aboutsummaryrefslogtreecommitdiff
path: root/src/Assembly/QhasmEvalCommon.v
diff options
context:
space:
mode:
Diffstat (limited to 'src/Assembly/QhasmEvalCommon.v')
-rw-r--r--src/Assembly/QhasmEvalCommon.v299
1 files changed, 0 insertions, 299 deletions
diff --git a/src/Assembly/QhasmEvalCommon.v b/src/Assembly/QhasmEvalCommon.v
deleted file mode 100644
index 9760dc869..000000000
--- a/src/Assembly/QhasmEvalCommon.v
+++ /dev/null
@@ -1,299 +0,0 @@
-Require Import Crypto.Assembly.QhasmCommon Crypto.Assembly.QhasmUtil Crypto.Assembly.State.
-Require Import Coq.ZArith.ZArith Coq.Bool.Sumbool.
-Require Import Bedrock.Word.
-Require Import Coq.Logic.Eqdep_dec Coq.Logic.ProofIrrelevance.
-Require Export Crypto.Util.FixCoqMistakes.
-
-Module EvalUtil.
- Definition evalTest {n} (o: TestOp) (a b: word n): bool :=
- let c := (N.compare (wordToN a) (wordToN b)) in
-
- let eqBit := match c with | Eq => true | _ => false end in
- let ltBit := match c with | Lt => true | _ => false end in
- let gtBit := match c with | Gt => true | _ => false end in
-
- match o with
- | TEq => eqBit
- | TLt => ltBit
- | TLe => orb (eqBit) (ltBit)
- | TGt => gtBit
- | TGe => orb (eqBit) (gtBit)
- end.
-
- Definition evalIntOp {b} (io: IntOp) (x y: word b) :=
- match io return (word b) * option bool with
- | ISub => (wminus x y, None)
- | IXor => (wxor x y, None)
- | IAnd => (wand x y, None)
- | IOr => (wor x y, None)
- | IAdd =>
- let v := (wordToN x + wordToN y)%N in
- let c := (overflows b (&x + &y)%N)%w in
-
- match c as c' return c' = c -> _ with
- | right _ => fun _ => (NToWord b v, Some false)
- | left _ => fun _ => (NToWord b v, Some true)
- end eq_refl
- end.
-
- Definition evalCarryOp {b} (io: CarryOp) (x y: word b) (c: bool): (word b) * bool :=
- match io with
- | AddWidthCarry =>
- let c' := (overflows b (&x + &y + (if c then 1 else 0))%N)%w in
- let v := addWithCarry x y c in
-
- match c' as c'' return c' = c'' -> _ with
- | right _ => fun _ => (v, false)
- | left _ => fun _ => (v, true)
- end eq_refl
- end.
-
- Definition highBits {n} (m: nat) (x: word n) := snd (break m x).
-
- Definition multHigh {n} (x y: word n): word n.
- refine (@extend _ n _ ((highBits (n/2) x) ^* (highBits (n/2) y)));
- abstract omega.
- Defined.
-
- Definition evalDualOp {n} (duo: DualOp) (x y: word n) :=
- match duo with
- | Mult => (x ^* y, multHigh x y)
- end.
-
- Definition evalRotOp {b} (ro: RotOp) (x: word b) (n: nat) :=
- match ro with
- | Shl => NToWord b (N.shiftl_nat (wordToN x) n)
- | Shr => NToWord b (N.shiftr_nat (wordToN x) n)
- end.
-
- (* Width decideability *)
-
- Definition getWidth (n: nat): option (Width n) :=
- match n with
- | 32 => Some W32
- | 64 => Some W64
- | _ => None
- end.
-
- Lemma getWidth_eq {n} (a: Width n): Some a = getWidth n.
- Proof. induction a; unfold getWidth; simpl; intuition. Qed.
-
- Lemma width_eq {n} (a b: Width n): a = b.
- Proof.
- assert (Some a = Some b) as H by (
- replace (Some a) with (getWidth n) by (rewrite getWidth_eq; intuition);
- replace (Some b) with (getWidth n) by (rewrite getWidth_eq; intuition);
- intuition).
- inversion H; intuition.
- Qed.
-
- (* Mapping Conversions *)
-
- Definition wordToM {n: nat} {spec: Width n} (w: word n): Mapping n :=
- constM _ (constant spec w).
-
- Definition regToM {n: nat} {spec: Width n} (r: Reg n): Mapping n :=
- regM _ r.
-
- Definition stackToM {n: nat} {spec: Width n} (s: Stack n): Mapping n :=
- stackM _ s.
-
- Definition constToM {n: nat} {spec: Width n} (c: Const n): Mapping n :=
- constM _ c.
-
- Definition mapping_dec {n} (a b: Mapping n): {a = b} + {a <> b}.
- refine (match (a, b) as p' return (a, b) = p' -> _ with
- | (regM v, regM v') => fun _ =>
- if (Nat.eq_dec (regName v) (regName v'))
- then left _
- else right _
-
- | (stackM v, stackM v') => fun _ =>
- if (Nat.eq_dec (stackName v) (stackName v'))
- then left _
- else right _
-
- | (constM v, constM v') => fun _ =>
- if (Nat.eq_dec (constValueN v) (constValueN v'))
- then left _
- else right _
-
- | (memM _ v i, memM _ v' i') => fun _ =>
- if (Nat.eq_dec (memName v) (memName v'))
- then if (Nat.eq_dec (memLength v) (memLength v'))
- then if (Nat.eq_dec (proj1_sig i) (proj1_sig i'))
- then left _ else right _ else right _ else right _
-
- | _ => fun _ => right _
- end (eq_refl (a, b)));
- try destruct v, v'; subst;
- unfold regName, stackName, constValueN, memName, memLength in *;
- repeat progress (try apply f_equal; subst; match goal with
- (* Makeshift intuition *)
- | [ |- ?x = ?x ] => reflexivity
- | [ H: ?x <> ?x |- _ ] => destruct H
- | [ |- ?x = ?y ] => apply proof_irrelevance
-
- (* Destruct the widths *)
- | [ w0: Width ?x, w1: Width ?x |- _ ] =>
- let H := fresh in
- assert (w0 = w1) as H by (apply width_eq);
- rewrite H in *;
- clear w0 H
-
- (* Invert <> *)
- | [ |- regM _ _ <> _ ] => let H := fresh in (intro H; inversion H)
- | [ |- memM _ _ _ <> _ ] => let H := fresh in (intro H; inversion H)
- | [ |- stackM _ _ <> _ ] => let H := fresh in (intro H; inversion H)
- | [ |- constM _ _ <> _ ] => let H := fresh in (intro H; inversion H)
-
- (* Invert common structures *)
- | [ H: regName _ = regName _ |- _ ] => inversion_clear H
- | [ H: (_, _) = _ |- _ ] => inversion_clear H
- | [ H: ?x = _ |- _ ] => is_var x; rewrite H in *; clear H
-
- (* Destruct sigmas, exist, existT *)
- | [ H: proj1_sig ?a = proj1_sig ?b |- _ ] =>
- let l0 := fresh in let l1 := fresh in
- destruct a, b; simpl in H; subst
- | [ H: proj1_sig ?a <> proj1_sig ?b |- _ ] =>
- let l0 := fresh in let l1 := fresh in
- destruct a, b; simpl in H; subst
- | [ H: existT ?a ?b _ = existT ?a ?b _ |- _ ] =>
- apply (inj_pair2_eq_dec _ Nat.eq_dec) in H;
- subst; intuition
- | [ H: exist _ _ _ = exist _ _ _ |- _ ] =>
- inversion H; subst; intuition
-
- (* Single specialized wordToNat proof *)
- | [ H: wordToNat ?a = wordToNat ?b |- ?a = ?b] =>
- rewrite <- (natToWord_wordToNat a);
- rewrite <- (natToWord_wordToNat b);
- rewrite H; reflexivity
-
- | _ => idtac
- end).
- Defined.
-
- Definition dec_lt (a b: nat): {(a < b)%nat} + {(a >= b)%nat}.
- assert ({(a <? b)%nat = true} + {(a <? b)%nat <> true})
- by abstract (destruct (a <? b)%nat; intuition auto with bool);
- destruct H.
-
- - left; abstract (apply Nat.ltb_lt; intuition).
-
- - right; abstract (rewrite Nat.ltb_lt in *; intuition auto with zarith).
- Defined.
-
- Fixpoint stackNames {n} (lst: list (Mapping n)): list nat :=
- match lst with
- | nil => nil
- | cons c cs =>
- match c with
- | stackM v => cons (stackName v) (stackNames cs)
- | _ => stackNames cs
- end
- end.
-
- Fixpoint regNames {n} (lst: list (Mapping n)): list nat :=
- match lst with
- | nil => nil
- | cons c cs =>
- match c with
- | regM v => cons (regName v) (regNames cs)
- | _ => regNames cs
- end
- end.
-
-End EvalUtil.
-
-Module QhasmEval.
- Export EvalUtil FullState.
-
- Definition evalCond (c: Conditional) (state: State): option bool :=
- match c with
- | CTrue => Some true
- | CZero n r =>
- omap (getReg r state) (fun v =>
- if (Nat.eq_dec O (wordToNat v))
- then Some true
- else Some false)
- | CReg n o a b =>
- omap (getReg a state) (fun va =>
- omap (getReg b state) (fun vb =>
- Some (evalTest o va vb)))
- | CConst n o a c =>
- omap (getReg a state) (fun va =>
- Some (evalTest o va (constValueW c)))
- end.
-
- Definition evalOperation (o: Operation) (state: State): option State :=
- match o with
- | IOpConst _ o r c =>
- omap (getReg r state) (fun v =>
- let (v', co) := (evalIntOp o v (constValueW c)) in
- Some (setCarryOpt co (setReg r v' state)))
-
- | IOpReg _ o a b =>
- omap (getReg a state) (fun va =>
- omap (getReg b state) (fun vb =>
- let (v', co) := (evalIntOp o va vb) in
- Some (setCarryOpt co (setReg a v' state))))
-
- | IOpStack _ o a b =>
- omap (getReg a state) (fun va =>
- omap (getStack b state) (fun vb =>
- let (v', co) := (evalIntOp o va vb) in
- Some (setCarryOpt co (setReg a v' state))))
-
- | IOpMem _ _ o r m i =>
- omap (getReg r state) (fun va =>
- omap (getMem m i state) (fun vb =>
- let (v', co) := (evalIntOp o va vb) in
- Some (setCarryOpt co (setReg r v' state))))
-
- | DOp _ o a b (Some x) =>
- omap (getReg a state) (fun va =>
- omap (getReg b state) (fun vb =>
- let (low, high) := (evalDualOp o va vb) in
- Some (setReg x high (setReg a low state))))
-
- | DOp _ o a b None =>
- omap (getReg a state) (fun va =>
- omap (getReg b state) (fun vb =>
- let (low, high) := (evalDualOp o va vb) in
- Some (setReg a low state)))
-
- | ROp _ o r i =>
- omap (getReg r state) (fun v =>
- let v' := (evalRotOp o v i) in
- Some (setReg r v' state))
-
- | COp _ o a b =>
- omap (getReg a state) (fun va =>
- omap (getReg b state) (fun vb =>
- match (getCarry state) with
- | None => None
- | Some c0 =>
- let (v', c') := (evalCarryOp o va vb c0) in
- Some (setCarry c' (setReg a v' state))
- end))
- end.
-
- Definition evalAssignment (a: Assignment) (state: State): option State :=
- match a with
- | ARegMem _ _ r m i =>
- omap (getMem m i state) (fun v => Some (setReg r v state))
- | AMemReg _ _ m i r =>
- omap (getReg r state) (fun v => Some (setMem m i v state))
- | AStackReg _ a b =>
- omap (getReg b state) (fun v => Some (setStack a v state))
- | ARegStack _ a b =>
- omap (getStack b state) (fun v => Some (setReg a v state))
- | ARegReg _ a b =>
- omap (getReg b state) (fun v => Some (setReg a v state))
- | AConstInt _ r c =>
- Some (setReg r (constValueW c) state)
- end.
-
-End QhasmEval.