aboutsummaryrefslogtreecommitdiff
path: root/src/Encoding/PointEncodingPre.v
diff options
context:
space:
mode:
Diffstat (limited to 'src/Encoding/PointEncodingPre.v')
-rw-r--r--src/Encoding/PointEncodingPre.v275
1 files changed, 0 insertions, 275 deletions
diff --git a/src/Encoding/PointEncodingPre.v b/src/Encoding/PointEncodingPre.v
deleted file mode 100644
index 73ced869b..000000000
--- a/src/Encoding/PointEncodingPre.v
+++ /dev/null
@@ -1,275 +0,0 @@
-Require Import Coq.ZArith.ZArith Coq.ZArith.Znumtheory.
-Require Import Coq.Numbers.Natural.Peano.NPeano.
-Require Import Coq.Program.Equality.
-Require Import Crypto.Encoding.EncodingTheorems.
-Require Import Crypto.CompleteEdwardsCurve.CompleteEdwardsCurveTheorems.
-Require Import Crypto.ModularArithmetic.PrimeFieldTheorems.
-Require Import Bedrock.Word.
-Require Import Crypto.Encoding.ModularWordEncodingTheorems.
-Require Import Crypto.Tactics.VerdiTactics.
-Require Import Crypto.Util.ZUtil.
-
-Require Import Crypto.Spec.Encoding Crypto.Spec.ModularWordEncoding Crypto.Spec.ModularArithmetic.
-
-Local Open Scope F_scope.
-
-Section PointEncoding.
- Context {prm: TwistedEdwardsParams} {sz : nat} {sz_nonzero : (0 < sz)%nat}
- {bound_check : (Z.to_nat q < 2 ^ sz)%nat} {q_5mod8 : (q mod 8 = 5)%Z}
- {sqrt_minus1_valid : (@ZToField q 2 ^ Z.to_N (q / 4)) ^ 2 = opp 1}
- {FqEncoding : canonical encoding of (F q) as (word sz)}
- {sign_bit : F q -> bool} {sign_bit_zero : sign_bit 0 = false}
- {sign_bit_opp : forall x, x <> 0 -> negb (sign_bit x) = sign_bit (opp x)}.
- Existing Instance prime_q.
-
- Add Field Ffield : (@Ffield_theory q _)
- (morphism (@Fring_morph q),
- preprocess [Fpreprocess],
- postprocess [Fpostprocess; try exact Fq_1_neq_0; try assumption],
- constants [Fconstant],
- div (@Fmorph_div_theory q),
- power_tac (@Fpower_theory q) [Fexp_tac]).
-
- Definition sqrt_valid (a : F q) := ((sqrt_mod_q a) ^ 2 = a)%F.
-
- Lemma solve_sqrt_valid : forall p, E.onCurve p ->
- sqrt_valid (E.solve_for_x2 (snd p)).
- Proof.
- intros ? onCurve_xy.
- destruct p as [x y]; simpl.
- rewrite (E.solve_correct x y) in onCurve_xy.
- rewrite <- onCurve_xy.
- unfold sqrt_valid.
- eapply sqrt_mod_q_valid; eauto.
- unfold isSquare; eauto.
- Grab Existential Variables. eauto.
- Qed.
-
- Lemma solve_onCurve: forall (y : F q), sqrt_valid (E.solve_for_x2 y) ->
- E.onCurve (sqrt_mod_q (E.solve_for_x2 y), y).
- Proof.
- intros.
- unfold sqrt_valid in *.
- apply E.solve_correct; auto.
- Qed.
-
- Lemma solve_opp_onCurve: forall (y : F q), sqrt_valid (E.solve_for_x2 y) ->
- E.onCurve (opp (sqrt_mod_q (E.solve_for_x2 y)), y).
- Proof.
- intros y sqrt_valid_x2.
- unfold sqrt_valid in *.
- apply E.solve_correct.
- rewrite <- sqrt_valid_x2 at 2.
- ring.
- Qed.
-
- Definition point_enc_coordinates (p : (F q * F q)) : Word.word (S sz) := let '(x,y) := p in
- Word.WS (sign_bit x) (enc y).
-
- Let point_enc (p : E.point) : Word.word (S sz) := let '(x,y) := proj1_sig p in
- Word.WS (sign_bit x) (enc y).
-
- Definition point_dec_coordinates (sign_bit : F q -> bool) (w : Word.word (S sz)) : option (F q * F q) :=
- match dec (Word.wtl w) with
- | None => None
- | Some y => let x2 := E.solve_for_x2 y in
- let x := sqrt_mod_q x2 in
- if F_eq_dec (x ^ 2) x2
- then
- let p := (if Bool.eqb (whd w) (sign_bit x) then x else opp x, y) in
- if (andb (F_eqb x 0) (whd w))
- then None (* special case for 0, since its opposite has the same sign; if the sign bit of 0 is 1, produce None.*)
- else Some p
- else None
- end.
-
- Ltac inversion_Some_eq := match goal with [H: Some ?x = Some ?y |- _] => inversion H; subst end.
-
- Lemma point_dec_coordinates_onCurve : forall w p, point_dec_coordinates sign_bit w = Some p -> E.onCurve p.
- Proof.
- unfold point_dec_coordinates; intros.
- edestruct dec; [ | congruence].
- break_if; [ | congruence].
- break_if; [ congruence | ].
- break_if; inversion_Some_eq; auto using solve_onCurve, solve_opp_onCurve.
- Qed.
-
- Lemma prod_eq_dec : forall {A} (A_eq_dec : forall a a' : A, {a = a'} + {a <> a'})
- (x y : (A * A)), {x = y} + {x <> y}.
- Proof.
- decide equality.
- Qed.
-
- Lemma option_eq_dec : forall {A} (A_eq_dec : forall a a' : A, {a = a'} + {a <> a'})
- (x y : option A), {x = y} + {x <> y}.
- Proof.
- decide equality.
- Qed.
-
- Definition point_dec' w p : option E.point :=
- match (option_eq_dec (prod_eq_dec F_eq_dec) (point_dec_coordinates sign_bit w) (Some p)) with
- | left EQ => Some (exist _ p (point_dec_coordinates_onCurve w p EQ))
- | right _ => None (* this case is never reached *)
- end.
-
- Definition point_dec (w : word (S sz)) : option E.point :=
- match (point_dec_coordinates sign_bit w) with
- | Some p => point_dec' w p
- | None => None
- end.
-
- Lemma point_coordinates_encoding_canonical : forall w p,
- point_dec_coordinates sign_bit w = Some p -> point_enc_coordinates p = w.
- Proof.
- unfold point_dec_coordinates, point_enc_coordinates; intros ? ? coord_dec_Some.
- case_eq (dec (wtl w)); [ intros ? dec_Some | intros dec_None; rewrite dec_None in *; congruence ].
- destruct p.
- rewrite (shatter_word w).
- f_equal; rewrite dec_Some in *;
- do 2 (break_if; try congruence); inversion coord_dec_Some; subst.
- + destruct (F_eq_dec (sqrt_mod_q (E.solve_for_x2 f1)) 0%F) as [sqrt_0 | ?].
- - rewrite sqrt_0 in *.
- apply sqrt_mod_q_root_0 in sqrt_0; try assumption.
- rewrite sqrt_0 in *.
- break_if; [symmetry; auto using Bool.eqb_prop | ].
- rewrite sign_bit_zero in *.
- simpl in Heqb; rewrite Heqb in *.
- discriminate.
- - break_if.
- symmetry; auto using Bool.eqb_prop.
- rewrite <- sign_bit_opp by assumption.
- destruct (whd w); inversion Heqb0; break_if; auto.
- + inversion coord_dec_Some; subst.
- auto using encoding_canonical.
-Qed.
-
- Lemma point_encoding_canonical : forall w x, point_dec w = Some x -> point_enc x = w.
- Proof.
- (*
- unfold point_enc; intros.
- unfold point_dec in *.
- assert (point_dec_coordinates w = Some (proj1_sig x)). {
- set (y := point_dec_coordinates w) in *.
- revert H.
- dependent destruction y. intros.
- rewrite H0 in H.
- *)
- Admitted.
-
-Lemma point_dec_coordinates_correct w
- : option_map (@proj1_sig _ _) (point_dec w) = point_dec_coordinates sign_bit w.
-Proof.
- unfold point_dec, option_map.
- do 2 break_match; try congruence; unfold point_dec' in *;
- break_match; try congruence.
- inversion_Some_eq.
- reflexivity.
-Qed.
-
-Lemma y_decode : forall p, dec (wtl (point_enc_coordinates p)) = Some (snd p).
-Proof.
- intros.
- destruct p as [x y]; simpl.
- exact (encoding_valid y).
-Qed.
-
-Lemma sign_bit_opp_eq_iff : forall x y, y <> 0 ->
- (sign_bit x <> sign_bit y <-> sign_bit x = sign_bit (opp y)).
-Proof.
- split; intro sign_mismatch; case_eq (sign_bit x); case_eq (sign_bit y);
- try congruence; intros y_sign x_sign; rewrite <- sign_bit_opp in * by auto;
- rewrite y_sign, x_sign in *; reflexivity || discriminate.
-Qed.
-
-Lemma sign_bit_squares : forall x y, y <> 0 -> x ^ 2 = y ^ 2 ->
- sign_bit x = sign_bit y -> x = y.
-Proof.
- intros ? ? y_nonzero squares_eq sign_match.
- destruct (sqrt_solutions _ _ squares_eq) as [? | eq_opp]; auto.
- assert (sign_bit x = sign_bit (opp y)) as sign_mismatch by (f_equal; auto).
- apply sign_bit_opp_eq_iff in sign_mismatch; auto.
- congruence.
-Qed.
-
-Lemma sign_bit_match : forall x x' y : F q, E.onCurve (x, y) -> E.onCurve (x', y) ->
- sign_bit x = sign_bit x' -> x = x'.
-Proof.
- intros ? ? ? onCurve_x onCurve_x' sign_match.
- apply E.solve_correct in onCurve_x.
- apply E.solve_correct in onCurve_x'.
- destruct (F_eq_dec x' 0).
- + subst.
- rewrite Fq_pow_zero in onCurve_x' by congruence.
- rewrite <- onCurve_x' in *.
- eapply Fq_root_zero; eauto.
- + apply sign_bit_squares; auto.
- rewrite onCurve_x, onCurve_x'.
- reflexivity.
-Qed.
-
-Lemma point_encoding_coordinates_valid : forall p, E.onCurve p ->
- point_dec_coordinates sign_bit (point_enc_coordinates p) = Some p.
-Proof.
- intros p onCurve_p.
- unfold point_dec_coordinates.
- rewrite y_decode.
- pose proof (solve_sqrt_valid p onCurve_p) as solve_sqrt_valid_p.
- destruct p as [x y].
- unfold sqrt_valid in *.
- simpl.
- replace (E.solve_for_x2 y) with (x ^ 2 : F q) in * by (apply E.solve_correct; assumption).
- case_eq (F_eqb x 0); intro eqb_x_0.
- + apply F_eqb_eq in eqb_x_0; rewrite eqb_x_0 in *.
- rewrite !Fq_pow_zero, sqrt_mod_q_of_0, Fq_pow_zero by congruence.
- rewrite if_F_eq_dec_if_F_eqb, sign_bit_zero.
- reflexivity.
- + assert (sqrt_mod_q (x ^ 2) <> 0) by (intro false_eq; apply sqrt_mod_q_root_0 in false_eq; try assumption;
- apply Fq_root_zero in false_eq; rewrite false_eq, F_eqb_refl in eqb_x_0; congruence).
- replace (F_eqb (sqrt_mod_q (x ^ 2)) 0) with false by (symmetry;
- apply F_eqb_neq_complete; assumption).
- break_if.
- - simpl.
- f_equal.
- break_if.
- * rewrite Bool.eqb_true_iff in Heqb.
- pose proof (solve_onCurve y solve_sqrt_valid_p).
- f_equal.
- apply (sign_bit_match _ _ y); auto.
- apply E.solve_correct in onCurve_p; rewrite onCurve_p in *.
- assumption.
- * rewrite Bool.eqb_false_iff in Heqb.
- pose proof (solve_opp_onCurve y solve_sqrt_valid_p).
- f_equal.
- apply sign_bit_opp_eq_iff in Heqb; try assumption.
- apply (sign_bit_match _ _ y); auto.
- apply E.solve_correct in onCurve_p.
- rewrite onCurve_p; auto.
- - simpl in solve_sqrt_valid_p.
- replace (E.solve_for_x2 y) with (x ^ 2 : F q) in * by (apply E.solve_correct; assumption).
- congruence.
-Qed.
-
-Lemma point_dec'_valid : forall p,
- point_dec' (point_enc_coordinates (proj1_sig p)) (proj1_sig p) = Some p.
-Proof.
- unfold point_dec'; intros.
- break_match.
- + f_equal.
- destruct p.
- apply E.point_eq.
- reflexivity.
- + rewrite point_encoding_coordinates_valid in n by apply (proj2_sig p).
- congruence.
-Qed.
-
-Lemma point_encoding_valid : forall p, point_dec (point_enc p) = Some p.
-Proof.
- intros.
- unfold point_dec.
- replace (point_enc p) with (point_enc_coordinates (proj1_sig p)) by reflexivity.
- break_match; rewrite point_encoding_coordinates_valid in * by apply (proj2_sig p); try congruence.
- inversion_Some_eq.
- eapply point_dec'_valid.
-Qed.
-
-End PointEncoding.