aboutsummaryrefslogtreecommitdiff
path: root/src/Arithmetic/MontgomeryReduction/WordByWord/Abstract/Dependent/Proofs.v
diff options
context:
space:
mode:
Diffstat (limited to 'src/Arithmetic/MontgomeryReduction/WordByWord/Abstract/Dependent/Proofs.v')
-rw-r--r--src/Arithmetic/MontgomeryReduction/WordByWord/Abstract/Dependent/Proofs.v582
1 files changed, 0 insertions, 582 deletions
diff --git a/src/Arithmetic/MontgomeryReduction/WordByWord/Abstract/Dependent/Proofs.v b/src/Arithmetic/MontgomeryReduction/WordByWord/Abstract/Dependent/Proofs.v
deleted file mode 100644
index 3dd7fc0b3..000000000
--- a/src/Arithmetic/MontgomeryReduction/WordByWord/Abstract/Dependent/Proofs.v
+++ /dev/null
@@ -1,582 +0,0 @@
-(*** Word-By-Word Montgomery Multiplication Proofs *)
-Require Import Coq.Arith.Arith.
-Require Import Coq.ZArith.BinInt Coq.ZArith.ZArith Coq.ZArith.Zdiv Coq.micromega.Lia.
-Require Import Crypto.Util.LetIn.
-Require Import Crypto.Util.Prod.
-Require Import Crypto.Util.NatUtil.
-Require Import Crypto.Arithmetic.ModularArithmeticTheorems Crypto.Spec.ModularArithmetic.
-Require Import Crypto.Arithmetic.MontgomeryReduction.WordByWord.Abstract.Dependent.Definition.
-Require Import Crypto.Algebra.Ring.
-Require Import Crypto.Util.ZUtil.MulSplit.
-Require Import Crypto.Util.ZUtil.Div.
-Require Import Crypto.Util.ZUtil.EquivModulo.
-Require Import Crypto.Util.ZUtil.Modulo.
-Require Import Crypto.Util.ZUtil.Modulo.PullPush.
-Require Import Crypto.Util.ZUtil.Tactics.PeelLe.
-Require Import Crypto.Util.ZUtil.Tactics.ZeroBounds.
-Require Import Crypto.Util.ZUtil.Tactics.RewriteModSmall.
-Require Import Crypto.Util.ZUtil.Tactics.PullPush.Modulo.
-Require Import Crypto.Util.ZUtil.Tactics.LtbToLt.
-Require Import Crypto.Util.Sigma.
-Require Import Crypto.Util.Tactics.SetEvars.
-Require Import Crypto.Util.Tactics.SubstEvars.
-Require Import Crypto.Util.Tactics.DestructHead.
-Require Import Crypto.Util.Tactics.BreakMatch.
-Local Open Scope Z_scope.
-
-Section WordByWordMontgomery.
- Context
- {T : nat -> Type}
- {eval : forall {n}, T n -> Z}
- {zero : forall {n}, T n}
- {divmod : forall {n}, T (S n) -> T n * Z} (* returns lowest limb and all-but-lowest-limb *)
- {r : positive}
- {r_big : r > 1}
- {R : positive}
- {R_numlimbs : nat}
- {R_correct : R = r^Z.of_nat R_numlimbs :> Z}
- {small : forall {n}, T n -> Prop}
- {eval_zero : forall n, eval (@zero n) = 0}
- {small_zero : forall n, small (@zero n)}
- {eval_div : forall n v, small v -> eval (fst (@divmod n v)) = eval v / r}
- {eval_mod : forall n v, small v -> snd (@divmod n v) = eval v mod r}
- {small_div : forall n v, small v -> small (fst (@divmod n v))}
- {scmul : forall {n}, Z -> T n -> T (S n)} (* uses double-output multiply *)
- {eval_scmul: forall n a v, small v -> 0 <= a < r -> 0 <= eval v < R -> eval (@scmul n a v) = a * eval v}
- {small_scmul : forall n a v, small v -> 0 <= a < r -> 0 <= eval v < R -> small (@scmul n a v)}
- {addT : forall {n}, T n -> T n -> T (S n)} (* joins carry *)
- {eval_addT : forall n a b, eval (@addT n a b) = eval a + eval b}
- {small_addT : forall n a b, small a -> small b -> small (@addT n a b)}
- {addT' : forall {n}, T (S n) -> T n -> T (S (S n))} (* joins carry *)
- {eval_addT' : forall n a b, eval (@addT' n a b) = eval a + eval b}
- {small_addT' : forall n a b, small a -> small b -> small (@addT' n a b)}
- {drop_high : T (S (S R_numlimbs)) -> T (S R_numlimbs)} (* drops the highest limb *)
- {eval_drop_high : forall v, small v -> eval (drop_high v) = eval v mod (r * r^Z.of_nat R_numlimbs)}
- {small_drop_high : forall v, small v -> small (drop_high v)}
- (N : T R_numlimbs) (Npos : positive) (Npos_correct: eval N = Z.pos Npos)
- (small_N : small N)
- (N_lt_R : eval N < R)
- {conditional_sub : T (S R_numlimbs) -> T R_numlimbs} (* computes [arg - N] if [N <= arg], and drops high bit *)
- {eval_conditional_sub : forall v, small v -> 0 <= eval v < eval N + R -> eval (conditional_sub v) = eval v + if eval N <=? eval v then -eval N else 0}
- {small_conditional_sub : forall v, small v -> 0 <= eval v < eval N + R -> small (conditional_sub v)}
- {sub_then_maybe_add : T R_numlimbs -> T R_numlimbs -> T R_numlimbs} (* computes [a - b + if (a - b) <? 0 then N else 0] *)
- {eval_sub_then_maybe_add : forall a b, small a -> small b -> 0 <= eval a < eval N -> 0 <= eval b < eval N -> eval (sub_then_maybe_add a b) = eval a - eval b + if eval a - eval b <? 0 then eval N else 0}
- {small_sub_then_maybe_add : forall a b, small (sub_then_maybe_add a b)}
- (B : T R_numlimbs)
- (B_bounds : 0 <= eval B < R)
- (small_B : small B)
- ri (ri_correct : r*ri mod (eval N) = 1 mod (eval N))
- (k : Z) (k_correct : k * eval N mod r = (-1) mod r).
-
- Create HintDb push_eval discriminated.
- Local Ltac t_small :=
- repeat first [ assumption
- | apply small_addT
- | apply small_addT'
- | apply small_div
- | apply small_drop_high
- | apply small_zero
- | apply small_scmul
- | apply small_conditional_sub
- | apply small_sub_then_maybe_add
- | apply Z_mod_lt
- | rewrite Z.mul_split_mod
- | solve [ auto with zarith ]
- | lia
- | progress autorewrite with push_eval
- | progress autounfold with word_by_word_montgomery
- | match goal with
- | [ H : and _ _ |- _ ] => destruct H
- end ].
- Hint Rewrite
- eval_zero
- eval_div
- eval_mod
- eval_addT
- eval_addT'
- eval_scmul
- eval_drop_high
- eval_conditional_sub
- eval_sub_then_maybe_add
- using (repeat autounfold with word_by_word_montgomery; t_small)
- : push_eval.
-
- Local Arguments eval {_} _.
- Local Arguments small {_} _.
- Local Arguments divmod {_} _.
-
- (* Recurse for a as many iterations as A has limbs, varying A := A, S := 0, r, bounds *)
- Section Iteration.
- Context (pred_A_numlimbs : nat)
- (A : T (S pred_A_numlimbs))
- (S : T (S R_numlimbs))
- (small_A : small A)
- (small_S : small S)
- (S_nonneg : 0 <= eval S).
- (* Given A, B < R, we want to compute A * B / R mod N. R = bound 0 * ... * bound (n-1) *)
-
- Local Coercion eval : T >-> Z.
-
- Local Notation a := (@WordByWord.Abstract.Dependent.Definition.a T (@divmod) pred_A_numlimbs A).
- Local Notation A' := (@WordByWord.Abstract.Dependent.Definition.A' T (@divmod) pred_A_numlimbs A).
- Local Notation S1 := (@WordByWord.Abstract.Dependent.Definition.S1 T (@divmod) R_numlimbs scmul addT pred_A_numlimbs B A S).
- Local Notation s := (@WordByWord.Abstract.Dependent.Definition.s T (@divmod) R_numlimbs scmul addT pred_A_numlimbs B A S).
- Local Notation q := (@WordByWord.Abstract.Dependent.Definition.q T (@divmod) r R_numlimbs scmul addT pred_A_numlimbs B k A S).
- Local Notation S2 := (@WordByWord.Abstract.Dependent.Definition.S2 T (@divmod) r R_numlimbs scmul addT addT' N pred_A_numlimbs B k A S).
- Local Notation S3 := (@WordByWord.Abstract.Dependent.Definition.S3 T (@divmod) r R_numlimbs scmul addT addT' N pred_A_numlimbs B k A S).
- Local Notation S4 := (@WordByWord.Abstract.Dependent.Definition.S4 T (@divmod) r R_numlimbs scmul addT addT' drop_high N pred_A_numlimbs B k A S).
-
- Lemma S3_bound
- : eval S < eval N + eval B
- -> eval S3 < eval N + eval B.
- Proof.
- assert (Hmod : forall a b, 0 < b -> a mod b <= b - 1)
- by (intros x y; pose proof (Z_mod_lt x y); omega).
- intro HS.
- unfold S3, S2, S1.
- autorewrite with push_eval; [].
- eapply Z.le_lt_trans.
- { transitivity ((N+B-1 + (r-1)*B + (r-1)*N) / r);
- [ | set_evars; ring_simplify_subterms; subst_evars; reflexivity ].
- Z.peel_le; repeat apply Z.add_le_mono; repeat apply Z.mul_le_mono_nonneg; try lia;
- repeat autounfold with word_by_word_montgomery; rewrite ?Z.mul_split_mod;
- autorewrite with push_eval;
- try Z.zero_bounds;
- auto with lia. }
- rewrite (Z.mul_comm _ r), <- Z.add_sub_assoc, <- Z.add_opp_r, !Z.div_add_l' by lia.
- autorewrite with zsimplify.
- simpl; omega.
- Qed.
-
- Lemma small_A'
- : small A'.
- Proof.
- repeat autounfold with word_by_word_montgomery; auto.
- Qed.
-
- Lemma small_S3
- : small S3.
- Proof. repeat autounfold with word_by_word_montgomery; t_small. Qed.
-
- Lemma S3_nonneg : 0 <= eval S3.
- Proof.
- repeat autounfold with word_by_word_montgomery; rewrite ?Z.mul_split_mod;
- autorewrite with push_eval; [].
- rewrite ?Npos_correct; Z.zero_bounds; lia.
- Qed.
-
- Lemma S4_nonneg : 0 <= eval S4.
- Proof. unfold S4; rewrite eval_drop_high by apply small_S3; Z.zero_bounds. Qed.
-
- Lemma S4_bound
- : eval S < eval N + eval B
- -> eval S4 < eval N + eval B.
- Proof.
- intro H; pose proof (S3_bound H); pose proof S3_nonneg.
- unfold S4.
- rewrite eval_drop_high by apply small_S3.
- rewrite Z.mod_small by nia.
- assumption.
- Qed.
-
- Lemma small_S4
- : small S4.
- Proof. repeat autounfold with word_by_word_montgomery; t_small. Qed.
-
- Lemma S1_eq : eval S1 = S + a*B.
- Proof.
- cbv [S1 a A'].
- repeat autorewrite with push_eval.
- reflexivity.
- Qed.
-
- Lemma S2_mod_N : (eval S2) mod N = (S + a*B) mod N.
- Proof.
- cbv [S2]; autorewrite with push_eval zsimplify. rewrite S1_eq. reflexivity.
- Qed.
-
- Lemma S2_mod_r : S2 mod r = 0.
- Proof.
- cbv [S2 q s]; autorewrite with push_eval.
- assert (r > 0) by lia.
- assert (Hr : (-(1 mod r)) mod r = r - 1 /\ (-(1)) mod r = r - 1).
- { destruct (Z.eq_dec r 1) as [H'|H'].
- { rewrite H'; split; reflexivity. }
- { rewrite !Z_mod_nz_opp_full; rewrite ?Z.mod_mod; Z.rewrite_mod_small; [ split; reflexivity | omega.. ]. } }
- autorewrite with pull_Zmod.
- replace 0 with (0 mod r) by apply Zmod_0_l.
- eapply F.eq_of_Z_iff.
- rewrite Z.mul_split_mod.
- repeat rewrite ?F.of_Z_add, ?F.of_Z_mul, <-?F.of_Z_mod.
- rewrite <-Algebra.Hierarchy.associative.
- replace ((F.of_Z r k * F.of_Z r (eval N))%F) with (F.opp (m:=r) F.one).
- { cbv [F.of_Z F.add]; simpl.
- apply path_sig_hprop; [ intro; exact HProp.allpath_hprop | ].
- simpl.
- rewrite (proj1 Hr), Z.mul_sub_distr_l.
- push_Zmod; pull_Zmod.
- autorewrite with zsimplify; reflexivity. }
- { rewrite <- F.of_Z_mul.
- rewrite F.of_Z_mod.
- rewrite k_correct.
- cbv [F.of_Z F.add F.opp F.one]; simpl.
- change (-(1)) with (-1) in *.
- apply path_sig_hprop; [ intro; exact HProp.allpath_hprop | ]; simpl.
- rewrite (proj1 Hr), (proj2 Hr); Z.rewrite_mod_small; reflexivity. }
- Qed.
-
- Lemma S3_mod_N
- : S3 mod N = (S + a*B)*ri mod N.
- Proof.
- cbv [S3]; autorewrite with push_eval cancel_pair.
- pose proof fun a => Z.div_to_inv_modulo N a r ri eq_refl ri_correct as HH;
- cbv [Z.equiv_modulo] in HH; rewrite HH; clear HH.
- etransitivity; [rewrite (fun a => Z.mul_mod_l a ri N)|
- rewrite (fun a => Z.mul_mod_l a ri N); reflexivity].
- rewrite <-S2_mod_N; repeat (f_equal; []); autorewrite with push_eval.
- autorewrite with push_Zmod;
- rewrite S2_mod_r;
- autorewrite with zsimplify.
- reflexivity.
- Qed.
-
- Lemma S4_mod_N
- (Hbound : eval S < eval N + eval B)
- : S4 mod N = (S + a*B)*ri mod N.
- Proof.
- pose proof (S3_bound Hbound); pose proof S3_nonneg.
- unfold S4; autorewrite with push_eval.
- rewrite (Z.mod_small _ (r * _)) by nia.
- apply S3_mod_N.
- Qed.
- End Iteration.
-
- Local Notation redc_body := (@redc_body T (@divmod) r R_numlimbs scmul addT addT' drop_high N B k).
- Local Notation redc_loop := (@redc_loop T (@divmod) r R_numlimbs scmul addT addT' drop_high N B k).
- Local Notation pre_redc A := (@pre_redc T zero (@divmod) r R_numlimbs scmul addT addT' drop_high N _ A B k).
- Local Notation redc A := (@redc T zero (@divmod) r R_numlimbs scmul addT addT' drop_high conditional_sub N _ A B k).
-
- Section body.
- Context (pred_A_numlimbs : nat)
- (A_S : T (S pred_A_numlimbs) * T (S R_numlimbs)).
- Let A:=fst A_S.
- Let S:=snd A_S.
- Let A_a:=divmod A.
- Let a:=snd A_a.
- Context (small_A : small A)
- (small_S : small S)
- (S_bound : 0 <= eval S < eval N + eval B).
-
- Lemma small_fst_redc_body : small (fst (redc_body A_S)).
- Proof. destruct A_S; apply small_A'; assumption. Qed.
- Lemma small_snd_redc_body : small (snd (redc_body A_S)).
- Proof. destruct A_S; unfold redc_body; apply small_S4; assumption. Qed.
- Lemma snd_redc_body_nonneg : 0 <= eval (snd (redc_body A_S)).
- Proof. destruct A_S; apply S4_nonneg; assumption. Qed.
-
- Lemma snd_redc_body_mod_N
- : (eval (snd (redc_body A_S))) mod (eval N) = (eval S + a*eval B)*ri mod (eval N).
- Proof. destruct A_S; apply S4_mod_N; auto; omega. Qed.
-
- Lemma fst_redc_body
- : (eval (fst (redc_body A_S))) = eval (fst A_S) / r.
- Proof.
- destruct A_S; simpl; repeat autounfold with word_by_word_montgomery; simpl.
- autorewrite with push_eval.
- reflexivity.
- Qed.
-
- Lemma fst_redc_body_mod_N
- : (eval (fst (redc_body A_S))) mod (eval N) = ((eval (fst A_S) - a)*ri) mod (eval N).
- Proof.
- rewrite fst_redc_body.
- etransitivity; [ eapply Z.div_to_inv_modulo; try eassumption; lia | ].
- unfold a, A_a, A.
- autorewrite with push_eval.
- reflexivity.
- Qed.
-
- Lemma redc_body_bound
- : eval S < eval N + eval B
- -> eval (snd (redc_body A_S)) < eval N + eval B.
- Proof.
- destruct A_S; apply S4_bound; unfold S in *; cbn [snd] in *; try assumption; try omega.
- Qed.
- End body.
-
- Local Arguments Z.pow !_ !_.
- Local Arguments Z.of_nat !_.
- Local Ltac induction_loop count IHcount
- := induction count as [|count IHcount]; intros; cbn [redc_loop] in *; [ | (*rewrite redc_loop_comm_body in * *) ].
- Lemma redc_loop_good count A_S
- (Hsmall : small (fst A_S) /\ small (snd A_S))
- (Hbound : 0 <= eval (snd A_S) < eval N + eval B)
- : (small (fst (redc_loop count A_S)) /\ small (snd (redc_loop count A_S)))
- /\ 0 <= eval (snd (redc_loop count A_S)) < eval N + eval B.
- Proof.
- induction_loop count IHcount; auto; [].
- change (id (0 <= eval B < R)) in B_bounds (* don't let [destruct_head'_and] loop *).
- destruct_head'_and.
- repeat first [ apply conj
- | apply small_fst_redc_body
- | apply small_snd_redc_body
- | apply redc_body_bound
- | apply snd_redc_body_nonneg
- | apply IHcount
- | solve [ auto ] ].
- Qed.
-
- Lemma small_redc_loop count A_S
- (Hsmall : small (fst A_S) /\ small (snd A_S))
- (Hbound : 0 <= eval (snd A_S) < eval N + eval B)
- : small (fst (redc_loop count A_S)) /\ small (snd (redc_loop count A_S)).
- Proof. apply redc_loop_good; assumption. Qed.
-
- Lemma redc_loop_bound count A_S
- (Hsmall : small (fst A_S) /\ small (snd A_S))
- (Hbound : 0 <= eval (snd A_S) < eval N + eval B)
- : 0 <= eval (snd (redc_loop count A_S)) < eval N + eval B.
- Proof. apply redc_loop_good; assumption. Qed.
-
- Local Ltac handle_IH_small :=
- repeat first [ apply redc_loop_good
- | apply small_fst_redc_body
- | apply small_snd_redc_body
- | apply redc_body_bound
- | apply snd_redc_body_nonneg
- | apply conj
- | progress cbn [fst snd]
- | progress destruct_head' and
- | solve [ auto ] ].
-
- Lemma fst_redc_loop count A_S
- (Hsmall : small (fst A_S) /\ small (snd A_S))
- (Hbound : 0 <= eval (snd A_S) < eval N + eval B)
- : eval (fst (redc_loop count A_S)) = eval (fst A_S) / r^(Z.of_nat count).
- Proof.
- induction_loop count IHcount.
- { simpl; autorewrite with zsimplify; reflexivity. }
- { rewrite IHcount, fst_redc_body by handle_IH_small.
- change (1 + R_numlimbs)%nat with (S R_numlimbs) in *.
- rewrite Zdiv_Zdiv by Z.zero_bounds.
- rewrite <- (Z.pow_1_r r) at 1.
- rewrite <- Z.pow_add_r by lia.
- replace (1 + Z.of_nat count) with (Z.of_nat (S count)) by lia.
- reflexivity. }
- Qed.
-
- Lemma fst_redc_loop_mod_N count A_S
- (Hsmall : small (fst A_S) /\ small (snd A_S))
- (Hbound : 0 <= eval (snd A_S) < eval N + eval B)
- : eval (fst (redc_loop count A_S)) mod (eval N)
- = (eval (fst A_S) - eval (fst A_S) mod r^Z.of_nat count)
- * ri^(Z.of_nat count) mod (eval N).
- Proof.
- rewrite fst_redc_loop by assumption.
- destruct count.
- { simpl; autorewrite with zsimplify; reflexivity. }
- { etransitivity;
- [ eapply Z.div_to_inv_modulo;
- try solve [ eassumption
- | apply Z.lt_gt, Z.pow_pos_nonneg; lia ]
- | ].
- { erewrite <- Z.pow_mul_l, <- Z.pow_1_l.
- { apply Z.pow_mod_Proper; [ eassumption | reflexivity ]. }
- { lia. } }
- reflexivity. }
- Qed.
-
- Local Arguments Z.pow : simpl never.
- Lemma snd_redc_loop_mod_N count A_S
- (Hsmall : small (fst A_S) /\ small (snd A_S))
- (Hbound : 0 <= eval (snd A_S) < eval N + eval B)
- : (eval (snd (redc_loop count A_S))) mod (eval N)
- = ((eval (snd A_S) + (eval (fst A_S) mod r^(Z.of_nat count))*eval B)*ri^(Z.of_nat count)) mod (eval N).
- Proof.
- induction_loop count IHcount.
- { simpl; autorewrite with zsimplify; reflexivity. }
- { rewrite IHcount by handle_IH_small.
- push_Zmod; rewrite snd_redc_body_mod_N, fst_redc_body by handle_IH_small; pull_Zmod.
- autorewrite with push_eval; [].
- match goal with
- | [ |- ?x mod ?N = ?y mod ?N ]
- => change (Z.equiv_modulo N x y)
- end.
- destruct A_S as [A S].
- cbn [fst snd].
- change (Z.pos (Pos.of_succ_nat ?n)) with (Z.of_nat (Datatypes.S n)).
- rewrite !Z.mul_add_distr_r.
- rewrite <- !Z.mul_assoc.
- replace (ri * ri^(Z.of_nat count)) with (ri^(Z.of_nat (Datatypes.S count)))
- by (change (Datatypes.S count) with (1 + count)%nat;
- autorewrite with push_Zof_nat; rewrite Z.pow_add_r by lia; simpl Z.succ; rewrite Z.pow_1_r; nia).
- rewrite <- !Z.add_assoc.
- apply Z.add_mod_Proper; [ reflexivity | ].
- unfold Z.equiv_modulo; push_Zmod; rewrite (Z.mul_mod_l (_ mod r) _ (eval N)).
- rewrite Z.mod_pull_div by auto with zarith lia.
- push_Zmod.
- erewrite Z.div_to_inv_modulo;
- [
- | apply Z.lt_gt; lia
- | eassumption ].
- pull_Zmod.
- match goal with
- | [ |- ?x mod ?N = ?y mod ?N ]
- => change (Z.equiv_modulo N x y)
- end.
- repeat first [ rewrite <- !Z.pow_succ_r, <- !Nat2Z.inj_succ by lia
- | rewrite (Z.mul_comm _ ri)
- | rewrite (Z.mul_assoc _ ri _)
- | rewrite (Z.mul_comm _ (ri^_))
- | rewrite (Z.mul_assoc _ (ri^_) _) ].
- repeat first [ rewrite <- Z.mul_assoc
- | rewrite <- Z.mul_add_distr_l
- | rewrite (Z.mul_comm _ (eval B))
- | rewrite !Nat2Z.inj_succ, !Z.pow_succ_r by lia;
- rewrite <- Znumtheory.Zmod_div_mod by (apply Z.divide_factor_r || Z.zero_bounds)
- | rewrite Zplus_minus
- | rewrite (Z.mul_comm r (r^_))
- | reflexivity ]. }
- Qed.
-
- Lemma pre_redc_bound A_numlimbs (A : T A_numlimbs)
- (small_A : small A)
- : 0 <= eval (pre_redc A) < eval N + eval B.
- Proof.
- unfold pre_redc.
- apply redc_loop_good; simpl; autorewrite with push_eval;
- rewrite ?Npos_correct; auto; lia.
- Qed.
-
- Lemma small_pre_redc A_numlimbs (A : T A_numlimbs)
- (small_A : small A)
- : small (pre_redc A).
- Proof.
- unfold pre_redc.
- apply redc_loop_good; simpl; autorewrite with push_eval;
- rewrite ?Npos_correct; auto; lia.
- Qed.
-
- Lemma pre_redc_mod_N A_numlimbs (A : T A_numlimbs) (small_A : small A) (A_bound : 0 <= eval A < r ^ Z.of_nat A_numlimbs)
- : (eval (pre_redc A)) mod (eval N) = (eval A * eval B * ri^(Z.of_nat A_numlimbs)) mod (eval N).
- Proof.
- unfold pre_redc.
- rewrite snd_redc_loop_mod_N; cbn [fst snd];
- autorewrite with push_eval zsimplify;
- [ | rewrite ?Npos_correct; auto; lia.. ].
- Z.rewrite_mod_small.
- reflexivity.
- Qed.
-
- Lemma redc_mod_N A_numlimbs (A : T A_numlimbs) (small_A : small A) (A_bound : 0 <= eval A < r ^ Z.of_nat A_numlimbs)
- : (eval (redc A)) mod (eval N) = (eval A * eval B * ri^(Z.of_nat A_numlimbs)) mod (eval N).
- Proof.
- pose proof (@small_pre_redc _ A small_A).
- pose proof (@pre_redc_bound _ A small_A).
- unfold redc.
- autorewrite with push_eval; [].
- break_innermost_match;
- try rewrite Z.add_opp_r, Zminus_mod, Z_mod_same_full;
- autorewrite with zsimplify_fast;
- apply pre_redc_mod_N; auto.
- Qed.
-
- Lemma redc_bound_tight A_numlimbs (A : T A_numlimbs)
- (small_A : small A)
- : 0 <= eval (redc A) < eval N + eval B + if eval N <=? eval (pre_redc A) then -eval N else 0.
- Proof.
- pose proof (@small_pre_redc _ A small_A).
- pose proof (@pre_redc_bound _ A small_A).
- unfold redc.
- rewrite eval_conditional_sub by t_small.
- break_innermost_match; Z.ltb_to_lt; omega.
- Qed.
-
- Lemma redc_bound_N A_numlimbs (A : T A_numlimbs)
- (small_A : small A)
- : eval B < eval N -> 0 <= eval (redc A) < eval N.
- Proof.
- pose proof (@small_pre_redc _ A small_A).
- pose proof (@pre_redc_bound _ A small_A).
- unfold redc.
- rewrite eval_conditional_sub by t_small.
- break_innermost_match; Z.ltb_to_lt; omega.
- Qed.
-
- Lemma redc_bound A_numlimbs (A : T A_numlimbs)
- (small_A : small A)
- (A_bound : 0 <= eval A < r ^ Z.of_nat A_numlimbs)
- : 0 <= eval (redc A) < R.
- Proof.
- pose proof (@small_pre_redc _ A small_A).
- pose proof (@pre_redc_bound _ A small_A).
- unfold redc.
- rewrite eval_conditional_sub by t_small.
- break_innermost_match; Z.ltb_to_lt; try omega.
- Qed.
-
- Lemma small_redc A_numlimbs (A : T A_numlimbs)
- (small_A : small A)
- (A_bound : 0 <= eval A < r ^ Z.of_nat A_numlimbs)
- : small (redc A).
- Proof.
- pose proof (@small_pre_redc _ A small_A).
- pose proof (@pre_redc_bound _ A small_A).
- unfold redc.
- apply small_conditional_sub; [ apply small_pre_redc | .. ]; auto; omega.
- Qed.
-
- Local Notation add := (@add T R_numlimbs addT conditional_sub).
- Local Notation sub := (@sub T R_numlimbs sub_then_maybe_add).
- Local Notation opp := (@opp T (@zero) R_numlimbs sub_then_maybe_add).
-
- Section add_sub.
- Context (Av Bv : T R_numlimbs)
- (small_Av : small Av)
- (small_Bv : small Bv)
- (Av_bound : 0 <= eval Av < eval N)
- (Bv_bound : 0 <= eval Bv < eval N).
-
- Local Ltac do_clear :=
- clear dependent B; clear dependent k; clear dependent ri; clear dependent Npos.
-
- Lemma small_add : small (add Av Bv).
- Proof. do_clear; unfold add; t_small. Qed.
- Lemma small_sub : small (sub Av Bv).
- Proof. do_clear; unfold sub; t_small. Qed.
- Lemma small_opp : small (opp Av).
- Proof. clear dependent Bv; do_clear; unfold opp, sub; t_small. Qed.
-
- Lemma eval_add : eval (add Av Bv) = eval Av + eval Bv + if (eval N <=? eval Av + eval Bv) then -eval N else 0.
- Proof. do_clear; unfold add; autorewrite with push_eval; reflexivity. Qed.
- Lemma eval_sub : eval (sub Av Bv) = eval Av - eval Bv + if (eval Av - eval Bv <? 0) then eval N else 0.
- Proof. do_clear; unfold sub; autorewrite with push_eval; reflexivity. Qed.
- Lemma eval_opp : eval (opp Av) = (if (eval Av =? 0) then 0 else eval N) - eval Av.
- Proof.
- clear dependent Bv; do_clear; unfold opp, sub; autorewrite with push_eval.
- break_innermost_match; Z.ltb_to_lt; lia.
- Qed.
-
- Local Ltac t_mod_N :=
- repeat first [ progress break_innermost_match
- | reflexivity
- | let H := fresh in intro H; rewrite H; clear H
- | progress autorewrite with zsimplify_const
- | rewrite Z.add_opp_r
- | progress (push_Zmod; pull_Zmod) ].
-
- Lemma eval_add_mod_N : eval (add Av Bv) mod eval N = (eval Av + eval Bv) mod eval N.
- Proof. generalize eval_add; clear. t_mod_N. Qed.
- Lemma eval_sub_mod_N : eval (sub Av Bv) mod eval N = (eval Av - eval Bv) mod eval N.
- Proof. generalize eval_sub; clear. t_mod_N. Qed.
- Lemma eval_opp_mod_N : eval (opp Av) mod eval N = (-eval Av) mod eval N.
- Proof. generalize eval_opp; clear; t_mod_N. Qed.
-
- Lemma add_bound : 0 <= eval (add Av Bv) < eval N.
- Proof. do_clear; generalize eval_add; break_innermost_match; Z.ltb_to_lt; lia. Qed.
- Lemma sub_bound : 0 <= eval (sub Av Bv) < eval N.
- Proof. do_clear; generalize eval_sub; break_innermost_match; Z.ltb_to_lt; lia. Qed.
- Lemma opp_bound : 0 <= eval (opp Av) < eval N.
- Proof. do_clear; generalize eval_opp; break_innermost_match; Z.ltb_to_lt; lia. Qed.
- End add_sub.
-End WordByWordMontgomery.