aboutsummaryrefslogtreecommitdiff
path: root/src/Encoding/ModularWordEncodingTheorems.v
diff options
context:
space:
mode:
Diffstat (limited to 'src/Encoding/ModularWordEncodingTheorems.v')
-rw-r--r--src/Encoding/ModularWordEncodingTheorems.v89
1 files changed, 89 insertions, 0 deletions
diff --git a/src/Encoding/ModularWordEncodingTheorems.v b/src/Encoding/ModularWordEncodingTheorems.v
new file mode 100644
index 000000000..83f199d90
--- /dev/null
+++ b/src/Encoding/ModularWordEncodingTheorems.v
@@ -0,0 +1,89 @@
+Require Import Coq.ZArith.ZArith Coq.ZArith.Znumtheory.
+Require Import Coq.Numbers.Natural.Peano.NPeano.
+Require Import Crypto.CompleteEdwardsCurve.CompleteEdwardsCurveTheorems.
+Require Import Crypto.ModularArithmetic.PrimeFieldTheorems.
+Require Import Bedrock.Word.
+Require Import Crypto.Tactics.VerdiTactics.
+Require Import Crypto.Spec.Encoding.
+Require Import Crypto.Spec.ModularWordEncoding.
+
+
+Local Open Scope F_scope.
+
+Section SignBit.
+ Context {m : Z} {prime_m : prime m} {two_lt_m : (2 < m)%Z} {sz : nat} {bound_check : (Z.to_nat m < 2 ^ sz)%nat}.
+ Lemma m_pos : (0 < m)%Z.
+ Proof.
+ apply prime_ge_2 in prime_m; omega.
+ Qed.
+
+ Arguments modular_word_encoding {m} {sz} m_pos bound_check.
+ Let Fm_encoding := modular_word_encoding m_pos bound_check.
+
+ Definition sign_bit (x : F m) :=
+ match (@enc _ _ Fm_encoding x) with
+ | Word.WO => false
+ | Word.WS b _ w' => b
+ end.
+
+ Lemma sign_bit_parity : forall x, sign_bit x = Z.odd x.
+ Proof.
+ unfold sign_bit; intros.
+ unfold Fm_encoding, enc, modular_word_encoding, Fm_enc.
+ pose proof (shatter_word (NToWord sz (Z.to_N x))) as shatter.
+ case_eq sz; intros; subst; rewrite shatter.
+ + pose proof (prime_ge_2 m prime_m).
+ simpl in bound_check.
+ assert (m < 1)%Z by (apply Z2Nat.inj_lt; try omega; assumption).
+ omega.
+ + pose proof (FieldToZ_range x m_pos).
+ destruct (FieldToZ x); auto.
+ - destruct p; auto.
+ - pose proof (Pos2Z.neg_is_neg p); omega.
+ Qed.
+
+ Lemma sign_bit_zero : sign_bit 0 = false.
+ Proof.
+ rewrite sign_bit_parity; auto.
+ Qed.
+
+ (* TODO : move to ZUtil *)
+ Lemma Z_odd_mod : forall a b, (b <> 0)%Z ->
+ Z.odd (a mod b) = if Z.odd b then xorb (Z.odd a) (Z.odd (a / b)) else Z.odd a.
+ Proof.
+ intros.
+ rewrite Zmod_eq_full by assumption.
+ rewrite <-Z.add_opp_r, Z.odd_add, Z.odd_opp, Z.odd_mul.
+ break_if; rewrite ?Bool.andb_true_r, ?Bool.andb_false_r; auto using Bool.xorb_false_r.
+ Qed.
+
+ (* TODO : move to ModularArithmeticTheorems *)
+ Lemma F_FieldToZ_add_opp : forall x : F m, x <> 0 -> (FieldToZ x + FieldToZ (opp x) = m)%Z.
+ Proof.
+ intros.
+ rewrite FieldToZ_opp.
+ rewrite Z_mod_nz_opp_full, mod_FieldToZ; try omega.
+ rewrite mod_FieldToZ.
+ replace 0%Z with (@FieldToZ m 0) by auto.
+ intro false_eq.
+ rewrite <-F_eq in false_eq.
+ congruence.
+ Qed.
+
+ Lemma sign_bit_opp : forall (x : F m), x <> 0 -> negb (sign_bit x) = sign_bit (opp x).
+ Proof.
+ intros.
+ pose proof sign_bit_zero as sign_zero.
+ rewrite !sign_bit_parity in *.
+ pose proof (F_opp_spec x) as opp_spec_x.
+ apply F_eq in opp_spec_x.
+ rewrite FieldToZ_add in opp_spec_x.
+ rewrite <-opp_spec_x, Z_odd_mod in sign_zero by omega.
+ replace (Z.odd m) with true in sign_zero by (destruct (ZUtil.prime_odd_or_2 m prime_m); auto || omega).
+ rewrite Z.odd_add, F_FieldToZ_add_opp, Z.div_same, Bool.xorb_true_r in sign_zero by assumption || omega.
+ apply Bool.xorb_eq.
+ rewrite <-Bool.negb_xorb_l.
+ assumption.
+ Qed.
+
+End SignBit. \ No newline at end of file