) == y -> sqrt_y ^2 == y ->
+ Bool.eqb (sign_bit x) (sign_bit sqrt_y) = true ->
+ sqrt_y == x.
+ Proof.
+ intros.
+ pose proof (only_two_square_roots_choice x sqrt_y y) as Hchoice.
+ destruct Hchoice; try assumption; symmetry; try assumption.
+ rewrite (sign_bit_subst x (opp sqrt_y)) in * by assumption.
+ rewrite <-sign_bit_opp in * by assumption.
+ rewrite Bool.eqb_negb1 in *; discriminate.
+ Qed.
+
+ Lemma point_encoding_coordinates_valid : forall p, onCurve p ->
+ option_coordinates_eq (point_dec_coordinates (point_enc_coordinates p)) (Some p).
+ Proof.
+ intros [x y] onCurve_p.
+ unfold point_dec_coordinates.
+ rewrite y_decode.
+ cbv [whd point_enc_coordinates snd].
+ pose proof (square_sqrt (solve_for_x2 y) x) as solve_sqrt_ok.
+ forward solve_sqrt_ok. {
+ symmetry.
+ apply E.solve_correct.
+ assumption.
+ }
+ match goal with [ H1 : ?P, H2 : ?P -> _ |- _ ] => specialize (H2 H1); clear H1 end.
+ unfold sqrt_ok in solve_sqrt_ok.
+ break_if; [ | congruence].
+ assert (solve_for_x2 y == (x ^2)) as solve_correct by (symmetry; apply E.solve_correct; assumption).
+ destruct (eq_dec x 0) as [eq_x_0 | neq_x_0].
+ + rewrite !sign_bit_zero by
+ (eauto || (rewrite eq_x_0 in *; rewrite sqrt_square; [ | eauto]; reflexivity)).
+ rewrite Bool.andb_false_r, Bool.eqb_reflx.
+ apply option_coordinates_eq_iff; split; try reflexivity.
+ transitivity (sqrt (x ^2)); auto.
+ apply (sqrt_square); reflexivity.
+ + rewrite F_eqb_false, Bool.andb_false_l by (rewrite sqrt_square; [ | eauto]; assumption).
+ break_if; [ | apply eqb_sign_opp_r in Heqb];
+ try (apply option_coordinates_eq_iff; split; try reflexivity);
+ try eapply sign_match with (y := solve_for_x2 y); eauto;
+ try solve [symmetry; auto]; rewrite ?square_opp; auto;
+ (rewrite sqrt_square; [ | eauto]); try apply Ring.opp_nonzero_nonzero;
+ assumption.
+Qed.
+
+Lemma point_dec'_valid : forall p q, option_coordinates_eq (Some q) (Some (proj1_sig p)) ->
+ option_point_eq (point_dec' (point_enc_coordinates (proj1_sig p)) q) (Some p).
+Proof.
+ unfold point_dec'; intros.
+ break_match.
+ + f_equal.
+ apply option_point_eq_iff.
+ destruct p as [[? ?] ?]; simpl in *.
+ assumption.
+ + exfalso; apply n.
+ eapply option_coordinates_eq_trans; [ | eauto using option_coordinates_eq_sym ].
+ apply point_encoding_coordinates_valid.
+ apply (proj2_sig p).
+Qed.
+
+Lemma point_encoding_valid : forall p,
+ option_point_eq (point_dec (point_enc p)) (Some p).
+Proof.
+ intros.
+ unfold point_dec.
+ replace (point_enc p) with (point_enc_coordinates (proj1_sig p)) by reflexivity.
+ break_match.
+ + eapply (point_dec'_valid p).
+ rewrite <-Heqo.
+ apply point_encoding_coordinates_valid.
+ apply (proj2_sig p).
+ + exfalso.
+ eapply option_coordinates_eq_NS.
+ pose proof (point_encoding_coordinates_valid _ (proj2_sig p)).
+ rewrite Heqo in *.
+ eassumption.
+Qed.
+
+End PointEncodingPre.