aboutsummaryrefslogtreecommitdiff
path: root/src/Arithmetic/Karatsuba.v
diff options
context:
space:
mode:
Diffstat (limited to 'src/Arithmetic/Karatsuba.v')
-rw-r--r--src/Arithmetic/Karatsuba.v49
1 files changed, 49 insertions, 0 deletions
diff --git a/src/Arithmetic/Karatsuba.v b/src/Arithmetic/Karatsuba.v
new file mode 100644
index 000000000..0f20bb238
--- /dev/null
+++ b/src/Arithmetic/Karatsuba.v
@@ -0,0 +1,49 @@
+Require Import Coq.ZArith.ZArith.
+Require Import Crypto.Algebra.Nsatz.
+Require Import Crypto.Util.ZUtil.
+Local Open Scope Z_scope.
+
+Section Karatsuba.
+ Context {T : Type} (eval : T -> Z)
+ (sub : T -> T -> T)
+ (eval_sub : forall x y, eval (sub x y) = eval x - eval y)
+ (mul : T -> T -> T)
+ (eval_mul : forall x y, eval (mul x y) = eval x * eval y)
+ (add : T -> T -> T)
+ (eval_add : forall x y, eval (add x y) = eval x + eval y)
+ (scmul : Z -> T -> T)
+ (eval_scmul : forall c x, eval (scmul c x) = c * eval x)
+ (split : Z -> T -> T * T)
+ (eval_split : forall s x, s <> 0 -> eval (fst (split s x)) + s * (eval (snd (split s x))) = eval x)
+ .
+
+ Definition karatsuba_mul s (x y : T) : T :=
+ let xab := split s x in
+ let yab := split s y in
+ let xy0 := mul (fst xab) (fst yab) in
+ let xy2 := mul (snd xab) (snd yab) in
+ let xy1 := sub (mul (add (fst xab) (snd xab)) (add (fst yab) (snd yab))) (add xy2 xy0) in
+ add (add (scmul (s^2) xy2) (scmul s xy1)) xy0.
+
+ Lemma eval_karatsuba_mul s x y (s_nonzero:s <> 0) :
+ eval (karatsuba_mul s x y) = eval x * eval y.
+ Proof using Type*. cbv [karatsuba_mul]; repeat rewrite ?eval_sub, ?eval_mul, ?eval_add, ?eval_scmul.
+ rewrite <-(eval_split s x), <-(eval_split s y) by assumption; ring. Qed.
+
+
+ Definition goldilocks_mul s (xs ys : T) : T :=
+ let a_b := split s xs in
+ let c_d := split s ys in
+ let ac := mul (fst a_b) (fst c_d) in
+ (add (add ac (mul (snd a_b) (snd c_d)))
+ (scmul s (sub (mul (add (fst a_b) (snd a_b)) (add (fst c_d) (snd c_d))) ac))).
+
+ Local Existing Instances Z.equiv_modulo_Reflexive RelationClasses.eq_Reflexive Z.equiv_modulo_Symmetric Z.equiv_modulo_Transitive Z.mul_mod_Proper Z.add_mod_Proper Z.modulo_equiv_modulo_Proper.
+
+ Lemma goldilocks_mul_correct (p : Z) (p_nonzero : p <> 0) s (s_nonzero : s <> 0) (s2_modp : (s^2) mod p = (s+1) mod p) xs ys :
+ (eval (goldilocks_mul s xs ys)) mod p = (eval xs * eval ys) mod p.
+ Proof using Type*. cbv [goldilocks_mul]; Zmod_to_equiv_modulo.
+ repeat rewrite ?eval_mul, ?eval_add, ?eval_sub, ?eval_scmul, <-?(eval_split s xs), <-?(eval_split s ys) by assumption; ring_simplify.
+ setoid_rewrite s2_modp.
+ apply f_equal2; nsatz. Qed.
+End Karatsuba.