aboutsummaryrefslogtreecommitdiff
path: root/coqprime/num
diff options
context:
space:
mode:
Diffstat (limited to 'coqprime/num')
-rw-r--r--coqprime/num/Lucas.v213
-rw-r--r--coqprime/num/MEll.v1228
-rw-r--r--coqprime/num/Mod_op.v1200
-rw-r--r--coqprime/num/NEll.v983
-rw-r--r--coqprime/num/Pock.v964
-rw-r--r--coqprime/num/W.v200
6 files changed, 0 insertions, 4788 deletions
diff --git a/coqprime/num/Lucas.v b/coqprime/num/Lucas.v
deleted file mode 100644
index dfd3e8142..000000000
--- a/coqprime/num/Lucas.v
+++ /dev/null
@@ -1,213 +0,0 @@
-
-(*************************************************************)
-(* This file is distributed under the terms of the *)
-(* GNU Lesser General Public License Version 2.1 *)
-(*************************************************************)
-(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
-(*************************************************************)
-
-Set Implicit Arguments.
-
-Require Import ZArith Znumtheory Zpow_facts.
-Require Import CyclicAxioms DoubleCyclic BigN Cyclic31 Int31.
-Require Import ZCAux.
-Require Import W.
-Require Import Mod_op.
-Require Import LucasLehmer.
-Require Import Coqprime.Bits.
-Import CyclicAxioms DoubleType DoubleBase.
-
-Open Scope Z_scope.
-
-Section test.
-
-Variable w: Type.
-Variable w_op: ZnZ.Ops w.
-Variable op_spec: ZnZ.Specs w_op.
-Variable p: positive.
-Variable b: w.
-
-Notation "[| x |]" :=
- (ZnZ.to_Z x) (at level 0, x at level 99).
-
-
-Hypothesis p_more_1: 2 < Zpos p.
-Hypothesis b_p: [|b|] = 2 ^ Zpos p - 1.
-
-Lemma b_pos: 0 < [|b|].
-rewrite b_p; auto with zarith.
-assert (2 ^ 0 < 2 ^ Zpos p); auto with zarith.
-apply Zpower_lt_monotone; auto with zarith.
-rewrite Zpower_0_r in H; auto with zarith.
-Qed.
-
-Hint Resolve b_pos.
-
-Variable m_op: mod_op w.
-Variable m_op_spec: mod_spec w_op b m_op.
-
-Let w2 := m_op.(add_mod) ZnZ.one ZnZ.one.
-
-Lemma w1_b: [|ZnZ.one|] = 1 mod [|b|].
-rewrite ZnZ.spec_1; simpl; auto.
-rewrite Zmod_small; auto with zarith.
-split; auto with zarith.
-rewrite b_p.
-assert (2 ^ 1 < 2 ^ Zpos p); auto with zarith.
-apply Zpower_lt_monotone; auto with zarith.
-rewrite Zpower_1_r in H; auto with zarith.
-Qed.
-
-Lemma w2_b: [|w2|] = 2 mod [|b|].
-unfold w2; rewrite (add_mod_spec m_op_spec _ _ _ _ w1_b w1_b).
-rewrite w1_b; rewrite <- Zplus_mod; auto with zarith.
-Qed.
-
-Let w4 := m_op.(add_mod) w2 w2.
-
-Lemma w4_b: [|w4|] = 4 mod [|b|].
-unfold w4; rewrite (add_mod_spec m_op_spec _ _ _ _ w2_b w2_b).
-rewrite w2_b; rewrite <- Zplus_mod; auto with zarith.
-Qed.
-
-Let square_m2 :=
- let square := m_op.(square_mod) in
- let sub := m_op.(sub_mod) in
- fun x => sub (square x) w2.
-
-Definition lucastest :=
- ZnZ.to_Z (iter_pos (Pminus p 2) _ square_m2 w4).
-
-Theorem lucastest_aux_correct:
- forall p1 z n, 0 <= n -> [|z|] = fst (s n) mod (2 ^ Zpos p - 1) ->
- [|iter_pos p1 _ square_m2 z|] = fst (s (n + Zpos p1)) mod (2 ^ Zpos p - 1).
-intros p1; pattern p1; apply Pind; simpl iter_pos; simpl s; clear p1.
-intros z p1 Hp1 H.
-unfold square_m2.
-rewrite <- b_p in H.
-generalize (square_mod_spec m_op_spec _ _ H); intros H1.
-rewrite (sub_mod_spec m_op_spec _ _ _ _ H1 w2_b).
-rewrite H1; rewrite w2_b; auto with zarith.
-rewrite H; rewrite <- Zmult_mod; auto with zarith.
-rewrite <- Zminus_mod; auto with zarith.
-rewrite sn; simpl; auto with zarith.
-rewrite b_p; auto.
-intros p1 Rec w1 z Hz Hw1.
-rewrite Pplus_one_succ_l; rewrite iter_pos_plus;
- simpl iter_pos.
-match goal with |- context[square_m2 ?X] =>
- set (tmp := X); unfold square_m2; unfold tmp; clear tmp
-end.
-generalize (Rec _ _ Hz Hw1); intros H1.
-rewrite <- b_p in H1.
-generalize (square_mod_spec m_op_spec _ _ H1); intros H2.
-rewrite (sub_mod_spec m_op_spec _ _ _ _ H2 w2_b).
-rewrite H2; rewrite w2_b; auto with zarith.
-rewrite H1; rewrite <- Zmult_mod; auto with zarith.
-rewrite <- Zminus_mod; auto with zarith.
-replace (z + Zpos (1 + p1)) with ((z + Zpos p1) + 1); auto with zarith.
-rewrite sn; simpl fst; try rewrite b_p; auto with zarith.
-rewrite Zpos_plus_distr; auto with zarith.
-Qed.
-
-Theorem lucastest_prop: lucastest = fst(s (Zpos p -2)) mod (2 ^ Zpos p - 1).
-unfold lucastest.
-assert (F: 0 <= 0); auto with zarith.
-generalize (lucastest_aux_correct (p -2) w4 F); simpl Zplus;
- rewrite Zpos_minus; auto with zarith.
-rewrite Zmax_right; auto with zarith.
-intros tmp; apply tmp; clear tmp.
-rewrite <- b_p; simpl; exact w4_b.
-Qed.
-
-Theorem lucastest_prop_cor: lucastest = 0 -> (2 ^ Zpos p - 1 | fst(s (Zpos p - 2)))%Z.
-intros H.
-apply Zmod_divide.
-assert (H1: 2 ^ 1 < 2 ^ Zpos p); auto with zarith.
-apply Zpower_lt_monotone; auto with zarith.
-rewrite Zpower_1_r in H1; auto with zarith.
-apply trans_equal with (2:= H); apply sym_equal; apply lucastest_prop; auto.
-Qed.
-
-Theorem lucastest_prime: lucastest = 0 -> prime (2 ^ Zpos p - 1).
-intros H1; case (prime_dec (2 ^ Zpos p - 1)); auto; intros H2.
-case Zdivide_div_prime_le_square with (2 := H2).
-assert (H3: 2 ^ 1 < 2 ^ Zpos p); auto with zarith.
-apply Zpower_lt_monotone; auto with zarith.
-rewrite Zpower_1_r in H3; auto with zarith.
-intros q (H3, (H4, H5)).
-contradict H5; apply Zlt_not_le.
-generalize q_more_than_square; unfold Mp; intros tmp; apply tmp;
- auto; clear tmp.
-apply lucastest_prop_cor; auto.
-case (Zle_lt_or_eq 2 q); auto.
-apply prime_ge_2; auto.
-intros H5; subst.
-absurd (2 <= 1); auto with arith.
-apply Zdivide_le; auto with zarith.
-case H4; intros x Hx.
-exists (2 ^ (Zpos p -1) - x).
-rewrite Zmult_minus_distr_r; rewrite <- Hx; unfold Mp.
-pattern 2 at 2; rewrite <- Zpower_1_r; rewrite <- Zpower_exp; auto with zarith.
-replace (Zpos p - 1 + 1) with (Zpos p); auto with zarith.
-Qed.
-
-End test.
-
-Definition znz_of_Z (w: Type) (op: ZnZ.Ops w) z :=
- match z with
- | Zpos p => snd (ZnZ.of_pos p)
- | _ => ZnZ.zero
- end.
-
-Definition lucas p :=
- let op := cmk_op (Peano.pred (nat_of_P (get_height 31 p))) in
- let b := znz_of_Z op (Zpower 2 (Zpos p) - 1) in
- let zp := znz_of_Z op (Zpos p) in
- let mod_op := mmake_mod_op op b zp in
- lucastest op p mod_op.
-
-Theorem lucas_prime:
- forall p, 2 < Zpos p -> lucas p = 0 -> prime (2 ^ Zpos p - 1).
-unfold lucas; intros p Hp H.
-match type of H with lucastest (cmk_op ?x) ?y ?z = _ =>
- set (w_op := (cmk_op x)); assert(A1: ZnZ.Specs w_op)
-end.
-unfold w_op; apply cmk_spec.
-assert (F0: Zpos p <= Zpos (ZnZ.digits w_op)).
-unfold w_op, base; rewrite (cmk_op_digits (Peano.pred (nat_of_P (get_height 31 p)))).
-generalize (get_height_correct 31 p).
-replace (Z_of_nat (Peano.pred (nat_of_P (get_height 31 p)))) with
- ((Zpos (get_height 31 p) - 1) ); auto with zarith.
-rewrite pred_of_minus; rewrite inj_minus1; auto with zarith.
-rewrite <- Zpos_eq_Z_of_nat_o_nat_of_P; auto with zarith.
-generalize (lt_O_nat_of_P (get_height 31 p)); auto with zarith.
-assert (F1: ZnZ.to_Z (znz_of_Z w_op (2 ^ (Zpos p) - 1)) = 2 ^ (Zpos p) - 1).
-assert (F1: 0 < 2 ^ (Zpos p) - 1).
-assert (F2: 2 ^ 0 < 2 ^ (Zpos p)); auto with zarith.
-apply Zpower_lt_monotone; auto with zarith.
-rewrite Zpower_0_r in F2; auto with zarith.
-case_eq (2 ^ (Zpos p) - 1); simpl ZnZ.to_Z.
-intros HH; contradict F1; rewrite HH; auto with zarith.
-2: intros p1 HH; contradict F1; rewrite HH;
- apply Zle_not_lt; red; simpl; intros; discriminate.
-intros p1 Hp1; apply ZnZ.of_pos_correct; auto.
-rewrite <- Hp1.
-unfold base.
-apply Zlt_le_trans with (2 ^ (Zpos p)); auto with zarith.
-apply Zpower_le_monotone; auto with zarith.
-match type of H with lucastest (cmk_op ?x) ?y ?z = _ =>
- apply
- (@lucastest_prime _ _ (cmk_spec x) p (znz_of_Z w_op (2 ^ Zpos p -1)) Hp F1 z)
-end; auto with zarith; fold w_op.
-eapply mmake_mod_spec with (p := p); auto with zarith.
-unfold znz_of_Z; unfold znz_of_Z in F1; rewrite F1.
-assert (F2: 2 ^ 1 < 2 ^ (Zpos p)); auto with zarith.
-apply Zpower_lt_monotone; auto with zarith.
-rewrite Zpower_1_r in F2; auto with zarith.
-rewrite ZnZ.of_Z_correct; auto with zarith.
-split; auto with zarith.
-apply Zle_lt_trans with (1 := F0); auto with zarith.
-unfold base; apply Zpower2_lt_lin; auto with zarith.
-Qed.
-
diff --git a/coqprime/num/MEll.v b/coqprime/num/MEll.v
deleted file mode 100644
index afcdf4146..000000000
--- a/coqprime/num/MEll.v
+++ /dev/null
@@ -1,1228 +0,0 @@
-
-(*************************************************************)
-(* This file is distributed under the terms of the *)
-(* GNU Lesser General Public License Version 2.1 *)
-(*************************************************************)
-(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
-(*************************************************************)
-
-
-Require Import ZArith Znumtheory Zpow_facts.
-Require Import Int31 ZEll montgomery.
-
-Set Implicit Arguments.
-
-Open Scope Z_scope.
-
-
-Record ex: Set := mkEx {
- vN : positive;
- vS : positive;
- vR: List.list (positive * positive);
- vA: Z;
- vB: Z;
- vx: Z;
- vy: Z
-}.
-
-Coercion Local Zpos : positive >-> Z.
-
-Record ex_spec (exx: ex): Prop := mkExS {
- n2_div: ~(2 | exx.(vN));
- n_pos: 2 < exx.(vN);
- lprime:
- forall p : positive * positive, List.In p (vR exx) -> prime (fst p);
- lbig:
- 4 * vN exx < (Zmullp (vR exx) - 1) ^ 2;
- inC:
- vy exx ^ 2 mod vN exx = (vx exx ^ 3 + vA exx * vx exx + vB exx) mod vN exx
-}.
-
-(*
-Let is_even m :=
-Fixpoint invM_aux (n : nat) (m v: int31) : int31 :=
- match n with 0%nat => 0%int31 | S n =>
- if (iszero (Cyclic31.nshiftl 30 m)) then
- lsl (invM_aux n (lsr m 1) v) 1
- else (1 lor (lsl (invM_aux n (lsr (m - v) 1) v) 1))
- end.
-
-Definition invM := invM_aux 31.
-
-Lemma invM_spec m v :
- is_even v = false -> (v * (invM m v) = m)%int31.
-Proof. admit. Qed.
-
-Inductive melt: Type :=
- mzero | mtriple: number -> number -> number -> melt.
-
-(* Montgomery version *)
-Section MEll.
-
-Variable add_mod sub_mod mult_mod : number -> number -> number.
-
-Notation "x ++ y " := (add_mod x y).
-Notation "x -- y" := (sub_mod x y) (at level 50, left associativity).
-Notation "x ** y" :=
- (mult_mod x y) (at level 40, left associativity).
-Notation "x ?= y" := (eq_num x y).
-
-Variable A c0 c2 c3 : number.
-
-Definition mdouble : number -> melt -> (melt * number):=
- fun (sc: number) (p1: melt) =>
- match p1 with
- mzero => (p1, sc)
- | (mtriple x1 y1 z1) =>
- if (y1 ?= c0) then (mzero, z1 ** sc) else
- (* we do 2p *)
- let m' := c3 ** x1 ** x1 ++ A ** z1 ** z1 in
- let l' := c2 ** y1 ** z1 in
- let m'2 := m' ** m' in
- let l'2 := l' ** l' in
- let l'3 := l'2 ** l' in
- let x3 := m'2 ** z1 -- c2 ** x1 ** l'2 in
- (mtriple
- (l' ** x3)
- (l'2 ** (m' ** x1 -- y1 ** l') -- m' ** x3)
- (z1 ** l'3), sc)
- end.
-
-Definition madd := fun (sc : number) (p1 p2 : melt) =>
- match p1, p2 with
- mzero, _ => (p2, sc)
- | _ , mzero => (p1, sc)
- | (mtriple x1 y1 z1), (mtriple x2 y2 z2) =>
- let d1 := x2 ** z1 in
- let d2 := x1 ** z2 in
- let l := d1 -- d2 in
- let dl := d1 ++ d2 in
- let m := y2 ** z1 -- y1 ** z2 in
- if (l ?= c0) then
- (* we have p1 = p2 o p1 = -p2 *)
- if (m ?= c0) then
- if (y1 ?= c0) then (mzero, z1 ** z2 ** sc) else
- (* we do 2p *)
- let m' := c3 ** x1 ** x1 ++ A ** z1 ** z1 in
- let l' := c2 ** y1 ** z1 in
- let m'2 := m' ** m' in
- let l'2 := l' ** l' in
- let l'3 := l'2 ** l' in
- let x3 := m'2 ** z1 -- c2 ** x1 ** l'2 in
- (mtriple
- (l' ** x3)
- (l'2 ** (m' ** x1 -- y1 ** l') -- m' ** x3)
- (z1 ** l'3), z2 ** sc)
- else (* p - p *) (mzero, m ** z1 ** z2 ** sc)
- else
- let l2 := l ** l in
- let l3 := l2 ** l in
- let m2 := m ** m in
- let x3 := z1 ** z2 ** m2 -- l2 ** dl in
- (mtriple (l ** x3)
- (z2 ** l2 ** (m ** x1 -- y1 ** l) -- m ** x3)
- (z1 ** z2 ** l3), sc)
- end.
-
-Definition mopp p :=
- match p with mzero => p | (mtriple x1 y1 z1) => (mtriple x1 (c0 -- y1) z1) end.
-
-End MEll.
-
-*)
-
-(*
-
-Section Scal.
-
-Variable mdouble : number -> melt -> melt * number.
-Variable madd : number -> melt -> melt -> melt * number.
-Variable mopp : melt -> melt.
-
-
-Fixpoint scalb (sc: number) (b:bool) (a: melt) (p: positive) {struct p}:
- melt * number :=
- match p with
- xH => if b then mdouble sc a else (a,sc)
- | xO p1 => let (a1, sc1) := scalb sc false a p1 in
- if b then
- let (a2, sc2) := mdouble sc1 a1 in
- madd sc2 a a2
- else mdouble sc1 a1
- | xI p1 => let (a1, sc1) := scalb sc true a p1 in
- if b then mdouble sc1 a1
- else
- let (a2, sc2) := mdouble sc1 a1 in
- madd sc2 (mopp a) a2
- end.
-
-Definition scal sc a p := scalb sc false a p.
-
-Definition scal_list sc a l :=
- List.fold_left
- (fun (asc: melt * number) p1 => let (a,sc) := asc in scal sc a p1) l (a,sc).
-
-Variable mult_mod : number -> number -> number.
-Notation "x ** y" :=
- (mult_mod x y) (at level 40, left associativity).
-
-Variable c0 : number.
-
-Fixpoint scalL (sc : number) (a: melt) (l: List.list positive) {struct l} :
- (melt * number) :=
- match l with
- List.nil => (a,sc)
- | List.cons n l1 =>
- let (a1, sc1) := scal sc a n in
- let (a2, sc2) := scal_list sc1 a l1 in
- match a2 with
- mzero => (mzero, c0)
- | mtriple _ _ z => scalL (sc2 ** z) a1 l1
- end
- end.
-
-End Scal.
-
-Definition isM2 p :=
- match p with
- xH => false
-| xO _ => false
-| _ => true
-end.
-
-Definition ell_test (N S: positive) (l: List.list (positive * positive))
- (A B x y: Z) :=
- if isM2 N then
- match (4 * N) ?= (ZEll.Zmullp l - 1) ^ 2 with
- Lt =>
- match y ^ 2 mod N ?= (x ^ 3 + A * x + B) mod N with
- Eq =>
- let M := positive_to_num N in
- let m' := invM (0 - 1) (nhead M) in
- let n := length M in
- let e := encode M m' n in
- let d := decode M m' n in
- let add_mod := add_mod M in
- let sub_mod := sub_mod M in
- let mult_mod := reduce_mult_num M m' n in
- let mA := e A in
- let mB := e B in
- let c0 := e 0 in
- let c1 := e 1 in
- let c2 := e 2 in
- let c3 := e 3 in
- let c4 := e 4 in
- let c27 := e 27 in
- let mdouble := mdouble add_mod sub_mod mult_mod mA c0 c2 c3 in
- let madd := madd add_mod sub_mod mult_mod mA c0 c2 c3 in
- let mopp := mopp sub_mod c0 in
- let scal := scal mdouble madd mopp in
- let scalL := scalL mdouble madd mopp mult_mod c0 in
- let da := add_mod in
- let dm := mult_mod in
- let isc := (da (dm (dm (dm c4 mA) mA) mA) (dm (dm c27 mB) mB)) in
- let a := mtriple (e x) (e y) c1 in
- let (a1, sc1) := scal isc a S in
- let (S1,R1) := ZEll.psplit l in
- let (a2, sc2) := scal sc1 a1 S1 in
- let (a3, sc3) := scalL sc2 a2 R1 in
- match a3 with
- mzero => if (Zeq_bool (Zgcd (d sc3) N) 1) then true
- else false
- | _ => false
- end
- | _ => false
- end
- | _ => false
- end
- else false.
-
-Time Eval vm_compute in (ell_test
- 329719147332060395689499
- 8209062
- (List.cons (40165264598163841%positive,1%positive) List.nil)
- (-94080)
- 9834496
- 0
- 3136).
-
-Time Eval vm_compute in (ell_test
- 1384435372850622112932804334308326689651568940268408537
- 13077052794
- (List.cons (105867537178241517538435987563198410444088809%positive, 1%positive) List.nil)
- (-677530058123796416781392907869501000001421915645008494)
- 0
- (- 169382514530949104195348226967375250000355478911252124)
- 1045670343788723904542107880373576189650857982445904291
-).
-
-*)
-
-(*
-Variable M : number.
-Variable m' : int.
-
-Definition n := length M.
-Definition e z := encode M m' n z.
-Definition d z := decode M m' n z.
-
-Variable exx: ex.
-Variable exxs: ex_spec exx.
-
-Definition S := exx.(vS).
-Definition R := exx.(vR).
-Definition A := e exx.(vA).
-Definition B := e exx.(vB).
-Definition xx := e exx.(vx).
-Definition yy := e exx.(vy).
-Definition c3 := e 3.
-Definition c2 := e 2.
-Definition c1 := e 1.
-Definition c0 := e 0.
-
-Definition pp := mtriple xx yy c1.
-
-Notation "x ++ y " := (add_mod M x y).
-Notation "x -- y" := (sub_mod M x y) (at level 50, left associativity).
-Notation "x ** y" :=
- (reduce_mult_num M m' n x y) (at level 40, left associativity).
-Notation "x ?= y" := (eq_num x y).
-
-Definition mdouble : number -> melt -> (melt * number):=
- fun (sc: number) (p1: melt) =>
- match p1 with
- mzero => (p1, sc)
- | (mtriple x1 y1 z1) =>
- if (y1 ?= c0) then (mzero, z1 ** sc) else
- (* we do 2p *)
- let m' := c3 ** x1 ** x1 ++ A ** z1 ** z1 in
- let l' := c2 ** y1 ** z1 in
- let m'2 := m' ** m' in
- let l'2 := l' ** l' in
- let l'3 := l'2 ** l' in
- let x3 := m'2 ** z1 -- c2 ** x1 ** l'2 in
- (mtriple
- (l' ** x3)
- (l'2 ** (m' ** x1 -- y1 ** l') -- m' ** x3)
- (z1 ** l'3), sc)
- end.
-
-End MEll.
-
-Print mdouble.
-
-Definition Ex := mkEx 101 99 nil 10 3 4 5.
-
-Check (
- let v := Eval lazy compute in mdouble
- in
-
-Check (fun exx: ex => nN (mkMOp exx)).
-
-
-Definition e z := encode nn nn' nT ll z.
-Definition d z := decode nn nn' nT ll z.
-
-}
-
-Lemma nEx : to_Z nN = to_Z (cons nn nT).
-Proof. unfold nn, nT; case nN; auto. Qed.
-
-Definition nn' := invM (0 - 1) nn.
-
-Notation phi := Int31Op.to_Z.
-
-Lemma nn'_spec : phi (nn * nn') = wB - 1.
-Proof.
-unfold nn'; rewrite invM_spec.
-rewrite sub_spec, to_Z_0, to_Z_1; simpl; auto.
-admit.
-Qed.
-
-Definition ll := length nN.
-
-
-Inductive melt: Type :=
- mzero | mtriple: number -> number -> number -> melt.
-
-Definition pp := mtriple xx yy c1.
-
-Definition mplus x y : number := add_mod x y nN.
-Definition msub x y : number := sub_mod x y nN.
-Definition mmult x y : number := reduce_mult_num nn nn' nT x y ll.
-Definition meq x y : bool := eq_num x y.
-
-Notation "x ++ y " := (mplus x y).
-Notation "x -- y" := (msub x y) (at level 50, left associativity).
-Notation "x ** y" := (mmult x y) (at level 40, left associativity).
-Notation "x ?= y" := (meq x y).
-
-Definition mdouble: number -> melt -> (melt * number):=
- fun (sc: number) (p1: melt) =>
- match p1 with
- mzero => (p1, sc)
- | (mtriple x1 y1 z1) =>
- if (y1 ?= c0) then (mzero, z1 ** sc) else
- (* we do 2p *)
- let m' := c3 ** x1 ** x1 ++ A ** z1 ** z1 in
- let l' := c2 ** y1 ** z1 in
- let m'2 := m' ** m' in
- let l'2 := l' ** l' in
- let l'3 := l'2 ** l' in
- let x3 := m'2 ** z1 -- c2 ** x1 ** l'2 in
- (mtriple
- (l' ** x3)
- (l'2 ** (m' ** x1 -- y1 ** l') -- m' ** x3)
- (z1 ** l'3), sc)
- end.
-
-Definition madd := fun (sc : number) (p1 p2 : melt) =>
- match p1, p2 with
- mzero, _ => (p2, sc)
- | _ , mzero => (p1, sc)
- | (mtriple x1 y1 z1), (mtriple x2 y2 z2) =>
- let d1 := x2 ** z1 in
- let d2 := x1 ** z2 in
- let l := d1 -- d2 in
- let dl := d1 ++ d2 in
- let m := y2 ** z1 -- y1 ** z2 in
- if (l ?= c0) then
- (* we have p1 = p2 o p1 = -p2 *)
- if (m ?= c0) then
- if (y1 ?= c0) then (mzero, z1 ** z2 ** sc) else
- (* we do 2p *)
- let m' := c3 ** x1 ** x1 ++ A ** z1 ** z1 in
- let l' := c2 ** y1 ** z1 in
- let m'2 := m' ** m' in
- let l'2 := l' ** l' in
- let l'3 := l'2 ** l' in
- let x3 := m'2 ** z1 -- c2 ** x1 ** l'2 in
- (mtriple
- (l' ** x3)
- (l'2 ** (m' ** x1 -- y1 ** l') -- m' ** x3)
- (z1 ** l'3), z2 ** sc)
- else (* p - p *) (mzero, m ** z1 ** z2 ** sc)
- else
- let l2 := l ** l in
- let l3 := l2 ** l in
- let m2 := m ** m in
- let x3 := z1 ** z2 ** m2 -- l2 ** dl in
- (mtriple (l ** x3)
- (z2 ** l2 ** (m ** x1 -- y1 ** l) -- m ** x3)
- (z1 ** z2 ** l3), sc)
- end.
-
-Definition mopp p :=
- match p with mzero => p | (mtriple x1 y1 z1) => (mtriple x1 (c0 -- y1) z1) end.
-
-Fixpoint scalb (sc: number) (b:bool) (a: melt) (p: positive) {struct p}:
- melt * number :=
- match p with
- xH => if b then mdouble sc a else (a,sc)
- | xO p1 => let (a1, sc1) := scalb sc false a p1 in
- if b then
- let (a2, sc2) := mdouble sc1 a1 in
- madd sc2 a a2
- else mdouble sc1 a1
- | xI p1 => let (a1, sc1) := scalb sc true a p1 in
- if b then mdouble sc1 a1
- else
- let (a2, sc2) := mdouble sc1 a1 in
- madd sc2 (mopp a) a2
- end.
-
-Definition scal sc a p := scalb sc false a p.
-
-Definition scal_list sc a l :=
- List.fold_left
- (fun (asc: melt * number) p1 => let (a,sc) := asc in scal sc a p1) l (a,sc).
-
-Fixpoint scalL (sc : number) (a: melt) (l: List.list positive) {struct l} :
- (melt * number) :=
- match l with
- List.nil => (a,sc)
- | List.cons n l1 =>
- let (a1, sc1) := scal sc a n in
- let (a2, sc2) := scal_list sc1 a l1 in
- match a2 with
- mzero => (mzero, c0)
- | mtriple _ _ z => scalL (sc2 ** z) a1 l1
- end
- end.
-
-Definition zpow sc p n :=
- let (p,sc') := scal sc p n in
- (p, Zgcd (d sc') (exx.(vN))).
-
-Definition e2E n :=
- match n with
- mzero => ZEll.nzero
- | mtriple x1 y1 z1 => ntriple (d x1) (d y1) (d z1)
- end.
-
-Definition wft t := d t = (d t) mod (to_Z nN).
-
-Lemma vN_pos : 0 < exx.(vN).
-Proof. red; simpl; auto. Qed.
-
-Hint Resolve vN_pos.
-
-Lemma mplusz x y : wft x -> wft y ->
- d (x ++ y) = nplus (exx.(vN)) (d x) (d y).
-Proof.
-intros Hx Hy.
-unfold d, mplus, nplus.
-(*
-rewrite decode_encode_add.
-rewrite (mop_spec.(add_mod_spec) _ _ _ _ Hx Hy); auto.
-rewrite <- z2ZN; auto.
-*)
-admit.
-Qed.
-
-Lemma mplusw x y : wft x -> wft y -> wft (x ++ y).
-Proof.
-intros Hx Hy.
-unfold wft.
-(*
-pattern (z2Z (x ++ y)) at 2; rewrite (nplusz Hx Hy).
-unfold ZEll.nplus; rewrite z2ZN.
-rewrite Zmod_mod; auto.
-apply (nplusz Hx Hy).
-*)
-admit.
-Qed.
-
-Lemma msubz x y : wft x -> wft y ->
- d (x -- y) = ZEll.nsub (vN exx) (d x) (d y).
-Proof.
-intros Hx Hy.
-(*
-unfold z2Z, nsub.
-rewrite (mop_spec.(sub_mod_spec) _ _ _ _ Hx Hy); auto.
-rewrite <- z2ZN; auto.
-*)
-admit.
-Qed.
-
-Lemma msubw x y : wft x -> wft y -> wft (x -- y).
-Proof.
-intros Hx Hy.
-unfold wft.
-(*
-pattern (z2Z (x -- y)) at 2; rewrite (nsubz Hx Hy).
-unfold ZEll.nsub; rewrite z2ZN.
-rewrite Zmod_mod; auto.
-apply (nsubz Hx Hy).
-*)
-admit.
-Qed.
-
-Lemma mmulz x y : wft x -> wft y ->
- d (x ** y) = ZEll.nmul (vN exx) (d x) (d y).
-Proof.
-intros Hx Hy.
-(*
-unfold z2Z, nmul.
-rewrite (mop_spec.(mul_mod_spec) _ _ _ _ Hx Hy); auto.
-rewrite <- z2ZN; auto.
-*)
-admit.
-Qed.
-
-Lemma mmulw x y : wft x -> wft y -> wft (x ** y).
-Proof.
-intros Hx Hy.
-unfold wft.
-(*
-pattern (z2Z (x ** y)) at 2; rewrite (nmulz Hx Hy).
-unfold ZEll.nmul; rewrite z2ZN.
-rewrite Zmod_mod; auto.
-apply (nmulz Hx Hy).
-*)
-admit.
-Qed.
-
-Hint Resolve mmulw mplusw msubw.
-
-
-Definition wfe p := match p with
- mtriple x y z => wft x /\ wft y /\ wft z
-| _ => True
-end.
-
-Lemma dx x : d (e x) = x mod exx.(vN).
-Proof.
-(*
-unfold Z2z; intros x.
-generalize (Z_mod_lt x exx.(vN)).
-case_eq (x mod exx.(vN)).
-intros _ _.
-simpl; unfold z2Z; rewrite ZnZ.spec_0; auto.
-intros p Hp HH; case HH; auto with zarith; clear HH.
-intros _ HH1.
-case (ZnZ.spec_to_Z zN).
-generalize z2ZN; unfold z2Z; intros HH; rewrite HH; auto.
-intros _ H0.
-set (v := ZnZ.of_pos p); generalize HH1.
-rewrite (ZnZ.spec_of_pos p); fold v.
-case (fst v).
- simpl; auto.
-intros p1 H1.
-contradict H0; apply Zle_not_lt.
-apply Zlt_le_weak; apply Zle_lt_trans with (2:= H1).
-apply Zle_trans with (1 * base (ZnZ.digits op) + 0); auto with zarith.
-apply Zplus_le_compat; auto.
-apply Zmult_gt_0_le_compat_r; auto with zarith.
- case (ZnZ.spec_to_Z (snd v)); auto with zarith.
- case p1; red; simpl; intros; discriminate.
- case (ZnZ.spec_to_Z (snd v)); auto with zarith.
-intros p Hp; case (Z_mod_lt x exx.(vN)); auto with zarith.
-rewrite Hp; intros HH; case HH; auto.
-*)
-admit.
-Qed.
-
-Lemma dx1 x : d (e x) = d (e x) mod [nN].
-Proof.
-(*
-unfold Z2z; intros x.
-generalize (Z_mod_lt x exx.(vN)).
-case_eq (x mod exx.(vN)).
-intros _ _.
-simpl; unfold z2Z; rewrite ZnZ.spec_0; auto.
-intros p H1 H2.
-case (ZnZ.spec_to_Z zN).
-generalize z2ZN; unfold z2Z; intros HH; rewrite HH; auto.
-intros _ H0.
-case H2; auto with zarith; clear H2; intros _ H2.
-rewrite Zmod_small; auto.
-set (v := ZnZ.of_pos p).
-split.
- case (ZnZ.spec_to_Z (snd v)); auto.
-generalize H2; rewrite (ZnZ.spec_of_pos p); fold v.
-case (fst v).
- simpl; auto.
-intros p1 H.
-contradict H0; apply Zle_not_lt.
-apply Zlt_le_weak; apply Zle_lt_trans with (2:= H).
-apply Zle_trans with (1 * base (ZnZ.digits op) + 0); auto with zarith.
-apply Zplus_le_compat; auto.
-apply Zmult_gt_0_le_compat_r; auto with zarith.
- case (ZnZ.spec_to_Z (snd v)); auto with zarith.
- case p1; red; simpl; intros; discriminate.
- case (ZnZ.spec_to_Z (snd v)); auto with zarith.
-intros p Hp; case (Z_mod_lt x exx.(vN)); auto with zarith.
-rewrite Hp; intros HH; case HH; auto.
-*)
-admit.
-Qed.
-
-Lemma c0w : wft c0.
-Proof. apply dx1. Qed.
-
-Lemma c2w : wft c2.
-Proof. apply dx1. Qed.
-
-Lemma c3w : wft c3.
-Proof. apply dx1. Qed.
-
-Lemma Aw : wft A.
-Proof. apply dx1. Qed.
-
-Hint Resolve c0w c2w c3w Aw.
-
-Ltac nw :=
- repeat (apply mplusw || apply msubw || apply mmulw || apply c2w ||
- apply c3w || apply Aw); auto.
-
-Lemma madd_wf x y sc :
- wfe x -> wfe y -> wft sc ->
- wfe (fst (madd sc x y)) /\ wft (snd (madd sc x y)).
-Proof.
-destruct x as [ | x1 y1 z1]; auto.
-destruct y as [ | x2 y2 z2]; auto.
-(*
- intros (wfx1,(wfy1, wfz1)) (wfx2,(wfy2, wfz2)) wfsc;
- simpl; auto.
- case meq.
- 2: repeat split; simpl; nw.
- case meq.
- 2: repeat split; simpl; nw.
- case meq.
- repeat split; simpl; nw; auto.
- repeat split; simpl; nw; auto.
-*)
-admit.
-Qed.
-
-(*
-
- Lemma ztest: forall x y,
- x ?= y =Zeq_bool (z2Z x) (z2Z y).
- Proof.
- intros x y.
- unfold neq.
- rewrite (ZnZ.spec_compare x y); case Zcompare_spec; intros HH;
- match goal with H: context[x] |- _ =>
- generalize H; clear H; intros HH1
- end.
- symmetry; apply GZnZ.Zeq_iok; auto.
- case_eq (Zeq_bool (z2Z x) (z2Z y)); intros H1; auto;
- generalize HH1; generalize (Zeq_bool_eq _ _ H1); unfold z2Z;
- intros HH; rewrite HH; auto with zarith.
- case_eq (Zeq_bool (z2Z x) (z2Z y)); intros H1; auto;
- generalize HH1; generalize (Zeq_bool_eq _ _ H1); unfold z2Z;
- intros HH; rewrite HH; auto with zarith.
- Qed.
-
- Lemma zc0: z2Z c0 = 0.
- Proof.
- unfold z2Z, c0, z2Z; simpl.
- generalize ZnZ.spec_0; auto.
- Qed.
-
-
-Ltac iftac t :=
- match t with
- context[if ?x ?= ?y then _ else _] =>
- case_eq (x ?= y)
- end.
-
-Ltac ftac := match goal with
- |- context[?x = ?y] => (iftac x);
- let H := fresh "tmp" in
- (try rewrite ztest; try rewrite zc0; intros H;
- repeat ((rewrite nmulz in H || rewrite nplusz in H || rewrite nsubz in H); auto);
- try (rewrite H; clear H))
- end.
-
-Require Import Zmod.
-
-Lemma c2ww: forall x, ZEll.nmul (vN exx) 2 x = ZEll.nmul (vN exx) (z2Z c2) x.
-intros x; unfold ZEll.nmul.
-unfold c2; rewrite z2Zx; rewrite Zmodml; auto.
-Qed.
-Lemma c3ww: forall x, ZEll.nmul (vN exx) 3 x = ZEll.nmul (vN exx) (z2Z c3) x.
-intros x; unfold ZEll.nmul.
-unfold c3; rewrite z2Zx; rewrite Zmodml; auto.
-Qed.
-
-Lemma Aww: forall x, ZEll.nmul (vN exx) exx.(vA) x = ZEll.nmul (vN exx) (z2Z A) x.
-intros x; unfold ZEll.nmul.
-unfold A; rewrite z2Zx; rewrite Zmodml; auto.
-Qed.
-
-Lemma nadd_correct: forall x y sc,
- wfe x -> wfe y -> wft sc ->
- e2E (fst (nadd sc x y)) = fst (ZEll.nadd exx.(vN) exx.(vA) (z2Z sc) (e2E x) (e2E y) )/\
- z2Z (snd (nadd sc x y)) = snd (ZEll.nadd exx.(vN) exx.(vA) (z2Z sc) (e2E x) (e2E y)).
-Proof.
-intros x; case x; clear; auto.
-intros x1 y1 z1 y; case y; clear; auto.
- intros x2 y2 z2 sc (wfx1,(wfy1, wfz1)) (wfx2,(wfy2, wfz2)) wfsc; simpl.
- ftac.
- ftac.
- ftac.
- simpl; split; auto.
- repeat ((rewrite nmulz || rewrite nplusz || rewrite nsubz); auto).
- simpl; split; auto.
- repeat ((rewrite nmulz || rewrite nplusz || rewrite nsubz||
- rewrite c2ww || rewrite c3ww || rewrite Aww); try nw; auto).
- rewrite nmulz; auto.
- simpl; split; auto.
- repeat ((rewrite nmulz || rewrite nplusz || rewrite nsubz); auto).
- simpl; split; auto.
- repeat ((rewrite nmulz || rewrite nplusz || rewrite nsubz ||
- rewrite c2ww || rewrite c3ww || rewrite Aww); try nw; auto).
- Qed.
-
- Lemma ndouble_wf: forall x sc,
- wfe x -> wft sc ->
- wfe (fst (ndouble sc x)) /\ wft (snd (ndouble sc x)).
-Proof.
-intros x; case x; clear; auto.
-intros x1 y1 z1 sc (wfx1,(wfy1, wfz1)) wfsc;
- simpl; auto.
- repeat (case neq; repeat split; simpl; nw; auto).
-Qed.
-
-
-Lemma ndouble_correct: forall x sc,
- wfe x -> wft sc ->
- e2E (fst (ndouble sc x)) = fst (ZEll.ndouble exx.(vN) exx.(vA) (z2Z sc) (e2E x))/\
- z2Z (snd (ndouble sc x)) = snd (ZEll.ndouble exx.(vN) exx.(vA) (z2Z sc) (e2E x)).
-Proof.
-intros x; case x; clear; auto.
- intros x1 y1 z1 sc (wfx1,(wfy1, wfz1)) wfsc; simpl.
- ftac.
- simpl; split; auto.
- repeat ((rewrite nmulz || rewrite nplusz || rewrite nsubz); auto).
- simpl; split; auto.
- repeat ((rewrite nmulz || rewrite nplusz || rewrite nsubz ||
- rewrite c2ww || rewrite c3ww || rewrite Aww); try nw; auto).
- Qed.
-
-Lemma nopp_wf: forall x, wfe x -> wfe (nopp x).
-Proof.
-intros x; case x; simpl nopp; auto.
-intros x1 y1 z1 [H1 [H2 H3]]; repeat split; auto.
-Qed.
-
-Lemma scalb_wf: forall n b x sc,
- wfe x -> wft sc ->
- wfe (fst (scalb sc b x n)) /\ wft (snd (scalb sc b x n)).
-Proof.
-intros n; elim n; unfold scalb; fold scalb; auto.
- intros n1 Hrec b x sc H H1.
- case (Hrec true x sc H H1).
- case scalb; simpl fst; simpl snd.
- intros a1 sc1 H2 H3.
- case (ndouble_wf _ H2 H3); auto;
- case ndouble; simpl fst; simpl snd; intros x2 sc2 H4 H5.
- case b; auto.
- case (nadd_wf _ _ (nopp_wf _ H) H4 H5); auto;
- case ndouble; simpl fst; simpl snd; intros x2 sc2 H4 H5.
- intros n1 Hrec b x sc H H1.
- case (Hrec false x sc H H1).
- case scalb; simpl fst; simpl snd.
- intros a1 sc1 H2 H3.
- case (ndouble_wf _ H2 H3); auto;
- case ndouble; simpl fst; simpl snd; intros x2 sc2 H4 H5.
- case b; auto.
- case (nadd_wf _ _ H H4 H5); auto;
- case ndouble; simpl fst; simpl snd; intros x2 sc2 H4 H5.
-intros b x sc H H1; case b; auto.
-case (ndouble_wf _ H H1); auto.
-Qed.
-
-
-Lemma scal_wf: forall n x sc,
- wfe x -> wft sc ->
- wfe (fst (scal sc x n)) /\ wft (snd (scal sc x n)).
-Proof.
-intros n; exact (scalb_wf n false).
-Qed.
-
-Lemma nopp_correct: forall x,
- wfe x -> e2E x = ZEll.nopp exx.(vN) (e2E (nopp x)).
-Proof.
-intros x; case x; simpl; auto.
-intros x1 y1 z1 [H1 [H2 H3]]; apply f_equal3 with (f := ZEll.ntriple); auto.
-rewrite nsubz; auto.
-rewrite zc0.
-unfold ZEll.nsub, ninv; simpl.
-apply sym_equal.
-rewrite <- (Z_mod_plus) with (b := -(-z2Z y1 /exx.(vN))); auto with zarith.
-rewrite <- Zopp_mult_distr_l.
-rewrite <- Zopp_plus_distr.
-rewrite Zmult_comm; rewrite Zplus_comm.
-rewrite <- Z_div_mod_eq; auto with zarith.
-rewrite Zopp_involutive; rewrite <- z2ZN.
-apply sym_equal; auto.
-Qed.
-
-Lemma scalb_correct: forall n b x sc,
- wfe x -> wft sc ->
- e2E (fst (scalb sc b x n)) = fst (ZEll.scalb exx.(vN) exx.(vA) (z2Z sc) b (e2E x) n)/\
- z2Z (snd (scalb sc b x n)) = snd (ZEll.scalb exx.(vN) exx.(vA) (z2Z sc) b (e2E x) n).
-Proof.
-intros n; elim n; clear; auto.
-intros p Hrec b x sc H1 H2.
- case b; unfold scalb; fold scalb.
- generalize (scalb_wf p true x H1 H2);
- generalize (Hrec true _ _ H1 H2); case scalb; simpl.
- case ZEll.scalb; intros r1 rc1; simpl.
- intros a2 sc2 (H3, H4) (H5, H6); subst r1 rc1.
- apply ndouble_correct; auto.
- generalize (scalb_wf p true x H1 H2);
- generalize (Hrec true _ _ H1 H2); case scalb; simpl.
- case ZEll.scalb; intros r1 rc1; simpl.
- intros a2 sc2 (H3, H4) (H5, H6); subst r1 rc1.
- generalize (ndouble_wf _ H5 H6);
- generalize (ndouble_correct _ H5 H6); case ndouble; simpl.
- case ZEll.ndouble; intros r1 rc1; simpl.
- intros a3 sc3 (H7,H8) (H9,H10); subst r1 rc1.
- replace (ZEll.nopp (vN exx) (e2E x)) with
- (e2E (nopp x)).
- apply nadd_correct; auto.
- generalize H1; case x; auto.
- intros x1 y1 z1 [HH1 [HH2 HH3]]; split; auto.
- rewrite nopp_correct; auto.
- apply f_equal2 with (f := ZEll.nopp); auto.
- generalize H1; case x; simpl; auto; clear x H1.
- intros x1 y1 z1 [HH1 [HH2 HH3]];
- apply f_equal3 with (f := ZEll.ntriple); auto.
- repeat rewrite nsubz; auto.
- rewrite zc0.
- unfold ZEll.nsub; simpl.
- rewrite <- (Z_mod_plus) with (b := -(-z2Z y1 /exx.(vN))); auto with zarith.
- rewrite <- Zopp_mult_distr_l.
- rewrite <- Zopp_plus_distr.
- rewrite Zmult_comm; rewrite Zplus_comm.
- rewrite <- Z_div_mod_eq; auto with zarith.
- rewrite Zopp_involutive; rewrite <- z2ZN.
- apply sym_equal; auto.
- generalize H1; case x; auto.
- intros x1 y1 z1 [HH1 [HH2 HH3]]; split; auto.
-intros p Hrec b x sc H1 H2.
- case b; unfold scalb; fold scalb.
- generalize (scalb_wf p false x H1 H2);
- generalize (Hrec false _ _ H1 H2); case scalb; simpl.
- case ZEll.scalb; intros r1 rc1; simpl.
- intros a2 sc2 (H3, H4) (H5, H6); subst r1 rc1.
- generalize (ndouble_wf _ H5 H6);
- generalize (ndouble_correct _ H5 H6); case ndouble; simpl.
- case ZEll.ndouble; intros r1 rc1; simpl.
- intros a3 sc3 (H7,H8) (H9,H10); subst r1 rc1.
- replace (ZEll.nopp (vN exx) (e2E x)) with
- (e2E (nopp x)).
- apply nadd_correct; auto.
- rewrite nopp_correct; auto.
- apply f_equal2 with (f := ZEll.nopp); auto.
- generalize H1; case x; simpl; auto; clear x H1.
- intros x1 y1 z1 [HH1 [HH2 HH3]];
- apply f_equal3 with (f := ZEll.ntriple); auto.
- repeat rewrite nsubz; auto.
- rewrite zc0.
- unfold ZEll.nsub; simpl.
- rewrite <- (Z_mod_plus) with (b := -(-z2Z y1 /exx.(vN))); auto with zarith.
- rewrite <- Zopp_mult_distr_l.
- rewrite <- Zopp_plus_distr.
- rewrite Zmult_comm; rewrite Zplus_comm.
- rewrite <- Z_div_mod_eq; auto with zarith.
- rewrite Zopp_involutive; rewrite <- z2ZN.
- apply sym_equal; auto.
- generalize H1; case x; auto.
- intros x1 y1 z1 [HH1 [HH2 HH3]]; split; auto.
- generalize (scalb_wf p false x H1 H2);
- generalize (Hrec false _ _ H1 H2); case scalb; simpl.
- case ZEll.scalb; intros r1 rc1; simpl.
- intros a2 sc2 (H3, H4) (H5, H6); subst r1 rc1.
- apply ndouble_correct; auto.
-intros b x sc H H1.
-case b; simpl; auto.
-apply ndouble_correct; auto.
-Qed.
-
-
-Lemma scal_correct: forall n x sc,
- wfe x -> wft sc ->
- e2E (fst (scal sc x n)) = fst (ZEll.scal exx.(vN) exx.(vA) (z2Z sc) (e2E x) n)/\
- z2Z (snd (scal sc x n)) = snd (ZEll.scal exx.(vN) exx.(vA) (z2Z sc) (e2E x) n).
-Proof.
-intros n; exact (scalb_correct n false).
-Qed.
-
-Lemma scal_list_correct: forall l x sc,
- wfe x -> wft sc ->
- e2E (fst (scal_list sc x l)) = fst (ZEll.scal_list exx.(vN) exx.(vA) (z2Z sc) (e2E x) l)/\
- z2Z (snd (scal_list sc x l)) = snd (ZEll.scal_list exx.(vN) exx.(vA) (z2Z sc) (e2E x) l).
-Proof.
-intros l1; elim l1; simpl; auto.
-unfold scal_list, ZEll.scal_list; simpl; intros a l2 Hrec x sc H1 H2.
-generalize (scal_correct a _ H1 H2) (scal_wf a _ H1 H2); case scal.
-case ZEll.scal; intros r1 rsc1; simpl.
-simpl; intros a1 sc1 (H3, H4) (H5, H6); subst r1 rsc1; auto.
-Qed.
-
-Lemma scal_list_wf: forall l x sc,
- wfe x -> wft sc ->
- wfe (fst (scal_list sc x l)) /\ wft (snd (scal_list sc x l)).
-Proof.
-intros l1; elim l1; simpl; auto.
-unfold scal_list; intros a l Hrec x sc H1 H2; simpl.
-generalize (@scal_wf a _ _ H1 H2);
- case (scal sc x a); simpl; intros x1 sc1 [H3 H4]; auto.
-Qed.
-
-Lemma scalL_wf: forall l x sc,
- wfe x -> wft sc ->
- wfe (fst (scalL sc x l)) /\ wft (snd (scalL sc x l)).
-Proof.
-intros l1; elim l1; simpl; auto.
-intros a l2 Hrec x sc H1 H2.
-generalize (scal_wf a _ H1 H2); case scal; simpl.
-intros a1 sc1 (H3, H4); auto.
-generalize (scal_list_wf l2 _ H1 H4); case scal_list; simpl.
-intros a2 sc2; case a2; simpl; auto.
-intros x1 y1 z1 ((V1, (V2, V3)), V4); apply Hrec; auto.
-Qed.
-
-Lemma scalL_correct: forall l x sc,
- wfe x -> wft sc ->
- e2E (fst (scalL sc x l)) = fst (ZEll.scalL exx.(vN) exx.(vA) (z2Z sc) (e2E x) l)/\
- z2Z (snd (scalL sc x l)) = snd (ZEll.scalL exx.(vN) exx.(vA) (z2Z sc) (e2E x) l).
-Proof.
-intros l1; elim l1; simpl; auto.
-intros a l2 Hrec x sc H1 H2.
-generalize (scal_wf a _ H1 H2) (scal_correct a _ H1 H2); case scal; simpl.
-case ZEll.scal; intros r1 rsc1; simpl.
-intros a1 sc1 (H3, H4) (H5, H6); subst r1 rsc1.
-generalize (scal_list_wf l2 _ H1 H4) (scal_list_correct l2 _ H1 H4); case scal_list; simpl.
-case ZEll.scal_list; intros r1 rsc1; simpl.
-intros a2 sc2 (H7, H8) (H9, H10); subst r1 rsc1.
-generalize H7; clear H7; case a2; simpl; auto.
-rewrite zc0; auto.
-intros x1 y1 z1 (V1, (V2, V3)); auto.
-generalize (nmulw H8 V3) (nmulz H8 V3); intros V4 V5; rewrite <- V5.
-apply Hrec; auto.
-Qed.
-
-Lemma f4 : wft (Z2z 4).
-Proof.
-red; apply z2Zx1.
-Qed.
-
-Lemma f27 : wft (Z2z 27).
-Proof.
-red; apply z2Zx1.
-Qed.
-
-Lemma Bw : wft B.
-Proof.
-red; unfold B; apply z2Zx1.
-Qed.
-
-Hint Resolve f4 f27 Bw.
-
-Lemma mww: forall x y, ZEll.nmul (vN exx) (x mod (vN exx) ) y = ZEll.nmul (vN exx) x y.
-intros x y; unfold ZEll.nmul; rewrite Zmodml; auto.
-Qed.
-
-Lemma wwA: forall x, ZEll.nmul (vN exx) x exx.(vA) = ZEll.nmul (vN exx) x (z2Z A).
-intros x; unfold ZEll.nmul.
-unfold A; rewrite z2Zx; rewrite Zmodmr; auto.
-Qed.
-
-Lemma wwB: forall x, ZEll.nmul (vN exx) x exx.(vB) = ZEll.nmul (vN exx) x (z2Z B).
-intros x; unfold ZEll.nmul.
-unfold B; rewrite z2Zx; rewrite Zmodmr; auto.
-Qed.
-
- Lemma scalL_prime:
- let a := ntriple (Z2z (exx.(vx))) (Z2z (exx.(vy))) c1 in
- let isc := (Z2z 4) ** A ** A ** A ++ (Z2z 27) ** B ** B in
- let (a1, sc1) := scal isc a exx.(vS) in
- let (S1,R1) := psplit exx.(vR) in
- let (a2, sc2) := scal sc1 a1 S1 in
- let (a3, sc3) := scalL sc2 a2 R1 in
- match a3 with
- nzero => if (Zeq_bool (Zgcd (z2Z sc3) exx.(vN)) 1) then prime exx.(vN)
- else True
- | _ => True
- end.
- Proof.
- intros a isc.
- case_eq (scal isc a (vS exx)); intros a1 sc1 Ha1.
- case_eq (psplit (vR exx)); intros S1 R1 HS1.
- case_eq (scal sc1 a1 S1); intros a2 sc2 Ha2.
- case_eq (scalL sc2 a2 R1); intros a3 sc3; case a3; auto.
- intros Ha3; case_eq (Zeq_bool (Zgcd (z2Z sc3) (vN exx)) 1); auto.
- intros H1.
- assert (F0:
- (vy exx mod vN exx) ^ 2 mod vN exx =
- ((vx exx mod vN exx) ^ 3 + vA exx * (vx exx mod vN exx) +
- vB exx) mod vN exx).
- generalize exxs.(inC).
- simpl; unfold Zpower_pos; simpl.
- repeat rewrite Zmult_1_r.
- intros HH.
- match goal with |- ?t1 = ?t2 => rmod t1; auto end.
- rewrite HH.
- rewrite Zplus_mod; auto; symmetry; rewrite Zplus_mod; auto; symmetry.
- apply f_equal2 with (f := Zmod); auto.
- apply f_equal2 with (f := Zplus); auto.
- rewrite Zplus_mod; auto; symmetry; rewrite Zplus_mod; auto; symmetry.
- apply f_equal2 with (f := Zmod); auto.
- apply f_equal2 with (f := Zplus); auto.
- rewrite Zmult_mod; auto; symmetry; rewrite Zmult_mod; auto; symmetry.
- apply f_equal2 with (f := Zmod); auto.
- apply f_equal2 with (f := Zmult); auto.
- rewrite Zmod_mod; auto.
- match goal with |- ?t1 = ?t2 => rmod t2; auto end.
- rewrite Zmult_mod; auto; symmetry; rewrite Zmult_mod; auto; symmetry.
- apply f_equal2 with (f := Zmod); auto.
- rewrite Zmod_mod; auto.
- generalize (@ZEll.scalL_prime exx.(vN)
- (exx.(vx) mod exx.(vN))
- (exx.(vy) mod exx.(vN))
- exx.(vA)
- exx.(vB)
- exxs.(n_pos) exxs.(n2_div) exx.(vR)
- exxs.(lprime) exx.(vS) exxs.(lbig) F0); simpl.
-generalize (@scal_wf (vS exx) a isc) (@scal_correct (vS exx) a isc).
-unfold isc.
-rewrite nplusz; auto; try nw; auto.
-repeat rewrite nmulz; auto; try nw; auto.
- repeat rewrite z2Zx.
-repeat rewrite wwA || rewrite wwB|| rewrite mww.
-replace (e2E a) with (ZEll.ntriple (vx exx mod vN exx) (vy exx mod vN exx) 1).
-case ZEll.scal.
-fold isc; rewrite HS1; rewrite Ha1; simpl; auto.
-intros r1 rsc1 HH1 HH2.
-case HH1; clear HH1.
- unfold c1; repeat split; red; try apply z2Zx1.
- unfold isc; nw.
-case HH2; clear HH2.
- unfold c1; repeat split; red; try apply z2Zx1.
- unfold isc; nw.
-intros U1 U2 W1 W2; subst r1 rsc1.
-generalize (@scal_wf S1 a1 sc1) (@scal_correct S1 a1 sc1).
-case ZEll.scal.
-intros r1 rsc1 HH1 HH2.
-case HH1; clear HH1; auto.
-case HH2; clear HH2; auto.
-rewrite Ha2; simpl.
-intros U1 U2 W3 W4; subst r1 rsc1.
-generalize (@scalL_wf R1 a2 sc2) (@scalL_correct R1 a2 sc2).
-case ZEll.scalL.
-intros n; case n; auto.
-rewrite Ha3; simpl.
-intros rsc1 HH1 HH2.
-case HH1; clear HH1; auto.
-case HH2; clear HH2; auto.
-intros _ U2 _ W5; subst rsc1.
-rewrite H1; auto.
-intros x1 y1 z1 sc4; rewrite Ha3; simpl; auto.
-intros _ HH; case HH; auto.
-intros; discriminate.
-unfold a; simpl.
-unfold c1; repeat rewrite z2Zx.
-rewrite (Zmod_small 1); auto.
-generalize exxs.(n_pos).
-auto with zarith.
-Qed.
-*)
-
-End NEll.
-
-Definition isM2 p :=
- match p with
- xH => false
-| xO _ => false
-| _ => true
-end.
-
-Lemma isM2_correct: forall p,
- if isM2 p then ~(Zdivide 2 p) /\ 2 < p else True.
-Proof.
-intros p; case p; simpl; auto; clear p.
-intros p1; split; auto.
-intros HH; inversion_clear HH.
-generalize H; rewrite Zmult_comm.
-case x; simpl; intros; discriminate.
-case p1; red; simpl; auto.
-Qed.
-
-Definition ell_test (N S: positive) (l: List.list (positive * positive))
- (A B x y: Z) :=
- if isM2 N then
- match (4 * N) ?= (ZEll.Zmullp l - 1) ^ 2 with
- Lt =>
- match y ^ 2 mod N ?= (x ^ 3 + A * x + B) mod N with
- Eq =>
- let ex := mkEx N S l A B x y in
- let e2n := e ex in
- let a := mtriple (e2n x) (e2n y) (e2n 1) in
- let A := (e2n A) in
- let B := (e2n B) in
- let d4 := (e2n 4) in
- let d27 := (e2n 27) in
- let dN := nN ex in
- let n := nn ex in
- let n' := nn' ex in
- let da := mplus ex in
- let dm := mmult ex in
- let isc := (da (dm (dm (dm d4 A) A) A) (dm (dm d27 B) B)) in
- let (a1, sc1) := scal ex isc a S in
- let (S1,R1) := ZEll.psplit l in
- let (a2, sc2) := scal ex sc1 a1 S1 in
- let (a3, sc3) := scalL ex sc2 a2 R1 in
- match a3 with
- mzero => if (Zeq_bool (Zgcd (d ex sc3) N) 1) then true
- else false
- | _ => false
- end
- | _ => false
- end
- | _ => false
- end
- else false.
-
-(*
-Lemma Zcompare_correct: forall x y,
- match x ?= y with Eq => x = y | Gt => x > y | Lt => x < y end.
-Proof.
-intros x y; unfold Zlt, Zgt; generalize (Zcompare_Eq_eq x y); case Zcompare; auto.
-Qed.
-
-Lemma ell_test_correct: forall (N S: positive) (l: List.list (positive * positive))
- (A B x y: Z),
- (forall p, List.In p l -> prime (fst p)) ->
- if ell_test N S l A B x y then prime N else True.
-intros N S1 l A1 B1 x y H; unfold ell_test.
-generalize (isM2_correct N); case isM2; auto.
-intros (H1, H2).
-match goal with |- context[?x ?= ?y] =>
- generalize (Zcompare_correct x y); case Zcompare; auto
-end; intros H3.
-match goal with |- context[?x ?= ?y] =>
- generalize (Zcompare_correct x y); case Zcompare; auto
-end; intros H4.
-set (n := Peano.pred (nat_of_P (get_height 31 (plength N)))).
-set (op := cmk_op n).
-set (mop := make_mod_op op (ZnZ.of_Z N)).
-set (exx := mkEx N S1 l A1 B1 x y).
-set (op_spec := cmk_spec n).
-assert (exxs: ex_spec exx).
- constructor; auto.
-assert (H0: N < base (ZnZ.digits op)).
- apply Zlt_le_trans with (1 := plength_correct N).
- unfold op, base.
- rewrite cmk_op_digits.
- apply Zpower_le_monotone; split; auto with zarith.
- generalize (get_height_correct 31 (plength N)); unfold n.
- set (p := plength N).
- replace (Z_of_nat (Peano.pred (nat_of_P (get_height 31 p)))) with
- ((Zpos (get_height 31 p) - 1) ); auto with zarith.
- rewrite pred_of_minus; rewrite inj_minus1; auto with zarith.
- rewrite <- Zpos_eq_Z_of_nat_o_nat_of_P; auto with zarith.
- generalize (lt_O_nat_of_P (get_height 31 p)); auto with zarith.
-assert (mspec: mod_spec op (zN exx op) mop).
- unfold mop; apply make_mod_spec; auto.
- rewrite ZnZ.of_Z_correct; auto with zarith.
-generalize (@scalL_prime exx exxs _ op (cmk_spec n) mop mspec H0).
-lazy zeta.
-unfold c1, A, B, nplus, nmul;
- simpl exx.(vA); simpl exx.(vB); simpl exx.(vx); simpl exx.(vy);
- simpl exx.(vS); simpl exx.(vR); simpl exx.(vN).
-case scal; intros a1 sc1.
-case ZEll.psplit; intros S2 R2.
-case scal; intros a2 sc2.
-case scalL; intros a3 sc3.
-case a3; auto.
-case Zeq_bool; auto.
-Qed.
-*)
-
-Time Eval vm_compute in (ell_test
- 329719147332060395689499
- 8209062
- (List.cons (40165264598163841%positive,1%positive) List.nil)
- (-94080)
- 9834496
- 0
- 3136).
-
-
-Time Eval vm_compute in (ell_test
- 1384435372850622112932804334308326689651568940268408537
- 13077052794
- (List.cons (105867537178241517538435987563198410444088809%positive, 1%positive) List.nil)
- (-677530058123796416781392907869501000001421915645008494)
- 0
- (- 169382514530949104195348226967375250000355478911252124)
- 1045670343788723904542107880373576189650857982445904291
-).
-*) \ No newline at end of file
diff --git a/coqprime/num/Mod_op.v b/coqprime/num/Mod_op.v
deleted file mode 100644
index a8f25bd2d..000000000
--- a/coqprime/num/Mod_op.v
+++ /dev/null
@@ -1,1200 +0,0 @@
-
-(*************************************************************)
-(* This file is distributed under the terms of the *)
-(* GNU Lesser General Public License Version 2.1 *)
-(*************************************************************)
-(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
-(*************************************************************)
-
-Set Implicit Arguments.
-
-Require Import DoubleBase DoubleSub DoubleMul DoubleSqrt DoubleLift DoubleDivn1 DoubleDiv.
-Require Import CyclicAxioms DoubleCyclic BigN Cyclic31.
-Require Import ZArith ZCAux.
-Import CyclicAxioms DoubleType DoubleBase.
-
-Theorem Zpos_pos: forall x, 0 < Zpos x.
-red; simpl; auto.
-Qed.
-Hint Resolve Zpos_pos: zarith.
-
-Section Mod_op.
-
- Variable w : Type.
-
- Record mod_op : Type := mk_mod_op {
- succ_mod : w -> w;
- add_mod : w -> w -> w;
- pred_mod : w -> w;
- sub_mod : w -> w -> w;
- mul_mod : w -> w -> w;
- square_mod : w -> w;
- power_mod : w -> positive -> w
- }.
-
- Variable w_op : ZnZ.Ops w.
-
- Let w_digits := w_op.(ZnZ.digits).
- Let w_zdigits := w_op.(ZnZ.zdigits).
- Let w_to_Z := (@ZnZ.to_Z _ w_op).
- Let w_of_pos := (@ZnZ.of_pos _ w_op).
- Let w_head0 := (@ZnZ.head0 _ w_op).
- Let w0 := (@ZnZ.zero _ w_op).
- Let w1 := (@ZnZ.one _ w_op).
- Let wBm1 := (@ZnZ.minus_one _ w_op).
-
- Let wWW := (@ZnZ.WW _ w_op).
- Let wW0 := (@ZnZ.WO _ w_op).
- Let w0W := (@ZnZ.OW _ w_op).
-
- Let w_compare := (@ZnZ.compare _ w_op).
- Let w_opp_c := (@ZnZ.opp_c _ w_op).
- Let w_opp := (@ZnZ.opp _ w_op).
- Let w_opp_carry := (@ZnZ.opp_carry _ w_op).
-
- Let w_succ := (@ZnZ.succ _ w_op).
- Let w_succ_c := (@ZnZ.succ_c _ w_op).
- Let w_add_c := (@ZnZ.add_c _ w_op).
- Let w_add_carry_c := (@ZnZ.add_carry_c _ w_op).
- Let w_add := (@ZnZ.add _ w_op).
-
-
- Let w_pred_c := (@ZnZ.pred_c _ w_op).
- Let w_sub_c := (@ZnZ.sub_c _ w_op).
- Let w_sub_carry := (@ZnZ.sub_carry _ w_op).
- Let w_sub_carry_c := (@ZnZ.sub_carry_c _ w_op).
- Let w_sub := (@ZnZ.sub _ w_op).
- Let w_pred := (@ZnZ.pred _ w_op).
-
- Let w_mul_c := (@ZnZ.mul_c _ w_op).
- Let w_mul := (@ZnZ.mul _ w_op).
- Let w_square_c := (@ZnZ.square_c _ w_op).
-
- Let w_div21 := (@ZnZ.div21 _ w_op).
- Let w_add_mul_div := (@ZnZ.add_mul_div _ w_op).
-
- Variable b : w.
- (* b should be > 1 *)
- Let n := w_head0 b.
-
- Let b2n := w_add_mul_div n b w0.
-
- Let bm1 := w_sub b w1.
-
- Let mb := w_opp b.
-
- Let wwb := WW w0 b.
-
- Let low x := match x with WW _ x => x | W0 => w0 end.
-
- Let w_add2 x y := match w_add_c x y with
- C0 n => WW w0 n
- |C1 n => WW w1 n
- end.
- Let ww_zdigits := w_add2 w_zdigits w_zdigits.
-
- Let ww_compare :=
- Eval lazy beta delta [ww_compare] in ww_compare w0 w_compare.
-
- Let ww_sub :=
- Eval lazy beta delta [ww_sub] in
- ww_sub w0 wWW w_opp_c w_opp_carry w_sub_c w_opp w_sub w_sub_carry.
-
- Let ww_add_mul_div :=
- Eval lazy beta delta [ww_add_mul_div] in
- ww_add_mul_div w0 wWW wW0 w0W
- ww_compare w_add_mul_div
- ww_sub w_zdigits low (w0W n).
-
- Let ww_lsl_n :=
- Eval lazy beta delta [ww_add_mul_div] in
- fun ww => ww_add_mul_div ww W0.
-
- Let w_lsr_n w :=
- w_add_mul_div (w_sub w_zdigits n) w0 w.
-
- Open Scope Z_scope.
- Notation "[| x |]" :=
- (@ZnZ.to_Z _ w_op x) (at level 0, x at level 99).
-
-Notation "[[ x ]]" :=
- (@ww_to_Z _ w_digits w_to_Z x) (at level 0, x at level 99).
-
- Section Mod_spec.
-
- Variable m_op : mod_op.
-
- Record mod_spec : Prop := mk_mod_spec {
- succ_mod_spec :
- forall w t, [|w|]= t mod [|b|] ->
- [|succ_mod m_op w|] = ([|w|] + 1) mod [|b|];
- add_mod_spec :
- forall w1 w2 t1 t2, [|w1|]= t1 mod [|b|] -> [|w2|]= t2 mod [|b|] ->
- [|add_mod m_op w1 w2|] = ([|w1|] + [|w2|]) mod [|b|];
- pred_mod_spec :
- forall w t, [|w|]= t mod [|b|] ->
- [|pred_mod m_op w|] = ([|w|] - 1) mod [|b|];
- sub_mod_spec :
- forall w1 w2 t1 t2, [|w1|]= t1 mod [|b|] -> [|w2|]= t2 mod [|b|] ->
- [|sub_mod m_op w1 w2|] = ([|w1|] - [|w2|]) mod [|b|];
- mul_mod_spec :
- forall w1 w2 t1 t2, [|w1|]= t1 mod [|b|] -> [|w2|]= t2 mod [|b|] ->
- [|mul_mod m_op w1 w2|] = ([|w1|] * [|w2|]) mod [|b|];
- square_mod_spec :
- forall w t, [|w|]= t mod [|b|] ->
- [|square_mod m_op w|] = ([|w|] * [|w|]) mod [|b|];
- power_mod_spec :
- forall w t p, [|w|]= t mod [|b|] ->
- [|power_mod m_op w p|] = (Zpower_pos [|w|] p) mod [|b|]
-(*
- shift_spec :
- forall w p, wf w ->
- [|shift m_op w p|] = ([|w|] / (Zpower_pos 2 p)) mod [|b|];
- trunc_spec :
- forall w p, wf w ->
- [|power_mod m_op w p|] = ([|w1|] mod (Zpower_pos 2 p)) mod [|b|]
-*)
- }.
-
- End Mod_spec.
-
- Hypothesis b_pos: 1 < [|b|].
- Variable op_spec: ZnZ.Specs w_op.
-
-
- Lemma Zpower_n: 0 < 2 ^ [|n|].
- apply Zpower_gt_0; auto with zarith.
- case (ZnZ.spec_to_Z n); auto with zarith.
- Qed.
-
- Hint Resolve Zpower_n Zmult_lt_0_compat Zpower_gt_0.
-
- Variable m_op : mod_op.
-
- Hint Rewrite
- ZnZ.spec_0
- ZnZ.spec_1
- ZnZ.spec_m1
- ZnZ.spec_WW
- ZnZ.spec_opp_c
- ZnZ.spec_opp
- ZnZ.spec_opp_carry
- ZnZ.spec_succ_c
- ZnZ.spec_add_c
- ZnZ.spec_add_carry_c
- ZnZ.spec_add
- ZnZ.spec_pred_c
- ZnZ.spec_sub_c
- ZnZ.spec_sub_carry_c
- ZnZ.spec_sub
- ZnZ.spec_mul_c
- ZnZ.spec_mul
- : w_rewrite.
-
- Let _succ_mod x :=
- let res :=w_succ x in
- match w_compare res b with
- | Lt => res
- | _ => w0
- end.
-
- Let split x :=
- match x with
- | W0 => (w0,w0)
- | WW h l => (h,l)
- end.
-
- Let _w0_is_0: [|w0|] = 0.
- unfold ZnZ.to_Z; rewrite <- ZnZ.spec_0; auto.
- Qed.
-
- Let _w1_is_1: [|w1|] = 1.
- unfold ZnZ.to_Z; rewrite <-ZnZ.spec_1; simpl; auto.
- Qed.
-
- Theorem Zmod_plus_one: forall a1 b1, 0 < b1 -> (a1 + b1) mod b1 = a1 mod b1.
- intros a1 b1 H; rewrite Zplus_mod; auto with zarith.
- rewrite Z_mod_same; try rewrite Zplus_0_r; auto with zarith.
- apply Zmod_mod; auto.
- Qed.
-
- Theorem Zmod_minus_one: forall a1 b1, 0 < b1 -> (a1 - b1) mod b1 = a1 mod b1.
- intros a1 b1 H; rewrite Zminus_mod; auto with zarith.
- rewrite Z_mod_same; try rewrite Zminus_0_r; auto with zarith.
- apply Zmod_mod; auto.
- Qed.
-
- Lemma without_c_b: forall w2, [|w2|] < [|b|] ->
- [|w_succ w2|] = [|w2|] + 1.
- intros w2 H.
- unfold w_succ;rewrite ZnZ.spec_succ.
- rewrite Zmod_small;auto.
- assert (HH := ZnZ.spec_to_Z w2).
- assert (HH' := ZnZ.spec_to_Z b);auto with zarith.
- Qed.
-
- Lemma _succ_mod_spec: forall w t, [|w|]= t mod [|b|] ->
- [|_succ_mod w|] = ([|w|] + 1) mod [|b|].
- intros w2 t H; unfold _succ_mod, w_compare; simpl.
- assert (F: [|w2|] < [|b|]).
- case (Z_mod_lt t [|b|]); auto with zarith.
- rewrite ZnZ.spec_compare; case Zcompare_spec; intros H1;
- match goal with H: context[w_succ _] |- _ =>
- generalize H; clear H; rewrite (without_c_b _ F); intros H1;
- auto with zarith
- end.
- rewrite H1, Z_mod_same, _w0_is_0; auto with zarith.
- rewrite Zmod_small; auto with zarith.
- case (ZnZ.spec_to_Z w2); auto with zarith.
- Qed.
-
- Let _add_mod x y :=
- match w_add_c x y with
- | C0 z =>
- match w_compare z b with
- | Lt => z
- | Eq => w0
- | Gt => w_sub z b
- end
- | C1 z => w_add mb z
- end.
-
- Lemma _add_mod_correct: forall w1 w2, [|w1|] + [|w2|] < 2 * [|b|] ->
- [|_add_mod w1 w2|] = ([|w1|] + [|w2|]) mod [|b|].
- intros w2 w3; unfold _add_mod, w_compare, w_add_c; intros H.
- match goal with |- context[ZnZ.add_c ?x ?y] =>
- generalize (ZnZ.spec_add_c x y); unfold interp_carry;
- case (ZnZ.add_c x y); autorewrite with w_rewrite
- end; auto with zarith.
- intros w4 H2.
- rewrite ZnZ.spec_compare; case Zcompare_spec; intros H1;
- match goal with H: context[b] |- _ =>
- generalize H; clear H; intros H1; rewrite <-H2;
- auto with zarith
- end.
- rewrite H1, Z_mod_same; auto with zarith.
- rewrite Zmod_small; auto with zarith.
- case (ZnZ.spec_to_Z w4); auto with zarith.
- assert (F1: 0 < [|w4|] - [|b|]); auto with zarith.
- assert (F2: [|w4|] < [|b|] + [|b|]); auto with zarith.
- autorewrite with w_rewrite; auto.
- rewrite (fun x y => Zmod_small (x - y)); auto with zarith.
- rewrite <- (Zmod_minus_one [|w4|]); auto with zarith.
- apply sym_equal; apply Zmod_small; auto with zarith.
- split; auto with zarith.
- apply Zlt_trans with [|b|]; auto with zarith.
- case (ZnZ.spec_to_Z b); unfold base; auto with zarith.
- rewrite Zmult_1_l; intros w4 H2; rewrite <- H2.
- unfold mb, w_add; rewrite ZnZ.spec_add; auto with zarith.
- assert (F1: [|w4|] < [|b|]).
- assert (F2: base (ZnZ.digits w_op) + [|w4|] < base (ZnZ.digits w_op) + [|b|]);
- auto with zarith.
- rewrite H2.
- apply Zlt_trans with ([|b|] +[|b|]); auto with zarith.
- apply Zplus_lt_compat_r; auto with zarith.
- case (ZnZ.spec_to_Z b); auto with zarith.
- assert (F2: [|b|] < base (ZnZ.digits w_op) + [|w4|]); auto with zarith.
- apply Zlt_le_trans with (base (ZnZ.digits w_op)); auto with zarith.
- case (ZnZ.spec_to_Z b); auto with zarith.
- case (ZnZ.spec_to_Z w4); auto with zarith.
- assert (F3: base (ZnZ.digits w_op) + [|w4|] < [|b|] + [|b|]); auto with zarith.
- rewrite <- (fun x => Zmod_minus_one (base x + [|w4|])); auto with zarith.
- rewrite (fun x y => Zmod_small (x - y)); auto with zarith.
- unfold w_opp;rewrite (ZnZ.spec_opp b).
- rewrite <- (fun x => Zmod_plus_one (-x)); auto with zarith.
- rewrite (Zmod_small (- [|b|] + base (ZnZ.digits w_op)));auto with zarith.
- 2 : assert (HHH := ZnZ.spec_to_Z b);auto with zarith.
- repeat rewrite Zmod_small; auto with zarith.
- Qed.
-
- Lemma _add_mod_spec: forall w1 w2 t1 t2, [|w1|] = t1 mod [|b|] -> [|w2|] = t2 mod [|b|] ->
- [|_add_mod w1 w2|] = ([|w1|] + [|w2|]) mod [|b|].
- intros w2 w3 t1 t2 H H1.
- apply _add_mod_correct; auto with zarith.
- assert (F: [|w2|] < [|b|]).
- case (Z_mod_lt t1 [|b|]); auto with zarith.
- assert (F': [|w3|] < [|b|]).
- case (Z_mod_lt t2 [|b|]); auto with zarith.
- assert (tmp: forall x, 2 * x = x + x); auto with zarith.
- Qed.
-
- Let _pred_mod x :=
- match w_compare w0 x with
- | Eq => bm1
- | _ => w_pred x
- end.
-
- Lemma _pred_mod_spec: forall w t, [|w|] = t mod [|b|] ->
- [|_pred_mod w|] = ([|w|] - 1) mod [|b|].
- intros w2 t H; unfold _pred_mod, w_compare, bm1; simpl.
- assert (F: [|w2|] < [|b|]).
- case (Z_mod_lt t [|b|]); auto with zarith.
- rewrite ZnZ.spec_compare; case Zcompare_spec; intros H1;
- match goal with H: context[w2] |- _ =>
- generalize H; clear H; intros H1; autorewrite with w_rewrite;
- auto with zarith
- end; try rewrite _w0_is_0; try rewrite _w1_is_1; auto with zarith.
- rewrite <- H1, _w0_is_0; simpl.
- rewrite <- (Zmod_plus_one (-1)); auto with zarith.
- repeat rewrite Zmod_small; auto with zarith.
- case (ZnZ.spec_to_Z b); auto with zarith.
- unfold w_pred;rewrite ZnZ.spec_pred; auto.
- assert (HHH := ZnZ.spec_to_Z b);repeat rewrite Zmod_small;auto with
- zarith.
- intros;assert (HHH := ZnZ.spec_to_Z w2);auto with zarith.
- Qed.
-
- Let _sub_mod x y :=
- match w_sub_c x y with
- | C0 z => z
- | C1 z => w_add z b
- end.
-
- Lemma _sub_mod_spec: forall w1 w2 t1 t2, [|w1|] = t1 mod [|b|] -> [|w2|] = t2 mod [|b|] ->
- [|_sub_mod w1 w2|] = ([|w1|] - [|w2|]) mod [|b|].
- intros w2 w3 t1 t2; unfold _sub_mod, w_compare, w_sub_c; intros H H1.
- assert (F: [|w2|] < [|b|]).
- case (Z_mod_lt t1 [|b|]); auto with zarith.
- assert (F': [|w3|] < [|b|]).
- case (Z_mod_lt t2 [|b|]); auto with zarith.
- match goal with |- context[ZnZ.sub_c ?x ?y] =>
- generalize (ZnZ.spec_sub_c x y); unfold interp_carry;
- case (ZnZ.sub_c x y); autorewrite with w_rewrite
- end; auto with zarith.
- intros w4 H2.
- rewrite Zmod_small; auto with zarith.
- split; auto with zarith.
- rewrite <- H2; case (ZnZ.spec_to_Z w4); auto with zarith.
- apply Zle_lt_trans with [|w2|]; auto with zarith.
- case (ZnZ.spec_to_Z w3); auto with zarith.
- intros w4 H2; rewrite <- H2.
- unfold w_add; rewrite ZnZ.spec_add; auto with zarith.
- case (ZnZ.spec_to_Z w4); intros F1 F2.
- assert (F3: 0 <= - 1 * base (ZnZ.digits w_op) + [|w4|] + [|b|]); auto with zarith.
- rewrite H2.
- case (ZnZ.spec_to_Z w3); case (ZnZ.spec_to_Z w2); auto with zarith.
- rewrite <- (fun x => Zmod_minus_one ([|w4|] + x)); auto with zarith.
- rewrite <- (fun x y => Zmod_plus_one (-y + x)); auto with zarith.
- repeat rewrite Zmod_small; auto with zarith.
- case (ZnZ.spec_to_Z b); auto with zarith.
- Qed.
-
- Let _mul_mod x y :=
- let xy := w_mul_c x y in
- match ww_compare xy wwb with
- | Lt => snd (split xy)
- | Eq => w0
- | Gt =>
- let xy2n := ww_lsl_n xy in
- let (h,l) := split xy2n in
- let (q,r) := w_div21 h l b2n in
- w_lsr_n r
- end.
-
- Theorem high_zero:forall x, [[x]] < base w_digits -> [|fst (split x)|] = 0.
- intros x; case x; simpl; auto.
- intros xh xl H; case (Zle_lt_or_eq 0 [|xh|]); auto with zarith.
- case (ZnZ.spec_to_Z xh); auto with zarith.
- intros H1; contradict H; apply Zle_not_lt.
- assert (HHHH := wB_pos w_digits).
- unfold w_to_Z.
- match goal with |- ?X <= ?Y + ?Z =>
- pattern X at 1; rewrite <- (Zmult_1_l X); auto with zarith;
- apply Zle_trans with Y; auto with zarith
- end.
- case (ZnZ.spec_to_Z xl); auto with zarith.
- Qed.
-
- Theorem n_spec: base (ZnZ.digits w_op) / 2 <= 2 ^ [|n|] * [|b|]
- < base (ZnZ.digits w_op).
- unfold n, w_head0; apply (ZnZ.spec_head0); auto with zarith.
- Qed.
-
- Theorem b2n_spec: [|b2n|] = 2 ^ [|n|] * [|b|].
- unfold b2n, w_add_mul_div; case n_spec; intros Hp Hp1.
- assert (F1: [|n|] < Zpos (ZnZ.digits w_op)).
- case (Zle_or_lt (Zpos (ZnZ.digits w_op)) [|n|]); auto with zarith.
- intros H1; contradict Hp1; apply Zle_not_lt; unfold base.
- apply Zle_trans with (2 ^ [|n|] * 1); auto with zarith.
- rewrite Zmult_1_r; apply Zpower_le_monotone; auto with zarith.
- rewrite ZnZ.spec_add_mul_div; auto with zarith.
- rewrite _w0_is_0; rewrite Zdiv_0_l; auto with zarith.
- rewrite Zplus_0_r; rewrite Zmult_comm; apply Zmod_small; auto with zarith.
- Qed.
-
- Theorem ww_lsl_n_spec: forall w, [[w]] < [|b|] * [|b|] ->
- [[ww_lsl_n w]] = 2 ^ [|n|] * [[w]].
- intros w2 H; unfold ww_lsl_n.
- case n_spec; intros Hp Hp1.
- assert (F0: forall x, 2 * x = x + x); auto with zarith.
- assert (F1: [|n|] < Zpos (ZnZ.digits w_op)).
- case (Zle_or_lt (Zpos (ZnZ.digits w_op)) [|n|]); auto.
- intros H1; contradict Hp1; apply Zle_not_lt; unfold base.
- apply Zle_trans with (2 ^ [|n|] * 1); auto with zarith.
- rewrite Zmult_1_r; apply Zpower_le_monotone; auto with zarith.
- assert (F2: [|n|] < Zpos (xO (ZnZ.digits w_op))).
- rewrite (Zpos_xO (ZnZ.digits w_op)); rewrite F0; auto with zarith.
- pattern [|n|]; rewrite <- Zplus_0_r; auto with zarith.
- apply Zplus_lt_compat; auto with zarith.
- change
- ([[DoubleLift.ww_add_mul_div w0 wWW wW0 w0W
- ww_compare w_add_mul_div
- ww_sub w_zdigits low (w0W n) w2 W0]] = 2 ^ [|n|] * [[w2]]).
- rewrite (DoubleLift.spec_ww_add_mul_div ); auto with zarith.
- 2: apply ZnZ.spec_to_Z; auto.
- 2: refine (spec_ww_to_Z _ _ _); auto.
- 2: apply ZnZ.spec_to_Z; auto.
- 2: apply ZnZ.spec_WW; auto.
- 2: apply ZnZ.spec_WO; auto.
- 2: apply ZnZ.spec_OW; auto.
- 2: refine (spec_ww_compare _ _ _ _ _ _ _); auto.
- 2: apply ZnZ.spec_to_Z; auto.
- 2: apply ZnZ.spec_compare; auto.
- 2: apply ZnZ.spec_add_mul_div; auto.
- 2: refine (spec_ww_sub _ _ _ _ _ _ _ _ _ _
- _ _ _ _ _ _ _ _ _ _ _); auto.
- 2: apply ZnZ.spec_to_Z; auto.
- 2: apply ZnZ.spec_WW; auto.
- 2: apply ZnZ.spec_opp_c; auto.
- 2: apply ZnZ.spec_opp; auto.
- 2: apply ZnZ.spec_opp_carry; auto.
- 2: apply ZnZ.spec_sub_c; auto.
- 2: apply ZnZ.spec_sub; auto.
- 2: apply ZnZ.spec_sub_carry; auto.
- 2: apply ZnZ.spec_zdigits; auto.
- replace ([[w0W n]]) with [|n|].
- change [[W0]] with 0. rewrite Zdiv_0_l; auto with zarith.
- rewrite Zplus_0_r; rewrite Zmod_small; auto with zarith.
- split; auto with zarith.
- case spec_ww_to_Z with (w_digits := w_digits) (w_to_Z := w_to_Z) (x:=w2); auto with zarith.
- apply ZnZ.spec_to_Z; auto.
- apply Zlt_trans with ([|b|] * [|b|] * 2 ^ [|n|]); auto with zarith.
- apply Zmult_lt_compat_r; auto with zarith.
- rewrite <- Zmult_assoc.
- unfold base; unfold base in Hp.
- unfold ww_digits,w_digits;rewrite (Zpos_xO (ZnZ.digits w_op)); rewrite F0; auto with zarith.
- rewrite Zpower_exp; auto with zarith.
- apply Zmult_lt_compat; auto with zarith.
- case (ZnZ.spec_to_Z b); auto with zarith.
- split; auto with zarith.
- rewrite Zmult_comm; auto with zarith.
- unfold w_digits;auto with zarith.
- generalize (ZnZ.spec_OW n).
- unfold ww_to_Z, w_digits; auto.
- intros x; case x; simpl.
- unfold w_to_Z, w_digits, w0; rewrite ZnZ.spec_0; auto.
- intros w3 w4; rewrite Zplus_comm.
- rewrite Z_mod_plus; auto with zarith.
- rewrite Zmod_small; auto with zarith.
- case (ZnZ.spec_to_Z w4); auto with zarith.
- unfold base; auto with zarith.
- unfold ww_to_Z, w_digits, w_to_Z, w0W; auto.
- rewrite ZnZ.spec_OW; auto with zarith.
- Qed.
-
- Theorem w_lsr_n_spec: forall w, [|w|] < 2 ^ [|n|] * [|b|]->
- [|w_lsr_n w|] = [|w|] / 2 ^ [|n|].
- intros w2 H.
- case (ZnZ.spec_to_Z w2); intros U1 U2.
- unfold w_lsr_n, w_add_mul_div.
- rewrite ZnZ.spec_add_mul_div; auto with zarith.
- rewrite _w0_is_0; rewrite Zmult_0_l; auto with zarith.
- rewrite Zplus_0_l.
- autorewrite with w_rewrite; auto.
- rewrite (fun x y => Zmod_small (x - y)); auto with zarith.
- unfold w_zdigits; rewrite ZnZ.spec_zdigits; auto.
- assert (tmp: forall p q, p - (p - q) = q); intros; try ring;
- rewrite tmp; clear tmp; auto.
- rewrite Zmod_small; auto with zarith.
- split; auto with zarith.
- apply Zle_lt_trans with (2 := U2); auto with zarith.
- apply Zdiv_le_upper_bound; auto with zarith.
- apply Zle_trans with ([|w2|] * (2 ^ 0)); auto with zarith.
- simpl Zpower; rewrite Zmult_1_r; auto with zarith.
- apply Zmult_le_compat_l; auto with zarith.
- apply Zpower_le_monotone; auto with zarith.
- case (ZnZ.spec_to_Z n); auto with zarith.
- unfold n.
- assert (HH: 0 < [|b|]); auto with zarith.
- split.
- case (Zle_or_lt [|w_head0 b|] [|w_zdigits|]); auto with zarith.
- unfold w_zdigits; rewrite ZnZ.spec_zdigits; auto; intros H1.
- case (ZnZ.spec_head0 b HH); intros _ H2; contradict H2.
- apply Zle_not_lt; unfold base.
- apply Zle_trans with (2^[|ZnZ.head0 b|] * 1); auto with zarith.
- rewrite Zmult_1_r; apply Zpower_le_monotone; auto with zarith.
- unfold w_zdigits; rewrite ZnZ.spec_zdigits; auto.
- apply Zle_lt_trans with (Zpos (ZnZ.digits w_op)); auto with zarith.
- case (ZnZ.spec_to_Z (w_head0 b)); auto with zarith.
- unfold base; apply Zpower2_lt_lin; auto with zarith.
- autorewrite with w_rewrite; auto.
- rewrite Zmod_small; auto with zarith.
- unfold w_zdigits; rewrite ZnZ.spec_zdigits; auto with zarith.
- case (ZnZ.spec_to_Z n); auto with zarith.
- unfold w_zdigits; rewrite ZnZ.spec_zdigits; auto.
- split; auto with zarith.
- case (Zle_or_lt [|n|] (Zpos (ZnZ.digits w_op))); auto with zarith; intros H1.
- case (ZnZ.spec_head0 b); auto with zarith; intros _ H2.
- contradict H2; apply Zle_not_lt; auto with zarith.
- unfold base; apply Zle_trans with (2 ^ [|ZnZ.head0 b|] * 1);
- auto with zarith.
- rewrite Zmult_1_r; unfold base; apply Zpower_le_monotone; auto with zarith.
- apply Zle_lt_trans with (Zpos (ZnZ.digits w_op)); auto with zarith.
- case (ZnZ.spec_to_Z n); auto with zarith.
- unfold base; apply Zpower2_lt_lin; auto with zarith.
- Qed.
-
- Lemma split_correct: forall x, let (xh, xl) := split x in [[WW xh xl]] = [[x]].
- intros x; case x; simpl; unfold w0, w_to_Z;try rewrite ZnZ.spec_0; auto with zarith.
- Qed.
-
- Lemma _mul_mod_spec: forall w1 w2 t1 t2, [|w1|] = t1 mod [|b|] -> [|w2|] = t2 mod [|b|] ->
- [|_mul_mod w1 w2|] = ([|w1|] * [|w2|]) mod [|b|].
- intros w2 w3 t1 t2 H H1; unfold _mul_mod, wwb.
- assert (F: [|w2|] < [|b|]).
- case (Z_mod_lt t1 [|b|]); auto with zarith.
- assert (F': [|w3|] < [|b|]).
- case (Z_mod_lt t2 [|b|]); auto with zarith.
- match goal with |- context[ww_compare ?x ?y] =>
- change (ww_compare x y) with (DoubleBase.ww_compare w0 w_compare x y)
- end.
- rewrite (@spec_ww_compare w w0 w_digits w_to_Z w_compare
- ZnZ.spec_0 ZnZ.spec_to_Z ZnZ.spec_compare
- (w_mul_c w2 w3) (WW w0 b)); case Zcompare_spec; intros H2;
- match goal with H: context[w_mul_c] |- _ =>
- generalize H; clear H
- end; try rewrite _w0_is_0; try rewrite !_w1_is_1; auto with zarith.
- unfold w_mul_c, ww_to_Z, w_to_Z, w_digits; rewrite ZnZ.spec_mul_c; auto with zarith.
- simpl; rewrite _w0_is_0, Zmult_0_l, Zplus_0_l.
- intros H2; rewrite H2; simpl.
- rewrite Z_mod_same; auto with zarith.
- generalize (high_zero (w_mul_c w2 w3)).
- unfold w_mul_c; generalize (ZnZ.spec_mul_c w2 w3);
- case (ZnZ.mul_c w2 w3); simpl; auto with zarith.
- intros H3 _ _; rewrite <- H3; autorewrite with w_rewrite; auto.
-(* rewrite Zmod_small; auto with zarith. *)
- intros w4 w5.
- change (w_to_Z w0) with [|w0|]; rewrite _w0_is_0.
- change (w_to_Z w4) with [|w4|].
- change (w_to_Z w5) with [|w5|].
- simpl.
- intros H2 H3 H4.
- assert (E1: [|w4|] = 0).
- apply H3; auto with zarith.
- apply Zlt_trans with (1 := H4).
- case (ZnZ.spec_to_Z b); auto with zarith.
- generalize H4 H2; rewrite E1; rewrite Zmult_0_l; rewrite Zplus_0_l;
- clear H4 H2; intros H4 H2.
- rewrite <- H2; rewrite Zmod_small; auto with zarith.
- case (ZnZ.spec_to_Z w5); auto with zarith.
- intros H2.
- match goal with |- context[split ?x] =>
- generalize (split_correct x);
- case (split x); auto with zarith
- end.
- assert (F1: [[w_mul_c w2 w3]] < [|b|] * [|b|]).
- unfold w_to_Z, w_mul_c, ww_to_Z,w_digits;
- rewrite ZnZ.spec_mul_c; auto with zarith.
- apply Zmult_lt_compat; auto with zarith.
- case (ZnZ.spec_to_Z w2); auto with zarith.
- case (ZnZ.spec_to_Z w3); auto with zarith.
- intros w4 w5; rewrite ww_lsl_n_spec; auto with zarith.
- intros H3.
- unfold w_div21; match goal with |- context[ZnZ.div21 ?y ?z ?t] =>
- generalize (ZnZ.spec_div21 y z t);
- case (ZnZ.div21 y z t)
- end.
- rewrite b2n_spec; case (n_spec); auto.
- intros H4 H5 w6 w7 H6.
- case H6; auto with zarith.
- case (Zle_or_lt (2 ^ [|n|] * [|b|]) [|w4|]); auto; intros H7.
- match type of H3 with ?X = ?Y =>
- absurd (Y < X)
- end.
- apply Zle_not_lt; rewrite H3; auto with zarith.
- simpl ww_to_Z.
- match goal with |- ?X < ?Y + _ =>
- apply Zlt_le_trans with Y; auto with zarith
- end.
- apply Zlt_trans with (2 ^ [|n|] * ([|b|] * [|b|]));
- auto with zarith.
- apply Zmult_lt_compat_l; auto with zarith.
- rewrite Zmult_assoc.
- apply Zmult_lt_compat2; auto with zarith.
- case (ZnZ.spec_to_Z b); auto with zarith.
- case (ZnZ.spec_to_Z w5); unfold w_to_Z;auto with zarith.
- clear H6; intros H7 H8.
- rewrite w_lsr_n_spec; auto with zarith.
- rewrite <- (Z_div_mult ([|w2|] * [|w3|]) (2 ^ [|n|]));
- auto with zarith; rewrite Zmult_comm.
- rewrite <- ZnZ.spec_mul_c; auto with zarith.
- unfold w_mul_c in H3; unfold ww_to_Z in H3;simpl H3.
- unfold w_digits,w_to_Z in H3. rewrite <- H3; simpl.
- rewrite H7; rewrite (fun x => Zmult_comm (2 ^ x));
- rewrite Zmult_assoc; rewrite BigNumPrelude.Z_div_plus_l; auto with zarith.
- rewrite Zplus_mod; auto with zarith.
- rewrite Z_mod_mult; auto with zarith.
- rewrite Zplus_0_l; auto with zarith.
- rewrite Zmod_mod; auto with zarith.
- rewrite Zmod_small; auto with zarith.
- split; auto with zarith.
- apply Zdiv_lt_upper_bound; auto with zarith.
- rewrite Zmult_comm; auto with zarith.
- Qed.
-
- Let _square_mod x :=
- let x2 := w_square_c x in
- match ww_compare x2 wwb with
- | Lt => snd (split x2)
- | Eq => w0
- | Gt =>
- let x2_2n := ww_lsl_n x2 in
- let (h,l) := split x2_2n in
- let (q,r) := w_div21 h l b2n in
- w_lsr_n r
- end.
-
- Lemma _square_mod_spec: forall w t, [|w|] = t mod [|b|] ->
- [|_square_mod w|] = ([|w|] * [|w|]) mod [|b|].
- intros w2 t2 H; unfold _square_mod, wwb.
- assert (F: [|w2|] < [|b|]).
- case (Z_mod_lt t2 [|b|]); auto with zarith.
- match goal with |- context[ww_compare ?x ?y] =>
- change (ww_compare x y) with (DoubleBase.ww_compare w0 w_compare x y)
- end.
- rewrite (@spec_ww_compare w w0 w_digits w_to_Z w_compare
- ZnZ.spec_0 ZnZ.spec_to_Z ZnZ.spec_compare); case Zcompare_spec;
- intros H2;
- match goal with H: context[w_square_c] |- _ =>
- generalize H; clear H
- end; autorewrite with w_rewrite; try rewrite _w0_is_0; try rewrite !_w1_is_1; auto with zarith.
- unfold w_square_c, ww_to_Z, w_to_Z, w_digits; rewrite ZnZ.spec_square_c; auto with zarith.
- intros H2;rewrite H2; simpl.
- rewrite _w0_is_0; simpl.
- rewrite Z_mod_same; auto with zarith.
- generalize (high_zero (w_square_c w2)).
- unfold w_square_c; generalize (ZnZ.spec_square_c w2);
- case (ZnZ.square_c w2); simpl; auto with zarith.
- intros H3 _ _; rewrite <- H3; autorewrite with w_rewrite; auto.
- intros w4 w5.
- change (w_to_Z w0) with [|w0|]; rewrite _w0_is_0; simpl.
- change (w_to_Z w4) with [|w4|].
- change (w_to_Z w5) with [|w5|].
- intros H2 H3 H4.
- assert (E1: [|w4|] = 0).
- apply H3; auto with zarith.
- apply Zlt_trans with (1 := H4).
- case (ZnZ.spec_to_Z b); auto with zarith.
- generalize H4 H2; rewrite E1; rewrite Zmult_0_l; rewrite Zplus_0_l;
- clear H4 H2; intros H4 H2.
- rewrite <- H2; rewrite Zmod_small; auto with zarith.
- case (ZnZ.spec_to_Z w5); auto with zarith.
- intros H2.
- match goal with |- context[split ?x] =>
- generalize (split_correct x);
- case (split x); auto with zarith
- end.
- assert (F1: [[w_square_c w2]] < [|b|] * [|b|]).
- unfold w_square_c, ww_to_Z, w_digits, w_to_Z.
- rewrite ZnZ.spec_square_c; auto with zarith.
- apply Zmult_lt_compat; auto with zarith.
- case (ZnZ.spec_to_Z w2); auto with zarith.
- case (ZnZ.spec_to_Z w2); auto with zarith.
- intros w4 w5; rewrite ww_lsl_n_spec; auto with zarith.
- intros H3.
- unfold w_div21; match goal with |- context[ZnZ.div21 ?y ?z ?t] =>
- generalize (ZnZ.spec_div21 y z t);
- case (ZnZ.div21 y z t)
- end.
- rewrite b2n_spec; case (n_spec); auto.
- intros H4 H5 w6 w7 H6.
- case H6; auto with zarith.
- case (Zle_or_lt (2 ^ [|n|] * [|b|]) [|w4|]); auto; intros H7.
- match type of H3 with ?X = ?Y =>
- absurd (Y < X)
- end.
- apply Zle_not_lt; rewrite H3; auto with zarith.
- simpl ww_to_Z.
- match goal with |- ?X < ?Y + _ =>
- apply Zlt_le_trans with Y; auto with zarith
- end.
- apply Zlt_trans with (2 ^ [|n|] * ([|b|] * [|b|]));
- auto with zarith.
- apply Zmult_lt_compat_l; auto with zarith.
- rewrite Zmult_assoc.
- apply Zmult_lt_compat2; auto with zarith.
- case (ZnZ.spec_to_Z b); auto with zarith.
- unfold w_to_Z,w_digits;case (ZnZ.spec_to_Z w5); auto with zarith.
- clear H6; intros H7 H8.
- rewrite w_lsr_n_spec; auto with zarith.
- rewrite <- (Z_div_mult ([|w2|] * [|w2|]) (2 ^ [|n|]));
- auto with zarith; rewrite Zmult_comm.
- rewrite <- ZnZ.spec_square_c; auto with zarith.
- unfold w_square_c, ww_to_Z in H3; unfold w_digits,w_to_Z in H3.
- rewrite <- H3; simpl.
- rewrite H7; rewrite (fun x => Zmult_comm (2 ^ x));
- rewrite Zmult_assoc; rewrite BigNumPrelude.Z_div_plus_l; auto with zarith.
- rewrite Zplus_mod; auto with zarith.
- rewrite Z_mod_mult; auto with zarith.
- rewrite Zplus_0_l; auto with zarith.
- rewrite Zmod_mod; auto with zarith.
- rewrite Zmod_small; auto with zarith.
- split; auto with zarith.
- apply Zdiv_lt_upper_bound; auto with zarith.
- rewrite Zmult_comm; auto with zarith.
- Qed.
-
- Let _power_mod :=
- fix pow_mod (x:w) (p:positive) {struct p} : w :=
- match p with
- | xH => x
- | xO p' =>
- let pow := pow_mod x p' in
- _square_mod pow
- | xI p' =>
- let pow := pow_mod x p' in
- _mul_mod (_square_mod pow) x
- end.
-
- Lemma _power_mod_spec: forall w t p, [|w|] = t mod [|b|] ->
- [|_power_mod w p|] = (Zpower_pos [|w|] p) mod [|b|].
- intros w2 t p; elim p; simpl; auto with zarith.
- intros p' Rec H.
- assert (F: [|w2|] < [|b|]).
- case (Z_mod_lt t [|b|]); auto with zarith.
- replace (xI p') with (p' + p' + 1)%positive.
- repeat rewrite Zpower_pos_is_exp; auto with zarith.
- pose (t1 := [|_power_mod w2 p'|]).
- rewrite _mul_mod_spec with (t1 := t1 * t1)
- (t2 := t); auto with zarith.
- rewrite _square_mod_spec with (t := Zpower_pos [|w2|] p'); auto with zarith.
- rewrite Rec; auto with zarith.
- assert (tmp: forall p, Zpower_pos p 1 = p); try (rewrite tmp; clear tmp).
- intros p1; unfold Zpower_pos; simpl; ring.
- rewrite <- Zmult_mod; auto with zarith.
- rewrite Zmult_mod; auto with zarith.
- rewrite Zmod_mod; auto with zarith.
- rewrite <- Zmult_mod; auto with zarith.
- simpl; unfold t1; apply _square_mod_spec with (t := Zpower_pos [|w2|] p'); auto with zarith.
- rewrite xI_succ_xO; rewrite <- Pplus_diag.
- rewrite Pplus_one_succ_r; auto.
- intros p' Rec H.
- replace (xO p') with (p' + p')%positive.
- repeat rewrite Zpower_pos_is_exp; auto with zarith.
- rewrite _square_mod_spec with (t := Zpower_pos [|w2|] p'); auto with zarith.
- rewrite Rec; auto with zarith.
- rewrite <- Zmult_mod; auto with zarith.
- rewrite <- Pplus_diag; auto.
- intros H.
- assert (tmp: forall p, Zpower_pos p 1 = p); try (rewrite tmp; clear tmp).
- intros p1; unfold Zpower_pos; simpl; ring.
- rewrite Zmod_small; auto with zarith.
- assert (F: [|w2|] < [|b|]).
- case (Z_mod_lt t [|b|]); auto with zarith.
- case (ZnZ.spec_to_Z w2); auto with zarith.
- Qed.
-
- Definition make_mod_op :=
- mk_mod_op
- _succ_mod _add_mod
- _pred_mod _sub_mod
- _mul_mod _square_mod _power_mod.
-
- Definition make_mod_spec: mod_spec make_mod_op.
- apply mk_mod_spec.
- exact _succ_mod_spec.
- exact _add_mod_spec.
- exact _pred_mod_spec.
- exact _sub_mod_spec.
- exact _mul_mod_spec.
- exact _square_mod_spec.
- exact _power_mod_spec.
- Defined.
-
-(*********** Mersenne special **********)
-
- Variable p: positive.
- Variable zp: w.
-
- Hypothesis zp_b: [|zp|] = Zpos p.
- Hypothesis p_lt_w_digits: Zpos p <= Zpos w_digits.
-
- Let p1 := Pminus (xO w_digits) p.
-
- Theorem p_p1: Zpos p + Zpos p1 = Zpos (xO w_digits).
- unfold p1.
- rewrite Zpos_minus; auto with zarith.
- rewrite Zmax_right; auto with zarith.
- rewrite Zpos_xO; auto with zarith.
- assert (0 < Zpos w_digits); auto with zarith.
- Qed.
-
- Let zp1 := ww_sub ww_zdigits (WW w0 zp).
-
- Let spec_add2: forall x y,
- [[w_add2 x y]] = [|x|] + [|y|].
- unfold w_add2.
- intros xh xl; generalize (ZnZ.spec_add_c xh xl).
- unfold w_add_c; case ZnZ.add_c; unfold interp_carry; simpl ww_to_Z.
- intros w2 Hw2; simpl; unfold w_to_Z; rewrite Hw2.
- unfold w0; rewrite ZnZ.spec_0; simpl; auto with zarith.
- intros w2; rewrite Zmult_1_l; simpl.
- unfold w_to_Z, w1; rewrite ZnZ.spec_1; auto with zarith.
- rewrite Zmult_1_l; auto.
- Qed.
-
- Let spec_ww_digits:
- [[ww_zdigits]] = Zpos (xO w_digits).
- Proof.
- unfold w_to_Z, ww_zdigits.
- rewrite spec_add2.
- unfold w_to_Z, w_zdigits, w_digits.
- rewrite ZnZ.spec_zdigits; auto.
- rewrite Zpos_xO; auto with zarith.
- Qed.
-
- Let spec_ww_to_Z := (spec_ww_to_Z _ _ ZnZ.spec_to_Z).
- Let spec_ww_compare := spec_ww_compare _ _ _ _ ZnZ.spec_0
- ZnZ.spec_to_Z ZnZ.spec_compare.
- Let spec_ww_sub :=
- spec_ww_sub w0 zp wWW zp1 w_opp_c w_opp_carry
- w_sub_c w_opp w_sub w_sub_carry w_digits w_to_Z
- ZnZ.spec_0
- ZnZ.spec_to_Z
- ZnZ.spec_WW
- ZnZ.spec_opp_c
- ZnZ.spec_opp
- ZnZ.spec_opp_carry
- ZnZ.spec_sub_c
- ZnZ.spec_sub
- ZnZ.spec_sub_carry.
-
- Theorem zp1_b: [[zp1]] = Zpos p1.
- change ([[DoubleSub.ww_sub w0 wWW w_opp_c w_opp_carry w_sub_c w_opp w_sub
- w_sub_carry ww_zdigits (WW w0 zp)]] =
- Zpos p1).
- rewrite spec_ww_sub; auto with zarith.
- rewrite spec_ww_digits; simpl ww_to_Z.
- change (w_to_Z w0) with [|w0|].
- unfold w0; rewrite ZnZ.spec_0; autorewrite with rm10; auto.
- change (w_to_Z zp) with [|zp|].
- rewrite zp_b.
- rewrite Zmod_small; auto with zarith.
- rewrite <- p_p1; auto with zarith.
- unfold ww_digits; split; auto with zarith.
- rewrite <- p_p1; auto with zarith.
- assert (0 < Zpos p1); auto with zarith.
- apply Zle_lt_trans with (Zpos (xO w_digits)); auto with zarith.
- assert (0 < Zpos p); auto with zarith.
- unfold base; apply Zpower2_lt_lin; auto with zarith.
- Qed.
-
- Hypothesis p_b: [|b|] = 2 ^ (Zpos p) - 1.
-
-
- Let w_pos_mod := ZnZ.pos_mod.
-
- Let add_mul_div :=
- DoubleLift.ww_add_mul_div w0 wWW wW0 w0W
- ww_compare w_add_mul_div
- ww_sub w_zdigits low.
-
- Let _mmul_mod x y :=
- let xy := w_mul_c x y in
- match xy with
- W0 => w0
- | WW xh xl =>
- let xl1 := w_pos_mod zp xl in
- match add_mul_div zp1 W0 xy with
- W0 => match w_compare xl1 b with
- | Lt => xl1
- | Eq => w0
- | Gt => w1
- end
- | WW _ xl2 => _add_mod xl1 xl2
- end
- end.
-
- Hint Unfold w_digits.
-
- Lemma WW_0: forall x y, [[WW x y]] = 0 -> [|x|] = 0 /\ [|y|] =0.
- intros x y; simpl; case (ZnZ.spec_to_Z x); intros H1 H2;
- case (ZnZ.spec_to_Z y); intros H3 H4 H5.
- case Zle_lt_or_eq with (1 := H1); clear H1; intros H1; auto with zarith.
- absurd (0 < [|x|] * base (ZnZ.digits w_op) + [|y|]); auto with zarith.
- unfold w_to_Z, w_digits in H5;auto with zarith.
- match goal with |- _ < ?X + _ =>
- apply Zlt_le_trans with X; auto with zarith
- end.
- case Zle_lt_or_eq with (1 := H3); clear H3; intros H3; auto with zarith.
- absurd (0 < [|x|] * base (ZnZ.digits w_op) + [|y|]); auto with zarith.
- unfold w_to_Z, w_digits in H5;auto with zarith.
- rewrite <- H1; rewrite Zmult_0_l; auto with zarith.
- Qed.
-
- Theorem WW0_is_0: [[W0]] = 0.
- simpl; auto.
- Qed.
- Hint Rewrite WW0_is_0: w_rewrite.
-
- Theorem mmul_aux0: Zpos (xO w_digits) - Zpos p1 = Zpos p.
- unfold w_digits.
- apply trans_equal with (Zpos p + Zpos p1 - Zpos p1); auto with zarith.
- rewrite p_p1; auto with zarith.
- Qed.
-
- Theorem mmul_aux1: 2 ^ Zpos w_digits =
- 2 ^ (Zpos w_digits - Zpos p) * 2 ^ Zpos p.
- rewrite <- Zpower_exp; auto with zarith.
- eq_tac; auto with zarith.
- Qed.
-
- Theorem mmul_aux2:forall x,
- x mod (2 ^ Zpos p - 1) =
- ((x / 2 ^ Zpos p) + (x mod 2 ^ Zpos p)) mod (2 ^ Zpos p - 1).
- intros x; pattern x at 1; rewrite Z_div_mod_eq with (b := 2 ^ Zpos p); auto with zarith.
- match goal with |- (?X * ?Y + ?Z) mod (?X - 1) = ?T =>
- replace (X * Y + Z) with (Y * (X - 1) + (Y + Z)); try ring
- end.
- rewrite Zplus_mod; auto with zarith.
- rewrite Z_mod_mult; auto with zarith.
- rewrite Zplus_0_l.
- rewrite Zmod_mod; auto with zarith.
- Qed.
-
- Theorem mmul_aux3:forall xh xl,
- [[WW xh xl]] mod (2 ^ Zpos p) = [|xl|] mod (2 ^ Zpos p).
- intros xh xl; simpl ww_to_Z; unfold base.
- rewrite Zplus_mod; auto with zarith.
- generalize mmul_aux1; unfold w_digits; intros tmp; rewrite tmp;
- clear tmp.
- rewrite Zmult_assoc.
- rewrite Z_mod_mult; auto with zarith.
- rewrite Zplus_0_l; apply Zmod_mod; auto with zarith.
- Qed.
-
- Let spec_low: forall x,
- [|low x|] = [[x]] mod base w_digits.
- intros x; case x; simpl low; auto with zarith.
- intros xh xl; simpl.
- rewrite Zplus_comm; rewrite Z_mod_plus; auto with zarith.
- rewrite Zmod_small; auto with zarith.
- case (ZnZ.spec_to_Z xl); auto with zarith.
- unfold base; auto with zarith.
- Qed.
-
- Theorem mmul_aux4:forall x,
- [[x]] < [|b|] * 2 ^ Zpos p ->
- match add_mul_div zp1 W0 x with
- W0 => 0
- | WW _ xl2 => [|xl2|]
- end = [[x]] / 2 ^ Zpos p.
- intros x Hx.
- assert (Hp: [[zp1]] <= Zpos (xO w_digits)); auto with zarith.
- rewrite zp1_b; rewrite <- p_p1; auto with zarith.
- assert (0 <= Zpos p); auto with zarith.
- generalize (@DoubleLift.spec_ww_add_mul_div w w0 wWW wW0 w0W
- ww_compare w_add_mul_div ww_sub w_digits w_zdigits low w_to_Z
- ZnZ.spec_0 ZnZ.spec_to_Z spec_ww_to_Z
- ZnZ.spec_WW ZnZ.spec_WO ZnZ.spec_OW
- spec_ww_compare ZnZ.spec_add_mul_div spec_ww_sub
- ZnZ.spec_zdigits spec_low W0 x zp1 Hp).
- unfold add_mul_div;
- case DoubleLift.ww_add_mul_div; autorewrite with w_rewrite; auto.
- rewrite Zmult_0_l; rewrite Zplus_0_l.
- rewrite zp1_b.
- generalize mmul_aux0; unfold w_digits; intros tmp; rewrite tmp.
- rewrite Zmod_small; auto with zarith.
- split; auto with zarith.
- apply Z_div_pos; auto with zarith.
- case (spec_ww_to_Z x); auto with zarith.
- unfold base.
- apply Zdiv_lt_upper_bound; auto with zarith.
- rewrite <- Zpower_exp; auto with zarith.
- apply Zlt_le_trans with (base (ww_digits (ZnZ.digits w_op))); auto with zarith.
- case (spec_ww_to_Z x); auto with zarith.
- unfold base; apply Zpower_le_monotone; auto with zarith.
- split; auto with zarith.
- assert (0 < Zpos p); auto with zarith.
- intros w2 w3; rewrite Zmult_0_l; rewrite Zplus_0_l.
- rewrite zp1_b.
- generalize mmul_aux0; unfold w_digits; intros tmp; rewrite tmp;
- clear tmp.
- simpl ww_to_Z; rewrite Zmod_small; auto with zarith.
- intros H1;
- generalize (high_zero (WW w2 w3)); unfold w_digits;intros tmp;
- simpl fst in tmp; simpl ww_to_Z in tmp;auto with zarith.
- unfold w_to_Z in *.
- rewrite tmp in H1; auto with zarith. clear tmp.
- simpl ww_to_Z; rewrite H1; apply Zdiv_lt_upper_bound; auto with zarith.
- unfold base; rewrite <- Zpower_exp; auto with zarith.
- apply Zlt_le_trans with (1 := Hx).
- apply Zle_trans with (2 ^ Zpos p * 2 ^ Zpos p).
- rewrite p_b; apply Zmult_le_compat_r; auto with zarith.
- rewrite <- Zpower_exp; auto with zarith.
- apply Zpower_le_monotone; auto with zarith.
- split; auto with zarith.
- apply Z_div_pos; auto with zarith.
- case (spec_ww_to_Z x); auto with zarith.
- unfold base.
- apply Zdiv_lt_upper_bound; auto with zarith.
- rewrite <- Zpower_exp; auto with zarith.
- apply Zlt_le_trans with (base (ww_digits (ZnZ.digits w_op))); auto with zarith.
- case (spec_ww_to_Z x); auto with zarith.
- unfold base; apply Zpower_le_monotone; auto with zarith.
- split; auto with zarith.
- assert (0 < Zpos p); auto with zarith.
- Qed.
-
- Theorem mmul_aux5:forall xh xl,
- [[WW xh xl]] < [|b|] * 2 ^ Zpos p ->
- let xl1 := w_pos_mod zp xl in
- let r :=
- match add_mul_div zp1 W0 (WW xh xl) with
- W0 => match w_compare xl1 b with
- | Lt => xl1
- | Eq => w0
- | Gt => w1
- end
- | WW _ xl2 => _add_mod xl1 xl2
- end in
- [|r|] = [[WW xh xl]] mod [|b|].
- intros xh xl Hx xl1 r; unfold r; clear r.
- generalize (mmul_aux4 _ Hx).
- simpl ww_to_Z; rewrite p_b.
- rewrite mmul_aux2.
- assert (Hp: [[zp1]] <= Zpos (xO w_digits)); auto with zarith.
- rewrite zp1_b; rewrite <- p_p1; auto with zarith.
- assert (0 <= Zpos p); auto with zarith.
- generalize (@DoubleLift.spec_ww_add_mul_div w w0 wWW wW0 w0W
- ww_compare w_add_mul_div ww_sub w_digits w_zdigits low w_to_Z
- ZnZ.spec_0 ZnZ.spec_to_Z spec_ww_to_Z
- ZnZ.spec_WW ZnZ.spec_WO ZnZ.spec_OW
- spec_ww_compare ZnZ.spec_add_mul_div spec_ww_sub
- ZnZ.spec_zdigits spec_low W0 (WW xh xl) zp1 Hp).
- unfold add_mul_div;
- case DoubleLift.ww_add_mul_div; autorewrite with w_rewrite; auto.
- rewrite Zmult_0_l; rewrite Zplus_0_l.
- rewrite zp1_b.
- generalize mmul_aux0; unfold w_digits; intros tmp; rewrite tmp; clear tmp.
- intros H1 H2.
- rewrite <- H2.
- rewrite Zplus_0_l.
- generalize mmul_aux3; simpl ww_to_Z; intros tmp; rewrite tmp; clear tmp;
- auto with zarith.
- unfold xl1; unfold w_pos_mod.
- rewrite <- p_b; rewrite <- zp_b.
- rewrite <- ZnZ.spec_pos_mod; auto with zarith.
- unfold w_compare; rewrite ZnZ.spec_compare;
- case Zcompare_spec; intros Hc;
- match goal with H: context[b] |- _ =>
- generalize H; clear H
- end; try rewrite _w0_is_0.
- intros H3; rewrite H3.
- rewrite Z_mod_same; auto with zarith.
- intros H3; rewrite Zmod_small; auto with zarith.
- case (ZnZ.spec_to_Z (ZnZ.pos_mod zp xl)); unfold w_to_Z; auto with zarith.
- rewrite p_b; rewrite ZnZ.spec_pos_mod; auto with zarith.
- intros H3; assert (HH: [|xl|] mod 2 ^ Zpos p = 2 ^ Zpos p).
- apply Zle_antisym; auto with zarith.
- case (Z_mod_lt ([|xl|]) (2 ^ Zpos p)); auto with zarith.
- rewrite zp_b in H3; auto with zarith.
- rewrite zp_b; rewrite HH.
- rewrite <- Zmod_minus_one; auto with zarith.
- rewrite _w1_is_1; rewrite Zmod_small; auto with zarith.
- rewrite Zmult_0_l; rewrite Zplus_0_l.
- rewrite zp1_b.
- generalize mmul_aux0; unfold w_digits; intros tmp; rewrite tmp; clear tmp.
- intros w2 w3 H1 H2; rewrite <- H2.
- generalize mmul_aux3; simpl ww_to_Z; intros tmp; rewrite tmp; clear tmp;
- auto with zarith.
- rewrite <- p_b; rewrite <- zp_b.
- rewrite <- ZnZ.spec_pos_mod; auto with zarith.
- unfold xl1; unfold w_pos_mod.
- rewrite Zplus_comm.
- apply _add_mod_correct; auto with zarith.
- assert (tmp: forall x, 2 * x = x + x); auto with zarith;
- rewrite tmp; apply Zplus_le_lt_compat; clear tmp; auto with zarith.
- rewrite ZnZ.spec_pos_mod; auto with zarith.
- rewrite p_b; case (Z_mod_lt [|xl|] (2 ^ Zpos p)); auto with zarith.
- rewrite zp_b; auto with zarith.
- rewrite H2; apply Zdiv_lt_upper_bound; auto with zarith.
- Qed.
-
- Lemma _mmul_mod_spec: forall w1 w2 t1 t2, [|w1|] = t1 mod [|b|] -> [|w2|] = t2 mod [|b|] ->
- [|_mmul_mod w1 w2|] = ([|w1|] * [|w2|]) mod [|b|].
- intros w2 w3 t1 t2; unfold _mmul_mod, w_mul_c; intros H H1.
- assert (F: [|w2|] < [|b|]).
- case (Z_mod_lt t1 [|b|]); auto with zarith.
- assert (F': [|w3|] < [|b|]).
- case (Z_mod_lt t2 [|b|]); auto with zarith.
- match goal with |- context[ZnZ.mul_c ?x ?y] =>
- generalize (ZnZ.spec_mul_c x y); unfold interp_carry;
- case (ZnZ.mul_c x y); autorewrite with w_rewrite
- end; auto with zarith.
- simpl; intros H2; rewrite <- H2; rewrite Zmod_small;
- auto with zarith.
- intros w4 w5 H2.
- rewrite mmul_aux5; auto with zarith.
- rewrite <- H2; auto.
- unfold ww_to_Z,w_digits,w_to_Z; rewrite H2.
- apply Zmult_lt_compat; auto with zarith.
- case (ZnZ.spec_to_Z w2); auto with zarith.
- case (ZnZ.spec_to_Z w3); auto with zarith.
- Qed.
-
- Let _msquare_mod x :=
- let xy := w_square_c x in
- match xy with
- W0 => w0
- | WW xh xl =>
- let xl1 := w_pos_mod zp xl in
- match add_mul_div zp1 W0 xy with
- W0 => match w_compare xl1 b with
- | Lt => xl1
- | Eq => w0
- | Gt => w1
- end
- | WW _ xl2 => _add_mod xl1 xl2
- end
- end.
-
- Lemma _msquare_mod_spec: forall w1 t1, [|w1|] = t1 mod [|b|] ->
- [|_msquare_mod w1|] = ([|w1|] * [|w1|]) mod [|b|].
- intros w2 t2; unfold _msquare_mod, w_square_c; intros H.
- assert (F: [|w2|] < [|b|]).
- case (Z_mod_lt t2 [|b|]); auto with zarith.
- match goal with |- context[ZnZ.square_c ?x] =>
- generalize (ZnZ.spec_square_c x); unfold interp_carry;
- case (ZnZ.square_c x); autorewrite with w_rewrite
- end; auto with zarith.
- simpl; intros H2; rewrite <- H2; rewrite Zmod_small;
- auto with zarith.
- intros w4 w5 H2.
- rewrite mmul_aux5; auto with zarith.
- unfold ww_to_Z, w_to_Z ,w_digits; rewrite <- H2; auto.
- unfold ww_to_Z,w_to_Z ,w_digits; rewrite H2.
- apply Zmult_lt_compat; auto with zarith.
- case (ZnZ.spec_to_Z w2); auto with zarith.
- case (ZnZ.spec_to_Z w2); auto with zarith.
- Qed.
-
- Definition mmake_mod_op :=
- mk_mod_op
- _succ_mod _add_mod
- _pred_mod _sub_mod
- _mmul_mod _msquare_mod _power_mod.
-
- Definition mmake_mod_spec: mod_spec mmake_mod_op.
- apply mk_mod_spec.
- exact _succ_mod_spec.
- exact _add_mod_spec.
- exact _pred_mod_spec.
- exact _sub_mod_spec.
- exact _mmul_mod_spec.
- exact _msquare_mod_spec.
- exact _power_mod_spec.
- Defined.
-
-End Mod_op.
-
diff --git a/coqprime/num/NEll.v b/coqprime/num/NEll.v
deleted file mode 100644
index 28dd63181..000000000
--- a/coqprime/num/NEll.v
+++ /dev/null
@@ -1,983 +0,0 @@
-
-(*************************************************************)
-(* This file is distributed under the terms of the *)
-(* GNU Lesser General Public License Version 2.1 *)
-(*************************************************************)
-(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
-(*************************************************************)
-
-
-Require Import ZArith Znumtheory Zpow_facts.
-Require Import CyclicAxioms DoubleCyclic BigN Cyclic31 Int31.
-Require Import W.
-Require Import Mod_op.
-Require Import ZEll.
-Require Import Bits.
-Import CyclicAxioms DoubleType DoubleBase.
-
-
-Set Implicit Arguments.
-
-Open Scope Z_scope.
-
-
-Record ex: Set := mkEx {
- vN : positive;
- vS : positive;
- vR: List.list (positive * positive);
- vA: Z;
- vB: Z;
- vx: Z;
- vy: Z
-}.
-
-Coercion Local Zpos : positive >-> Z.
-
-Record ex_spec (exx: ex): Prop := mkExS {
- n2_div: ~(2 | exx.(vN));
- n_pos: 2 < exx.(vN);
- lprime:
- forall p : positive * positive, List.In p (vR exx) -> prime (fst p);
- lbig:
- 4 * vN exx < (Zmullp (vR exx) - 1) ^ 2;
- inC:
- vy exx ^ 2 mod vN exx = (vx exx ^ 3 + vA exx * vx exx + vB exx) mod vN exx
-}.
-
-Section NEll.
-
-Variable exx: ex.
-Variable exxs: ex_spec exx.
-
-Variable zZ: Type.
-Variable op: ZnZ.Ops zZ.
-Variable op_spec: ZnZ.Specs op.
-Definition z2Z z := ZnZ.to_Z z.
-Definition zN := snd (ZnZ.of_pos exx.(vN)).
-Variable mop: mod_op zZ.
-Variable mop_spec: mod_spec op zN mop.
-Variable N_small: exx.(vN) < base (ZnZ.digits op).
-
-Lemma z2ZN: z2Z zN = exx.(vN).
-apply (@ZnZ.of_Z_correct _ _ op_spec exx.(vN)); split; auto with zarith.
-Qed.
-
-Definition Z2z z :=
- match z mod exx.(vN) with
- | Zpos p => snd (ZnZ.of_pos p)
- | _ => ZnZ.zero
- end.
-
-Definition S := exx.(vS).
-Definition R := exx.(vR).
-Definition A := Z2z exx.(vA).
-Definition B := Z2z exx.(vB).
-Definition xx := Z2z exx.(vx).
-Definition yy := Z2z exx.(vy).
-Definition c3 := Z2z 3.
-Definition c2 := Z2z 2.
-Definition c1 := Z2z 1.
-Definition c0 := Z2z 0.
-
-Inductive nelt: Type :=
- nzero | ntriple: zZ -> zZ -> zZ -> nelt.
-
-Definition pp := ntriple xx yy c1.
-
-Definition nplus x y := mop.(add_mod) x y.
-Definition nmul x y := mop.(mul_mod) x y.
-Definition nsub x y := mop.(sub_mod) x y.
-Definition neq x y := match ZnZ.compare x y with Eq => true | _ => false end.
-
-Notation "x ++ y " := (nplus x y).
-Notation "x -- y" := (nsub x y) (at level 50, left associativity).
-Notation "x ** y" := (nmul x y) (at level 40, left associativity).
-Notation "x ?= y" := (neq x y).
-
-Definition ndouble: zZ -> nelt -> (nelt * zZ):= fun (sc: zZ) (p1: nelt) =>
- match p1 with
- nzero => (p1, sc)
- | (ntriple x1 y1 z1) =>
- if (y1 ?= c0) then (nzero, z1 ** sc) else
- (* we do 2p *)
- let m' := c3 ** x1 ** x1 ++ A ** z1 ** z1 in
- let l' := c2 ** y1 ** z1 in
- let m'2 := m' ** m' in
- let l'2 := l' ** l' in
- let l'3 := l'2 ** l' in
- let x3 := m'2 ** z1 -- c2 ** x1 ** l'2 in
- (ntriple
- (l' ** x3)
- (l'2 ** (m' ** x1 -- y1 ** l') -- m' ** x3)
- (z1 ** l'3), sc)
- end.
-
-
-Definition nadd := fun (sc: zZ) (p1 p2: nelt) =>
- match p1, p2 with
- nzero, _ => (p2, sc)
- | _ , nzero => (p1, sc)
- | (ntriple x1 y1 z1), (ntriple x2 y2 z2) =>
- let d1 := x2 ** z1 in
- let d2 := x1 ** z2 in
- let l := d1 -- d2 in
- let dl := d1 ++ d2 in
- let m := y2 ** z1 -- y1 ** z2 in
- if (l ?= c0) then
- (* we have p1 = p2 o p1 = -p2 *)
- if (m ?= c0) then
- if (y1 ?= c0) then (nzero, z1 ** z2 ** sc) else
- (* we do 2p *)
- let m' := c3 ** x1 ** x1 ++ A ** z1 ** z1 in
- let l' := c2 ** y1 ** z1 in
- let m'2 := m' ** m' in
- let l'2 := l' ** l' in
- let l'3 := l'2 ** l' in
- let x3 := m'2 ** z1 -- c2 ** x1 ** l'2 in
- (ntriple
- (l' ** x3)
- (l'2 ** (m' ** x1 -- y1 ** l') -- m' ** x3)
- (z1 ** l'3), z2 ** sc)
- else (* p - p *) (nzero, m ** z1 ** z2 ** sc)
- else
- let l2 := l ** l in
- let l3 := l2 ** l in
- let m2 := m ** m in
- let x3 := z1 ** z2 ** m2 -- l2 ** dl in
- (ntriple (l ** x3)
- (z2 ** l2 ** (m ** x1 -- y1 ** l) -- m ** x3)
- (z1 ** z2 ** l3), sc)
- end.
-
-
-Definition nopp p :=
- match p with nzero => p | (ntriple x1 y1 z1) => (ntriple x1 (c0 -- y1) z1) end.
-
-Fixpoint scalb (sc: zZ) (b:bool) (a: nelt) (p: positive) {struct p}:
- nelt * zZ :=
- match p with
- xH => if b then ndouble sc a else (a,sc)
- | xO p1 => let (a1, sc1) := scalb sc false a p1 in
- if b then
- let (a2, sc2) := ndouble sc1 a1 in
- nadd sc2 a a2
- else ndouble sc1 a1
- | xI p1 => let (a1, sc1) := scalb sc true a p1 in
- if b then ndouble sc1 a1
- else
- let (a2, sc2) := ndouble sc1 a1 in
- nadd sc2 (nopp a) a2
- end.
-
-Definition scal sc a p := scalb sc false a p.
-
-
-Definition scal_list sc a l :=
- List.fold_left
- (fun (asc: nelt * zZ) p1 => let (a,sc) := asc in scal sc a p1) l (a,sc).
-
-Fixpoint scalL (sc:zZ) (a: nelt) (l: List.list positive) {struct l}: (nelt * zZ) :=
- match l with
- List.nil => (a,sc)
- | List.cons n l1 =>
- let (a1, sc1) := scal sc a n in
- let (a2, sc2) := scal_list sc1 a l1 in
- match a2 with
- nzero => (nzero, c0)
- | ntriple _ _ z => scalL (sc2 ** z) a1 l1
- end
- end.
-
-Definition zpow sc p n :=
- let (p,sc') := scal sc p n in
- (p, ZnZ.to_Z (ZnZ.gcd sc' zN)).
-
-Definition e2E n :=
- match n with
- nzero => ZEll.nzero
- | ntriple x1 y1 z1 => ZEll.ntriple (z2Z x1) (z2Z y1) (z2Z z1)
- end.
-
-
-Definition wft t := z2Z t = (z2Z t) mod (z2Z zN).
-
-Lemma vN_pos: 0 < exx.(vN).
-red; simpl; auto.
-Qed.
-
-Hint Resolve vN_pos.
-
-Lemma nplusz: forall x y, wft x -> wft y ->
- z2Z (x ++ y) = ZEll.nplus (vN exx) (z2Z x) (z2Z y).
-Proof.
-intros x y Hx Hy.
-unfold z2Z, nplus.
-rewrite (mop_spec.(add_mod_spec) _ _ _ _ Hx Hy); auto.
-rewrite <- z2ZN; auto.
-Qed.
-
-Lemma nplusw: forall x y, wft x -> wft y -> wft (x ++ y).
-Proof.
-intros x y Hx Hy.
-unfold wft.
-pattern (z2Z (x ++ y)) at 2; rewrite (nplusz Hx Hy).
-unfold ZEll.nplus; rewrite z2ZN.
-rewrite Zmod_mod; auto.
-apply (nplusz Hx Hy).
-Qed.
-
-Lemma nsubz: forall x y, wft x -> wft y ->
- z2Z (x -- y) = ZEll.nsub (vN exx) (z2Z x) (z2Z y).
-Proof.
-intros x y Hx Hy.
-unfold z2Z, nsub.
-rewrite (mop_spec.(sub_mod_spec) _ _ _ _ Hx Hy); auto.
-rewrite <- z2ZN; auto.
-Qed.
-
-Lemma nsubw: forall x y, wft x -> wft y -> wft (x -- y).
-Proof.
-intros x y Hx Hy.
-unfold wft.
-pattern (z2Z (x -- y)) at 2; rewrite (nsubz Hx Hy).
-unfold ZEll.nsub; rewrite z2ZN.
-rewrite Zmod_mod; auto.
-apply (nsubz Hx Hy).
-Qed.
-
-Lemma nmulz: forall x y, wft x -> wft y ->
- z2Z (x ** y) = ZEll.nmul (vN exx) (z2Z x) (z2Z y).
-Proof.
-intros x y Hx Hy.
-unfold z2Z, nmul.
-rewrite (mop_spec.(mul_mod_spec) _ _ _ _ Hx Hy); auto.
-rewrite <- z2ZN; auto.
-Qed.
-
-Lemma nmulw: forall x y, wft x -> wft y -> wft (x ** y).
-Proof.
-intros x y Hx Hy.
-unfold wft.
-pattern (z2Z (x ** y)) at 2; rewrite (nmulz Hx Hy).
-unfold ZEll.nmul; rewrite z2ZN.
-rewrite Zmod_mod; auto.
-apply (nmulz Hx Hy).
-Qed.
-
-Hint Resolve nmulw nplusw nsubw.
-
-
-Definition wfe p := match p with
- ntriple x y z => wft x /\ wft y /\ wft z
-| _ => True
-end.
-
-Lemma z2Zx: forall x, z2Z (Z2z x) = x mod exx.(vN).
-unfold Z2z; intros x.
-generalize (Z_mod_lt x exx.(vN)).
-case_eq (x mod exx.(vN)).
-intros _ _.
-simpl; unfold z2Z; rewrite ZnZ.spec_0; auto.
-intros p Hp HH; case HH; auto with zarith; clear HH.
-intros _ HH1.
-case (ZnZ.spec_to_Z zN).
-generalize z2ZN; unfold z2Z; intros HH; rewrite HH; auto.
-intros _ H0.
-set (v := ZnZ.of_pos p); generalize HH1.
-rewrite (ZnZ.spec_of_pos p); fold v.
-case (fst v).
- simpl; auto.
-intros p1 H1.
-contradict H0; apply Zle_not_lt.
-apply Zlt_le_weak; apply Zle_lt_trans with (2:= H1).
-apply Zle_trans with (1 * base (ZnZ.digits op) + 0); auto with zarith.
-apply Zplus_le_compat; auto.
-apply Zmult_gt_0_le_compat_r; auto with zarith.
- case (ZnZ.spec_to_Z (snd v)); auto with zarith.
- case p1; red; simpl; intros; discriminate.
- case (ZnZ.spec_to_Z (snd v)); auto with zarith.
-intros p Hp; case (Z_mod_lt x exx.(vN)); auto with zarith.
-rewrite Hp; intros HH; case HH; auto.
-Qed.
-
-
-Lemma z2Zx1: forall x, z2Z (Z2z x) = z2Z (Z2z x) mod z2Z zN.
-Proof.
-unfold Z2z; intros x.
-generalize (Z_mod_lt x exx.(vN)).
-case_eq (x mod exx.(vN)).
-intros _ _.
-simpl; unfold z2Z; rewrite ZnZ.spec_0; auto.
-intros p H1 H2.
-case (ZnZ.spec_to_Z zN).
-generalize z2ZN; unfold z2Z; intros HH; rewrite HH; auto.
-intros _ H0.
-case H2; auto with zarith; clear H2; intros _ H2.
-rewrite Zmod_small; auto.
-set (v := ZnZ.of_pos p).
-split.
- case (ZnZ.spec_to_Z (snd v)); auto.
-generalize H2; rewrite (ZnZ.spec_of_pos p); fold v.
-case (fst v).
- simpl; auto.
-intros p1 H.
-contradict H0; apply Zle_not_lt.
-apply Zlt_le_weak; apply Zle_lt_trans with (2:= H).
-apply Zle_trans with (1 * base (ZnZ.digits op) + 0); auto with zarith.
-apply Zplus_le_compat; auto.
-apply Zmult_gt_0_le_compat_r; auto with zarith.
- case (ZnZ.spec_to_Z (snd v)); auto with zarith.
- case p1; red; simpl; intros; discriminate.
- case (ZnZ.spec_to_Z (snd v)); auto with zarith.
-intros p Hp; case (Z_mod_lt x exx.(vN)); auto with zarith.
-rewrite Hp; intros HH; case HH; auto.
-Qed.
-
-
-Lemma c0w: wft c0.
-Proof.
-red; unfold c0; apply z2Zx1.
-Qed.
-
-Lemma c2w: wft c2.
-Proof.
-red; unfold c2; apply z2Zx1.
-Qed.
-
-Lemma c3w: wft c3.
-Proof.
-red; unfold c3; apply z2Zx1.
-Qed.
-
-Lemma Aw: wft A.
-Proof.
-red; unfold A; apply z2Zx1.
-Qed.
-
-Hint Resolve c0w c2w c3w Aw.
-
-Ltac nw :=
- repeat (apply nplusw || apply nsubw || apply nmulw || apply c2w ||
- apply c3w || apply Aw); auto.
-
-
-Lemma nadd_wf: forall x y sc,
- wfe x -> wfe y -> wft sc ->
- wfe (fst (nadd sc x y)) /\ wft (snd (nadd sc x y)).
-Proof.
-intros x; case x; clear; auto.
-intros x1 y1 z1 y; case y; clear; auto.
- intros x2 y2 z2 sc (wfx1,(wfy1, wfz1)) (wfx2,(wfy2, wfz2)) wfsc;
- simpl; auto.
- case neq.
- 2: repeat split; simpl; nw.
- case neq.
- 2: repeat split; simpl; nw.
- case neq.
- repeat split; simpl; nw; auto.
- repeat split; simpl; nw; auto.
-Qed.
-
- Lemma ztest: forall x y,
- x ?= y =Zeq_bool (z2Z x) (z2Z y).
- Proof.
- intros x y.
- unfold neq.
- rewrite (ZnZ.spec_compare x y); case Zcompare_spec; intros HH;
- match goal with H: context[x] |- _ =>
- generalize H; clear H; intros HH1
- end.
- symmetry; apply GZnZ.Zeq_iok; auto.
- case_eq (Zeq_bool (z2Z x) (z2Z y)); intros H1; auto;
- generalize HH1; generalize (Zeq_bool_eq _ _ H1); unfold z2Z;
- intros HH; rewrite HH; auto with zarith.
- case_eq (Zeq_bool (z2Z x) (z2Z y)); intros H1; auto;
- generalize HH1; generalize (Zeq_bool_eq _ _ H1); unfold z2Z;
- intros HH; rewrite HH; auto with zarith.
- Qed.
-
- Lemma zc0: z2Z c0 = 0.
- Proof.
- unfold z2Z, c0, z2Z; simpl.
- generalize ZnZ.spec_0; auto.
- Qed.
-
-
-Ltac iftac t :=
- match t with
- context[if ?x ?= ?y then _ else _] =>
- case_eq (x ?= y)
- end.
-
-Ltac ftac := match goal with
- |- context[?x = ?y] => (iftac x);
- let H := fresh "tmp" in
- (try rewrite ztest; try rewrite zc0; intros H;
- repeat ((rewrite nmulz in H || rewrite nplusz in H || rewrite nsubz in H); auto);
- try (rewrite H; clear H))
- end.
-
-Require Import Zmod.
-
-Lemma c2ww: forall x, ZEll.nmul (vN exx) 2 x = ZEll.nmul (vN exx) (z2Z c2) x.
-intros x; unfold ZEll.nmul.
-unfold c2; rewrite z2Zx; rewrite Zmodml; auto.
-Qed.
-Lemma c3ww: forall x, ZEll.nmul (vN exx) 3 x = ZEll.nmul (vN exx) (z2Z c3) x.
-intros x; unfold ZEll.nmul.
-unfold c3; rewrite z2Zx; rewrite Zmodml; auto.
-Qed.
-
-Lemma Aww: forall x, ZEll.nmul (vN exx) exx.(vA) x = ZEll.nmul (vN exx) (z2Z A) x.
-intros x; unfold ZEll.nmul.
-unfold A; rewrite z2Zx; rewrite Zmodml; auto.
-Qed.
-
-Lemma nadd_correct: forall x y sc,
- wfe x -> wfe y -> wft sc ->
- e2E (fst (nadd sc x y)) = fst (ZEll.nadd exx.(vN) exx.(vA) (z2Z sc) (e2E x) (e2E y) )/\
- z2Z (snd (nadd sc x y)) = snd (ZEll.nadd exx.(vN) exx.(vA) (z2Z sc) (e2E x) (e2E y)).
-Proof.
-intros x; case x; clear; auto.
-intros x1 y1 z1 y; case y; clear; auto.
- intros x2 y2 z2 sc (wfx1,(wfy1, wfz1)) (wfx2,(wfy2, wfz2)) wfsc; simpl.
- ftac.
- ftac.
- ftac.
- simpl; split; auto.
- repeat ((rewrite nmulz || rewrite nplusz || rewrite nsubz); auto).
- simpl; split; auto.
- repeat ((rewrite nmulz || rewrite nplusz || rewrite nsubz||
- rewrite c2ww || rewrite c3ww || rewrite Aww); try nw; auto).
- rewrite nmulz; auto.
- simpl; split; auto.
- repeat ((rewrite nmulz || rewrite nplusz || rewrite nsubz); auto).
- simpl; split; auto.
- repeat ((rewrite nmulz || rewrite nplusz || rewrite nsubz ||
- rewrite c2ww || rewrite c3ww || rewrite Aww); try nw; auto).
- Qed.
-
- Lemma ndouble_wf: forall x sc,
- wfe x -> wft sc ->
- wfe (fst (ndouble sc x)) /\ wft (snd (ndouble sc x)).
-Proof.
-intros x; case x; clear; auto.
-intros x1 y1 z1 sc (wfx1,(wfy1, wfz1)) wfsc;
- simpl; auto.
- repeat (case neq; repeat split; simpl; nw; auto).
-Qed.
-
-
-Lemma ndouble_correct: forall x sc,
- wfe x -> wft sc ->
- e2E (fst (ndouble sc x)) = fst (ZEll.ndouble exx.(vN) exx.(vA) (z2Z sc) (e2E x))/\
- z2Z (snd (ndouble sc x)) = snd (ZEll.ndouble exx.(vN) exx.(vA) (z2Z sc) (e2E x)).
-Proof.
-intros x; case x; clear; auto.
- intros x1 y1 z1 sc (wfx1,(wfy1, wfz1)) wfsc; simpl.
- ftac.
- simpl; split; auto.
- repeat ((rewrite nmulz || rewrite nplusz || rewrite nsubz); auto).
- simpl; split; auto.
- repeat ((rewrite nmulz || rewrite nplusz || rewrite nsubz ||
- rewrite c2ww || rewrite c3ww || rewrite Aww); try nw; auto).
- Qed.
-
-Lemma nopp_wf: forall x, wfe x -> wfe (nopp x).
-Proof.
-intros x; case x; simpl nopp; auto.
-intros x1 y1 z1 [H1 [H2 H3]]; repeat split; auto.
-Qed.
-
-Lemma scalb_wf: forall n b x sc,
- wfe x -> wft sc ->
- wfe (fst (scalb sc b x n)) /\ wft (snd (scalb sc b x n)).
-Proof.
-intros n; elim n; unfold scalb; fold scalb; auto.
- intros n1 Hrec b x sc H H1.
- case (Hrec true x sc H H1).
- case scalb; simpl fst; simpl snd.
- intros a1 sc1 H2 H3.
- case (ndouble_wf _ H2 H3); auto;
- case ndouble; simpl fst; simpl snd; intros x2 sc2 H4 H5.
- case b; auto.
- case (nadd_wf _ _ (nopp_wf _ H) H4 H5); auto;
- case ndouble; simpl fst; simpl snd; intros x2 sc2 H4 H5.
- intros n1 Hrec b x sc H H1.
- case (Hrec false x sc H H1).
- case scalb; simpl fst; simpl snd.
- intros a1 sc1 H2 H3.
- case (ndouble_wf _ H2 H3); auto;
- case ndouble; simpl fst; simpl snd; intros x2 sc2 H4 H5.
- case b; auto.
- case (nadd_wf _ _ H H4 H5); auto;
- case ndouble; simpl fst; simpl snd; intros x2 sc2 H4 H5.
-intros b x sc H H1; case b; auto.
-case (ndouble_wf _ H H1); auto.
-Qed.
-
-
-Lemma scal_wf: forall n x sc,
- wfe x -> wft sc ->
- wfe (fst (scal sc x n)) /\ wft (snd (scal sc x n)).
-Proof.
-intros n; exact (scalb_wf n false).
-Qed.
-
-Lemma nopp_correct: forall x,
- wfe x -> e2E x = ZEll.nopp exx.(vN) (e2E (nopp x)).
-Proof.
-intros x; case x; simpl; auto.
-intros x1 y1 z1 [H1 [H2 H3]]; apply f_equal3 with (f := ZEll.ntriple); auto.
-rewrite nsubz; auto.
-rewrite zc0.
-unfold ZEll.nsub, ninv; simpl.
-apply sym_equal.
-rewrite <- (Z_mod_plus) with (b := -(-z2Z y1 /exx.(vN))); auto with zarith.
-rewrite <- Zopp_mult_distr_l.
-rewrite <- Zopp_plus_distr.
-rewrite Zmult_comm; rewrite Zplus_comm.
-rewrite <- Z_div_mod_eq; auto with zarith.
-rewrite Zopp_involutive; rewrite <- z2ZN.
-apply sym_equal; auto.
-Qed.
-
-Lemma scalb_correct: forall n b x sc,
- wfe x -> wft sc ->
- e2E (fst (scalb sc b x n)) = fst (ZEll.scalb exx.(vN) exx.(vA) (z2Z sc) b (e2E x) n)/\
- z2Z (snd (scalb sc b x n)) = snd (ZEll.scalb exx.(vN) exx.(vA) (z2Z sc) b (e2E x) n).
-Proof.
-intros n; elim n; clear; auto.
-intros p Hrec b x sc H1 H2.
- case b; unfold scalb; fold scalb.
- generalize (scalb_wf p true x H1 H2);
- generalize (Hrec true _ _ H1 H2); case scalb; simpl.
- case ZEll.scalb; intros r1 rc1; simpl.
- intros a2 sc2 (H3, H4) (H5, H6); subst r1 rc1.
- apply ndouble_correct; auto.
- generalize (scalb_wf p true x H1 H2);
- generalize (Hrec true _ _ H1 H2); case scalb; simpl.
- case ZEll.scalb; intros r1 rc1; simpl.
- intros a2 sc2 (H3, H4) (H5, H6); subst r1 rc1.
- generalize (ndouble_wf _ H5 H6);
- generalize (ndouble_correct _ H5 H6); case ndouble; simpl.
- case ZEll.ndouble; intros r1 rc1; simpl.
- intros a3 sc3 (H7,H8) (H9,H10); subst r1 rc1.
- replace (ZEll.nopp (vN exx) (e2E x)) with
- (e2E (nopp x)).
- apply nadd_correct; auto.
- generalize H1; case x; auto.
- intros x1 y1 z1 [HH1 [HH2 HH3]]; split; auto.
- rewrite nopp_correct; auto.
- apply f_equal2 with (f := ZEll.nopp); auto.
- generalize H1; case x; simpl; auto; clear x H1.
- intros x1 y1 z1 [HH1 [HH2 HH3]];
- apply f_equal3 with (f := ZEll.ntriple); auto.
- repeat rewrite nsubz; auto.
- rewrite zc0.
- unfold ZEll.nsub; simpl.
- rewrite <- (Z_mod_plus) with (b := -(-z2Z y1 /exx.(vN))); auto with zarith.
- rewrite <- Zopp_mult_distr_l.
- rewrite <- Zopp_plus_distr.
- rewrite Zmult_comm; rewrite Zplus_comm.
- rewrite <- Z_div_mod_eq; auto with zarith.
- rewrite Zopp_involutive; rewrite <- z2ZN.
- apply sym_equal; auto.
- generalize H1; case x; auto.
- intros x1 y1 z1 [HH1 [HH2 HH3]]; split; auto.
-intros p Hrec b x sc H1 H2.
- case b; unfold scalb; fold scalb.
- generalize (scalb_wf p false x H1 H2);
- generalize (Hrec false _ _ H1 H2); case scalb; simpl.
- case ZEll.scalb; intros r1 rc1; simpl.
- intros a2 sc2 (H3, H4) (H5, H6); subst r1 rc1.
- generalize (ndouble_wf _ H5 H6);
- generalize (ndouble_correct _ H5 H6); case ndouble; simpl.
- case ZEll.ndouble; intros r1 rc1; simpl.
- intros a3 sc3 (H7,H8) (H9,H10); subst r1 rc1.
- replace (ZEll.nopp (vN exx) (e2E x)) with
- (e2E (nopp x)).
- apply nadd_correct; auto.
- rewrite nopp_correct; auto.
- apply f_equal2 with (f := ZEll.nopp); auto.
- generalize H1; case x; simpl; auto; clear x H1.
- intros x1 y1 z1 [HH1 [HH2 HH3]];
- apply f_equal3 with (f := ZEll.ntriple); auto.
- repeat rewrite nsubz; auto.
- rewrite zc0.
- unfold ZEll.nsub; simpl.
- rewrite <- (Z_mod_plus) with (b := -(-z2Z y1 /exx.(vN))); auto with zarith.
- rewrite <- Zopp_mult_distr_l.
- rewrite <- Zopp_plus_distr.
- rewrite Zmult_comm; rewrite Zplus_comm.
- rewrite <- Z_div_mod_eq; auto with zarith.
- rewrite Zopp_involutive; rewrite <- z2ZN.
- apply sym_equal; auto.
- generalize H1; case x; auto.
- intros x1 y1 z1 [HH1 [HH2 HH3]]; split; auto.
- generalize (scalb_wf p false x H1 H2);
- generalize (Hrec false _ _ H1 H2); case scalb; simpl.
- case ZEll.scalb; intros r1 rc1; simpl.
- intros a2 sc2 (H3, H4) (H5, H6); subst r1 rc1.
- apply ndouble_correct; auto.
-intros b x sc H H1.
-case b; simpl; auto.
-apply ndouble_correct; auto.
-Qed.
-
-
-Lemma scal_correct: forall n x sc,
- wfe x -> wft sc ->
- e2E (fst (scal sc x n)) = fst (ZEll.scal exx.(vN) exx.(vA) (z2Z sc) (e2E x) n)/\
- z2Z (snd (scal sc x n)) = snd (ZEll.scal exx.(vN) exx.(vA) (z2Z sc) (e2E x) n).
-Proof.
-intros n; exact (scalb_correct n false).
-Qed.
-
-Lemma scal_list_correct: forall l x sc,
- wfe x -> wft sc ->
- e2E (fst (scal_list sc x l)) = fst (ZEll.scal_list exx.(vN) exx.(vA) (z2Z sc) (e2E x) l)/\
- z2Z (snd (scal_list sc x l)) = snd (ZEll.scal_list exx.(vN) exx.(vA) (z2Z sc) (e2E x) l).
-Proof.
-intros l1; elim l1; simpl; auto.
-unfold scal_list, ZEll.scal_list; simpl; intros a l2 Hrec x sc H1 H2.
-generalize (scal_correct a _ H1 H2) (scal_wf a _ H1 H2); case scal.
-case ZEll.scal; intros r1 rsc1; simpl.
-simpl; intros a1 sc1 (H3, H4) (H5, H6); subst r1 rsc1; auto.
-Qed.
-
-Lemma scal_list_wf: forall l x sc,
- wfe x -> wft sc ->
- wfe (fst (scal_list sc x l)) /\ wft (snd (scal_list sc x l)).
-Proof.
-intros l1; elim l1; simpl; auto.
-unfold scal_list; intros a l Hrec x sc H1 H2; simpl.
-generalize (@scal_wf a _ _ H1 H2);
- case (scal sc x a); simpl; intros x1 sc1 [H3 H4]; auto.
-Qed.
-
-Lemma scalL_wf: forall l x sc,
- wfe x -> wft sc ->
- wfe (fst (scalL sc x l)) /\ wft (snd (scalL sc x l)).
-Proof.
-intros l1; elim l1; simpl; auto.
-intros a l2 Hrec x sc H1 H2.
-generalize (scal_wf a _ H1 H2); case scal; simpl.
-intros a1 sc1 (H3, H4); auto.
-generalize (scal_list_wf l2 _ H1 H4); case scal_list; simpl.
-intros a2 sc2; case a2; simpl; auto.
-intros x1 y1 z1 ((V1, (V2, V3)), V4); apply Hrec; auto.
-Qed.
-
-Lemma scalL_correct: forall l x sc,
- wfe x -> wft sc ->
- e2E (fst (scalL sc x l)) = fst (ZEll.scalL exx.(vN) exx.(vA) (z2Z sc) (e2E x) l)/\
- z2Z (snd (scalL sc x l)) = snd (ZEll.scalL exx.(vN) exx.(vA) (z2Z sc) (e2E x) l).
-Proof.
-intros l1; elim l1; simpl; auto.
-intros a l2 Hrec x sc H1 H2.
-generalize (scal_wf a _ H1 H2) (scal_correct a _ H1 H2); case scal; simpl.
-case ZEll.scal; intros r1 rsc1; simpl.
-intros a1 sc1 (H3, H4) (H5, H6); subst r1 rsc1.
-generalize (scal_list_wf l2 _ H1 H4) (scal_list_correct l2 _ H1 H4); case scal_list; simpl.
-case ZEll.scal_list; intros r1 rsc1; simpl.
-intros a2 sc2 (H7, H8) (H9, H10); subst r1 rsc1.
-generalize H7; clear H7; case a2; simpl; auto.
-rewrite zc0; auto.
-intros x1 y1 z1 (V1, (V2, V3)); auto.
-generalize (nmulw H8 V3) (nmulz H8 V3); intros V4 V5; rewrite <- V5.
-apply Hrec; auto.
-Qed.
-
-Lemma f4 : wft (Z2z 4).
-Proof.
-red; apply z2Zx1.
-Qed.
-
-Lemma f27 : wft (Z2z 27).
-Proof.
-red; apply z2Zx1.
-Qed.
-
-Lemma Bw : wft B.
-Proof.
-red; unfold B; apply z2Zx1.
-Qed.
-
-Hint Resolve f4 f27 Bw.
-
-Lemma mww: forall x y, ZEll.nmul (vN exx) (x mod (vN exx) ) y = ZEll.nmul (vN exx) x y.
-intros x y; unfold ZEll.nmul; rewrite Zmodml; auto.
-Qed.
-
-Lemma wwA: forall x, ZEll.nmul (vN exx) x exx.(vA) = ZEll.nmul (vN exx) x (z2Z A).
-intros x; unfold ZEll.nmul.
-unfold A; rewrite z2Zx; rewrite Zmodmr; auto.
-Qed.
-
-Lemma wwB: forall x, ZEll.nmul (vN exx) x exx.(vB) = ZEll.nmul (vN exx) x (z2Z B).
-intros x; unfold ZEll.nmul.
-unfold B; rewrite z2Zx; rewrite Zmodmr; auto.
-Qed.
-
- Lemma scalL_prime:
- let a := ntriple (Z2z (exx.(vx))) (Z2z (exx.(vy))) c1 in
- let isc := (Z2z 4) ** A ** A ** A ++ (Z2z 27) ** B ** B in
- let (a1, sc1) := scal isc a exx.(vS) in
- let (S1,R1) := psplit exx.(vR) in
- let (a2, sc2) := scal sc1 a1 S1 in
- let (a3, sc3) := scalL sc2 a2 R1 in
- match a3 with
- nzero => if (Zeq_bool (Zgcd (z2Z sc3) exx.(vN)) 1) then prime exx.(vN)
- else True
- | _ => True
- end.
- Proof.
- intros a isc.
- case_eq (scal isc a (vS exx)); intros a1 sc1 Ha1.
- case_eq (psplit (vR exx)); intros S1 R1 HS1.
- case_eq (scal sc1 a1 S1); intros a2 sc2 Ha2.
- case_eq (scalL sc2 a2 R1); intros a3 sc3; case a3; auto.
- intros Ha3; case_eq (Zeq_bool (Zgcd (z2Z sc3) (vN exx)) 1); auto.
- intros H1.
- assert (F0:
- (vy exx mod vN exx) ^ 2 mod vN exx =
- ((vx exx mod vN exx) ^ 3 + vA exx * (vx exx mod vN exx) +
- vB exx) mod vN exx).
- generalize exxs.(inC).
- simpl; unfold Zpower_pos; simpl.
- repeat rewrite Zmult_1_r.
- intros HH.
- match goal with |- ?t1 = ?t2 => rmod t1; auto end.
- rewrite HH.
- rewrite Zplus_mod; auto; symmetry; rewrite Zplus_mod; auto; symmetry.
- apply f_equal2 with (f := Zmod); auto.
- apply f_equal2 with (f := Zplus); auto.
- rewrite Zplus_mod; auto; symmetry; rewrite Zplus_mod; auto; symmetry.
- apply f_equal2 with (f := Zmod); auto.
- apply f_equal2 with (f := Zplus); auto.
- rewrite Zmult_mod; auto; symmetry; rewrite Zmult_mod; auto; symmetry.
- apply f_equal2 with (f := Zmod); auto.
- apply f_equal2 with (f := Zmult); auto.
- rewrite Zmod_mod; auto.
- match goal with |- ?t1 = ?t2 => rmod t2; auto end.
- rewrite Zmult_mod; auto; symmetry; rewrite Zmult_mod; auto; symmetry.
- apply f_equal2 with (f := Zmod); auto.
- rewrite Zmod_mod; auto.
- generalize (@ZEll.scalL_prime exx.(vN)
- (exx.(vx) mod exx.(vN))
- (exx.(vy) mod exx.(vN))
- exx.(vA)
- exx.(vB)
- exxs.(n_pos) exxs.(n2_div) exx.(vR)
- exxs.(lprime) exx.(vS) exxs.(lbig) F0); simpl.
-generalize (@scal_wf (vS exx) a isc) (@scal_correct (vS exx) a isc).
-unfold isc.
-rewrite nplusz; auto; try nw; auto.
-repeat rewrite nmulz; auto; try nw; auto.
- repeat rewrite z2Zx.
-repeat rewrite wwA || rewrite wwB|| rewrite mww.
-replace (e2E a) with (ZEll.ntriple (vx exx mod vN exx) (vy exx mod vN exx) 1).
-case ZEll.scal.
-fold isc; rewrite HS1; rewrite Ha1; simpl; auto.
-intros r1 rsc1 HH1 HH2.
-case HH1; clear HH1.
- unfold c1; repeat split; red; try apply z2Zx1.
- unfold isc; nw.
-case HH2; clear HH2.
- unfold c1; repeat split; red; try apply z2Zx1.
- unfold isc; nw.
-intros U1 U2 W1 W2; subst r1 rsc1.
-generalize (@scal_wf S1 a1 sc1) (@scal_correct S1 a1 sc1).
-case ZEll.scal.
-intros r1 rsc1 HH1 HH2.
-case HH1; clear HH1; auto.
-case HH2; clear HH2; auto.
-rewrite Ha2; simpl.
-intros U1 U2 W3 W4; subst r1 rsc1.
-generalize (@scalL_wf R1 a2 sc2) (@scalL_correct R1 a2 sc2).
-case ZEll.scalL.
-intros n; case n; auto.
-rewrite Ha3; simpl.
-intros rsc1 HH1 HH2.
-case HH1; clear HH1; auto.
-case HH2; clear HH2; auto.
-intros _ U2 _ W5; subst rsc1.
-rewrite H1; auto.
-intros x1 y1 z1 sc4; rewrite Ha3; simpl; auto.
-intros _ HH; case HH; auto.
-intros; discriminate.
-unfold a; simpl.
-unfold c1; repeat rewrite z2Zx.
-rewrite (Zmod_small 1); auto.
-generalize exxs.(n_pos).
-auto with zarith.
-Qed.
-
-End NEll.
-
-Fixpoint plength (p: positive) : positive :=
- match p with
- xH => xH
- | xO p1 => Psucc (plength p1)
- | xI p1 => Psucc (plength p1)
- end.
-
-Theorem plength_correct: forall p, (Zpos p < 2 ^ Zpos (plength p))%Z.
-assert (F: (forall p, 2 ^ (Zpos (Psucc p)) = 2 * 2 ^ Zpos p)%Z).
-intros p; replace (Zpos (Psucc p)) with (1 + Zpos p)%Z.
-rewrite Zpower_exp; auto with zarith.
-rewrite Zpos_succ_morphism; unfold Zsucc; auto with zarith.
-intros p; elim p; simpl plength; auto.
-intros p1 Hp1; rewrite F; repeat rewrite Zpos_xI.
-assert (tmp: (forall p, 2 * p = p + p)%Z);
- try repeat rewrite tmp; auto with zarith.
-intros p1 Hp1; rewrite F; rewrite (Zpos_xO p1).
-assert (tmp: (forall p, 2 * p = p + p)%Z);
- try repeat rewrite tmp; auto with zarith.
-rewrite Zpower_1_r; auto with zarith.
-Qed.
-
-Theorem plength_pred_correct: forall p, (Zpos p <= 2 ^ Zpos (plength (Ppred p)))
-%Z.
-intros p; case (Psucc_pred p); intros H1.
-subst; simpl plength.
-rewrite Zpower_1_r; auto with zarith.
-pattern p at 1; rewrite <- H1.
-rewrite Zpos_succ_morphism; unfold Zsucc; auto with zarith.
-generalize (plength_correct (Ppred p)); auto with zarith.
-Qed.
-
-Definition pheight p := plength (Ppred (plength (Ppred p))).
-
-Theorem pheight_correct: forall p, (Zpos p <= 2 ^ (2 ^ (Zpos (pheight p))))%Z.
-intros p; apply Zle_trans with (1 := (plength_pred_correct p)).
-apply Zpower_le_monotone; auto with zarith.
-split; auto with zarith.
-unfold pheight; apply plength_pred_correct.
-Qed.
-
-Definition isM2 p :=
- match p with
- xH => false
-| xO _ => false
-| _ => true
-end.
-
-Lemma isM2_correct: forall p,
- if isM2 p then ~(Zdivide 2 p) /\ 2 < p else True.
-Proof.
-intros p; case p; simpl; auto; clear p.
-intros p1; split; auto.
-intros HH; inversion_clear HH.
-generalize H; rewrite Zmult_comm.
-case x; simpl; intros; discriminate.
-case p1; red; simpl; auto.
-Qed.
-
-Definition ell_test (N S: positive) (l: List.list (positive * positive))
- (A B x y: Z) :=
- let op := cmk_op (Peano.pred (nat_of_P (get_height 31 (plength N)))) in
- let mop := make_mod_op op (ZnZ.of_Z N) in
- if isM2 N then
- match (4 * N) ?= (ZEll.Zmullp l - 1) ^ 2 with
- Lt =>
- match y ^ 2 mod N ?= (x ^ 3 + A * x + B) mod N with
- Eq =>
- let ex := mkEx N S l A B x y in
- let a := ntriple (Z2z ex op x) (Z2z ex op y) (Z2z ex op 1) in
- let A := (Z2z ex op A) in
- let B := (Z2z ex op B) in
- let d4 := (Z2z ex op 4) in
- let d27 := (Z2z ex op 27) in
- let da := mop.(add_mod) in
- let dm := mop.(mul_mod) in
- let isc := (da (dm (dm (dm d4 A) A) A) (dm (dm d27 B) B)) in
- let (a1, sc1) := scal ex op mop isc a S in
- let (S1,R1) := ZEll.psplit l in
- let (a2, sc2) := scal ex op mop sc1 a1 S1 in
- let (a3, sc3) := scalL ex op mop sc2 a2 R1 in
- match a3 with
- nzero => if (Zeq_bool (Zgcd (z2Z op sc3) N) 1) then true
- else false
- | _ => false
- end
- | _ => false
- end
- | _ => false
- end
- else false.
-
-Lemma Zcompare_correct: forall x y,
- match x ?= y with Eq => x = y | Gt => x > y | Lt => x < y end.
-Proof.
-intros x y; unfold Zlt, Zgt; generalize (Zcompare_Eq_eq x y); case Zcompare; auto.
-Qed.
-
-Lemma ell_test_correct: forall (N S: positive) (l: List.list (positive * positive))
- (A B x y: Z),
- (forall p, List.In p l -> prime (fst p)) ->
- if ell_test N S l A B x y then prime N else True.
-intros N S1 l A1 B1 x y H; unfold ell_test.
-generalize (isM2_correct N); case isM2; auto.
-intros (H1, H2).
-match goal with |- context[?x ?= ?y] =>
- generalize (Zcompare_correct x y); case Zcompare; auto
-end; intros H3.
-match goal with |- context[?x ?= ?y] =>
- generalize (Zcompare_correct x y); case Zcompare; auto
-end; intros H4.
-set (n := Peano.pred (nat_of_P (get_height 31 (plength N)))).
-set (op := cmk_op n).
-set (mop := make_mod_op op (ZnZ.of_Z N)).
-set (exx := mkEx N S1 l A1 B1 x y).
-set (op_spec := cmk_spec n).
-assert (exxs: ex_spec exx).
- constructor; auto.
-assert (H0: N < base (ZnZ.digits op)).
- apply Zlt_le_trans with (1 := plength_correct N).
- unfold op, base.
- rewrite cmk_op_digits.
- apply Zpower_le_monotone; split; auto with zarith.
- generalize (get_height_correct 31 (plength N)); unfold n.
- set (p := plength N).
- replace (Z_of_nat (Peano.pred (nat_of_P (get_height 31 p)))) with
- ((Zpos (get_height 31 p) - 1) ); auto with zarith.
- rewrite pred_of_minus; rewrite inj_minus1; auto with zarith.
- rewrite <- Zpos_eq_Z_of_nat_o_nat_of_P; auto with zarith.
- generalize (lt_O_nat_of_P (get_height 31 p)); auto with zarith.
-assert (mspec: mod_spec op (zN exx op) mop).
- unfold mop; apply make_mod_spec; auto.
- rewrite ZnZ.of_Z_correct; auto with zarith.
-generalize (@scalL_prime exx exxs _ op (cmk_spec n) mop mspec H0).
-lazy zeta.
-unfold c1, A, B, nplus, nmul;
- simpl exx.(vA); simpl exx.(vB); simpl exx.(vx); simpl exx.(vy);
- simpl exx.(vS); simpl exx.(vR); simpl exx.(vN).
-case scal; intros a1 sc1.
-case ZEll.psplit; intros S2 R2.
-case scal; intros a2 sc2.
-case scalL; intros a3 sc3.
-case a3; auto.
-case Zeq_bool; auto.
-Qed.
-
-Time Eval vm_compute in (ell_test
- 329719147332060395689499
- 8209062
- (List.cons (40165264598163841%positive,1%positive) List.nil)
- (-94080)
- 9834496
- 0
- 3136).
-
-
-Time Eval vm_compute in (ell_test
- 1384435372850622112932804334308326689651568940268408537
- 13077052794
- (List.cons (105867537178241517538435987563198410444088809%positive, 1%positive) List.nil)
- (-677530058123796416781392907869501000001421915645008494)
- 0
- (-169382514530949104195348226967375250000355478911252124)
- 1045670343788723904542107880373576189650857982445904291
-).
diff --git a/coqprime/num/Pock.v b/coqprime/num/Pock.v
deleted file mode 100644
index 3b467af5a..000000000
--- a/coqprime/num/Pock.v
+++ /dev/null
@@ -1,964 +0,0 @@
-
-(*************************************************************)
-(* This file is distributed under the terms of the *)
-(* GNU Lesser General Public License Version 2.1 *)
-(*************************************************************)
-(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
-(*************************************************************)
-
-Require Import List.
-Require Import ZArith.
-Require Import Zorder.
-Require Import ZCAux.
-Require Import LucasLehmer.
-Require Import Pocklington.
-Require Import ZArith Znumtheory Zpow_facts.
-Require Import CyclicAxioms DoubleCyclic BigN Cyclic31 Int31.
-Require Import Pmod.
-Require Import Mod_op.
-Require Import W.
-Require Import Lucas.
-Require Export PocklingtonCertificat.
-Require Import NEll.
-Import CyclicAxioms DoubleType DoubleBase List.
-
-Open Scope Z_scope.
-
-Section test.
-
-Variable w: Type.
-Variable w_op: ZnZ.Ops w.
-Variable op_spec: ZnZ.Specs w_op.
-Variable p: positive.
-Variable b: w.
-
-Notation "[| x |]" :=
- (ZnZ.to_Z x) (at level 0, x at level 99).
-
-Hypothesis b_pos: 0 < [|b|].
-
-Variable m_op: mod_op w.
-Variable m_op_spec: mod_spec w_op b m_op.
-
-Open Scope positive_scope.
-Open Scope P_scope.
-
-Let pow := m_op.(power_mod).
-Let times := m_op.(mul_mod).
-Let pred:= m_op.(pred_mod).
-
-(* [fold_pow_mod a [q1,_;...;qn,_]] b = a ^(q1*...*qn) mod b *)
-(* invariant a mod N = a *)
-Definition fold_pow_mod (a: w) l :=
- fold_left
- (fun a' (qp:positive*positive) => pow a' (fst qp))
- l a.
-
-Lemma fold_pow_mod_spec : forall l (a:w),
- ([|a|] < [|b|])%Z -> [|fold_pow_mod a l|] = ([|a|]^(mkProd' l) mod [|b|])%Z.
-intros l; unfold fold_pow_mod; elim l; simpl fold_left; simpl mkProd'; auto; clear l.
-intros a H; rewrite Zpower_1_r; rewrite Zmod_small; auto with zarith.
-case (ZnZ.spec_to_Z a); auto with zarith.
-intros (p1, q1) l Rec a H.
-case (ZnZ.spec_to_Z a); auto with zarith; intros U1 U2.
-rewrite Rec.
-rewrite m_op_spec.(power_mod_spec) with (t := [|a|]); auto with zarith.
-rewrite <- Zpower_mod.
-rewrite times_Zmult; rewrite Zpower_mult; auto with zarith.
-apply Zle_lt_trans with (2 := H); auto with zarith.
-rewrite Zmod_small; auto with zarith.
-rewrite m_op_spec.(power_mod_spec) with (t := [|a|]); auto with zarith.
-match goal with |- context[(?X mod ?Y)%Z] =>
- case (Z_mod_lt X Y); auto with zarith
-end.
-rewrite Zmod_small; auto with zarith.
-Qed.
-
-
-Fixpoint all_pow_mod (prod a: w) (l:dec_prime) {struct l}: w*w :=
- match l with
- | nil => (prod,a)
- | (q,_) :: l =>
- let m := pred (fold_pow_mod a l) in
- all_pow_mod (times prod m) (pow a q) l
- end.
-
-
-Lemma snd_all_pow_mod :
- forall l (prod a :w), ([|a|] < [|b|])%Z ->
- [|snd (all_pow_mod prod a l)|] = ([|a|]^(mkProd' l) mod [|b|])%Z.
-intros l; elim l; simpl all_pow_mod; simpl mkProd'; simpl snd; clear l.
-intros _ a H; rewrite Zpower_1_r; auto with zarith.
-rewrite Zmod_small; auto with zarith.
-case (ZnZ.spec_to_Z a); auto with zarith.
-intros (p1, q1) l Rec prod a H.
-case (ZnZ.spec_to_Z a); auto with zarith; intros U1 U2.
-rewrite Rec; auto with zarith.
-rewrite m_op_spec.(power_mod_spec) with (t := [|a|]); auto with zarith.
-rewrite <- Zpower_mod.
-rewrite times_Zmult; rewrite Zpower_mult; auto with zarith.
-apply Zle_lt_trans with (2 := H); auto with zarith.
-rewrite Zmod_small; auto with zarith.
-rewrite m_op_spec.(power_mod_spec) with (t := [|a|]); auto with zarith.
-match goal with |- context[(?X mod ?Y)%Z] =>
- case (Z_mod_lt X Y); auto with zarith
-end.
-rewrite Zmod_small; auto with zarith.
-Qed.
-
-Lemma fold_aux : forall a N l prod,
- (fold_left
- (fun (r : Z) (k : positive * positive) =>
- r * (a ^(N / fst k) - 1) mod [|b|]) l (prod mod [|b|]) mod [|b|] =
- fold_left
- (fun (r : Z) (k : positive * positive) =>
- r * (a^(N / fst k) - 1)) l prod mod [|b|])%Z.
-induction l;simpl;intros.
-rewrite Zmod_mod; auto with zarith.
-rewrite <- IHl; auto with zarith.
-rewrite Zmult_mod; auto with zarith.
-rewrite Zmod_mod; auto with zarith.
-rewrite <- Zmult_mod; auto with zarith.
-Qed.
-
-Lemma fst_all_pow_mod :
- forall l (a:w) (R:positive) (prod A :w),
- [|prod|] = ([|prod|] mod [|b|])%Z ->
- [|A|] = ([|a|]^R mod [|b|])%Z ->
- [|fst (all_pow_mod prod A l)|] =
- ((fold_left
- (fun r (k:positive*positive) =>
- (r * ([|a|] ^ (R* mkProd' l / (fst k)) - 1))) l [|prod|]) mod [|b|])%Z.
-intros l; elim l; simpl all_pow_mod; simpl fold_left; simpl fst;
- auto with zarith; clear l.
-intros (p1,q1) l Rec; simpl fst.
-intros a R prod A H1 H2.
-assert (F: (0 <= [|A|] < [|b|])%Z).
-rewrite H2.
-match goal with |- context[(?X mod ?Y)%Z] =>
- case (Z_mod_lt X Y); auto with zarith
-end.
-assert (F1: ((fun x => x = x mod [|b|])%Z [|fold_pow_mod A l|])).
-rewrite Zmod_small; auto.
-rewrite fold_pow_mod_spec; auto with zarith.
-match goal with |- context[(?X mod ?Y)%Z] =>
- case (Z_mod_lt X Y); auto with zarith
-end.
-assert (F2: ((fun x => x = x mod [|b|])%Z [|pred (fold_pow_mod A l)|])).
-rewrite Zmod_small; auto.
-rewrite(fun x => m_op_spec.(pred_mod_spec) x [|x|]);
- auto with zarith.
-match goal with |- context[(?X mod ?Y)%Z] =>
- case (Z_mod_lt X Y); auto with zarith
-end.
-rewrite (Rec a (R * p1)%positive); auto with zarith.
-rewrite(fun x y => m_op_spec.(mul_mod_spec) x y [|x|] [|y|]);
- auto with zarith.
-rewrite(fun x => m_op_spec.(pred_mod_spec) x [|x|]);
- auto with zarith.
-rewrite fold_pow_mod_spec; auto with zarith.
-rewrite H2.
-repeat rewrite Zpos_mult.
-repeat rewrite times_Zmult.
-repeat rewrite <- Zmult_assoc.
-apply sym_equal; rewrite <- fold_aux; auto with zarith.
-apply sym_equal; rewrite <- fold_aux; auto with zarith.
-eq_tac; auto.
-match goal with |- context[fold_left ?x _ _] =>
- apply f_equal2 with (f := fold_left x); auto with zarith
-end.
-rewrite Zmod_mod; auto with zarith.
-rewrite (Zmult_comm R); repeat rewrite <- Zmult_assoc;
- rewrite (Zmult_comm p1); rewrite Z_div_mult; auto with zarith.
-repeat rewrite (Zmult_mod [|prod|]);auto with zmisc.
-eq_tac; [idtac | eq_tac]; auto.
-eq_tac; auto.
-rewrite Zmod_mod; auto.
-repeat rewrite (fun x => Zminus_mod x 1); auto with zarith.
-eq_tac; auto; eq_tac; auto.
-rewrite Zmult_comm; rewrite <- Zpower_mod; auto with zmisc.
-rewrite Zpower_mult; auto with zarith.
-rewrite Zmod_mod; auto with zarith.
-rewrite Zmod_small; auto.
-rewrite(fun x y => m_op_spec.(mul_mod_spec) x y [|x|] [|y|]);
- auto with zarith.
-match goal with |- context[(?X mod ?Y)%Z] =>
- case (Z_mod_lt X Y); auto with zarith
-end.
-rewrite(fun x => m_op_spec.(power_mod_spec) x [|x|]);
- auto with zarith.
-apply trans_equal with ([|A|] ^ p1 mod [|b|])%Z; auto.
-rewrite H2.
-rewrite Zpos_mult_morphism; rewrite Zpower_mult; auto with zarith.
-rewrite <- Zpower_mod; auto with zarith.
-rewrite Zmod_small; auto.
-Qed.
-
-
-Fixpoint pow_mod_pred (a:w) (l:dec_prime) {struct l} : w :=
- match l with
- | nil => a
- | (q, p)::l =>
- if (p ?= 1) then pow_mod_pred a l
- else
- let a' := iter_pos (Ppred p) _ (fun x => pow x q) a in
- pow_mod_pred a' l
- end.
-
-Lemma iter_pow_mod_spec : forall q p a, [|a|] = ([|a|] mod [|b|])%Z ->
- ([|iter_pos p _ (fun x => pow x q) a|] = [|a|]^q^p mod [|b|])%Z.
-intros q1 p1; elim p1; simpl iter_pos; clear p1.
-intros p1 Rec a Ha.
-rewrite(fun x => m_op_spec.(power_mod_spec) x [|x|]);
- auto with zarith.
-repeat rewrite Rec; auto with zarith.
-match goal with |- (Zpower_pos ?X ?Y mod ?Z = _)%Z =>
- apply trans_equal with (X ^ Y mod Z)%Z; auto
-end.
-repeat rewrite <- Zpower_mod; auto with zmisc.
-repeat rewrite <- Zpower_mult; auto with zmisc.
-repeat rewrite <- Zpower_mod; auto with zmisc.
-repeat rewrite <- Zpower_mult; auto with zarith zmisc.
-eq_tac; auto.
-eq_tac; auto.
-rewrite Zpos_xI.
-assert (tmp: forall x, (2 * x = x + x)%Z); auto with zarith; rewrite tmp;
- clear tmp.
-repeat rewrite Zpower_exp; auto with zarith.
-rewrite Zpower_1_r; try ring; auto with misc.
-rewrite Zmod_mod; auto with zarith.
-rewrite Rec; auto with zmisc.
-rewrite Zmod_mod; auto with zarith.
-rewrite Rec; auto with zmisc.
-rewrite Zmod_mod; auto with zarith.
-intros p1 Rec a Ha.
-repeat rewrite Rec; auto with zarith.
-repeat rewrite <- Zpower_mod; auto with zmisc.
-repeat rewrite <- Zpower_mult; auto with zmisc.
-eq_tac; auto.
-eq_tac; auto.
-rewrite Zpos_xO.
-assert (tmp: forall x, (2 * x = x + x)%Z); auto with zarith; rewrite tmp;
- clear tmp.
-repeat rewrite Zpower_exp; auto with zarith.
-rewrite Zmod_mod; auto with zarith.
-intros a Ha; rewrite Zpower_1_r; auto with zarith.
-rewrite(fun x => m_op_spec.(power_mod_spec) x [|x|]);
- auto with zarith.
-Qed.
-
-Lemma pow_mod_pred_spec : forall l a,
- ([|a|] = [|a|] mod [|b|] ->
- [|pow_mod_pred a l|] = [|a|]^(mkProd_pred l) mod [|b|])%Z.
-intros l; elim l; simpl pow_mod_pred; simpl mkProd_pred; clear l.
-intros; rewrite Zpower_1_r; auto with zarith.
-intros (p1,q1) l Rec a H; simpl snd; simpl fst.
-case (q1 ?= 1)%P; auto with zarith.
-rewrite Rec; auto.
-rewrite iter_pow_mod_spec; auto with zarith.
-rewrite times_Zmult; rewrite pow_Zpower.
-rewrite <- Zpower_mod; auto with zarith.
-rewrite Zpower_mult; auto with zarith.
-rewrite Zmod_small; auto with zarith.
-rewrite iter_pow_mod_spec; auto with zarith.
-match goal with |- context[(?X mod ?Y)%Z] =>
- case (Z_mod_lt X Y); auto with zarith
-end.
-Qed.
-
-End test.
-
-Require Import Bits.
-
-Definition test_pock N a dec sqrt :=
- if (2 ?< N) then
- let Nm1 := Ppred N in
- let F1 := mkProd dec in
- match (Nm1 / F1)%P with
- | (Npos R1, N0) =>
- if is_odd R1 then
- if is_even F1 then
- if (1 ?< a) then
- let (s,r') := (R1 / (xO F1))%P in
- match r' with
- | Npos r =>
- if (a ?< N) then
- let op := cmk_op (Peano.pred (nat_of_P (get_height 31 (plength N)))) in
- let wN := znz_of_Z op (Zpos N) in
- let wa := znz_of_Z op (Zpos a) in
- let w1 := znz_of_Z op 1 in
- let mod_op := make_mod_op op wN in
- let pow := mod_op.(power_mod) in
- let ttimes := mod_op.(mul_mod) in
- let pred:= mod_op.(pred_mod) in
- let gcd:= ZnZ.gcd in
- let A := pow_mod_pred _ mod_op (pow wa R1) dec in
- match all_pow_mod _ mod_op w1 A dec with
- | (p, aNm1) =>
- match ZnZ.to_Z aNm1 with
- (Zpos xH) =>
- match ZnZ.to_Z (gcd p wN) with
- (Zpos xH) =>
- if check_s_r s r sqrt then
- (N ?< (times ((times ((xO F1)+r+1) F1) + r) F1) + 1)
- else false
- | _ => false
- end
- | _ => false
- end
- end else false
- | _ => false
- end
- else false
- else false
- else false
- | _=> false
- end
- else false.
-
-Lemma test_pock_correct : forall N a dec sqrt,
- (forall k, In k dec -> prime (Zpos (fst k))) ->
- test_pock N a dec sqrt = true ->
- prime N.
-unfold test_pock;intros N a dec sqrt H.
-match goal with |- context[if ?x then _ else _] =>
- case_eq x; intros If1; auto
-end.
-2: intros; discriminate.
-match goal with H: (?X ?< ?Y) = true |- _ =>
- generalize (is_lt_spec X Y); rewrite H; clear H; intros H
-end.
-generalize (div_eucl_spec (Ppred N) (mkProd dec));
- destruct ((Ppred N) / (mkProd dec))%P as (R1,n).
-simpl fst; simpl snd; intros (H1, H2).
-destruct R1 as [ |R1].
-intros; discriminate.
-destruct n.
-2: intros; discriminate.
-match goal with |- context[if ?x then _ else _] =>
- case_eq x; intros If2; auto
-end.
-assert (If0: Zodd R1).
-apply is_odd_Zodd; auto.
-clear If2; rename If0 into If2.
-2: intros; discriminate.
-match goal with |- context[if ?x then _ else _] =>
- case_eq x; intros If3; auto
-end.
-assert (If0: Zeven (mkProd dec)).
-apply is_even_Zeven; auto.
-clear If3; rename If0 into If3.
-2: intros; discriminate.
-match goal with |- context[if ?x then _ else _] =>
- case_eq x; intros If4; auto
-end.
-match goal with H: (?X ?< ?Y) = true |- _ =>
- generalize (is_lt_spec X Y); rewrite H; clear H; intros H
-end.
-2: intros; discriminate.
-generalize (div_eucl_spec R1 (xO (mkProd dec)));
- destruct ((R1 / xO (mkProd dec))%P) as (s,r'); simpl fst;
- simpl snd; intros (H3, H4).
-destruct r' as [ |r].
-intros; discriminate.
-match goal with |- context[if ?x then _ else _] =>
- case_eq x; intros If5; auto
-end.
-match goal with H: (?X ?< ?Y) = true |- _ =>
- generalize (is_lt_spec X Y); rewrite H; clear H; intros H
-end.
-2: intros; discriminate.
-set (bb := Peano.pred (nat_of_P (get_height 31 (plength N)))).
-set (w_op := cmk_op bb).
-assert (op_spec: ZnZ.Specs w_op).
-unfold bb, w_op; apply cmk_spec; auto.
-assert (F0: N < DoubleType.base (ZnZ.digits w_op)).
- apply Zlt_le_trans with (1 := plength_correct N).
- unfold w_op, DoubleType.base.
- rewrite cmk_op_digits.
- apply Zpower_le_monotone; split; auto with zarith.
- generalize (get_height_correct 31 (plength N)); unfold bb.
- set (p := plength N).
- replace (Z_of_nat (Peano.pred (nat_of_P (get_height 31 p)))) with
- ((Zpos (get_height 31 p) - 1) ); auto with zarith.
- rewrite pred_of_minus; rewrite inj_minus1; auto with zarith.
- rewrite <- Zpos_eq_Z_of_nat_o_nat_of_P; auto with zarith.
- generalize (lt_O_nat_of_P (get_height 31 p)); auto with zarith.
-assert (F1: ZnZ.to_Z (ZnZ.of_Z N) = N).
-rewrite ZnZ.of_Z_correct; auto with zarith.
-assert (F2: 1 < ZnZ.to_Z (ZnZ.of_Z N)).
-rewrite F1; auto with zarith.
-assert (F3: 0 < ZnZ.to_Z (ZnZ.of_Z N)); auto with zarith.
-assert (F4: ZnZ.to_Z (ZnZ.of_Z a) = a).
-rewrite ZnZ.of_Z_correct; auto with zarith.
-assert (F5: ZnZ.to_Z (ZnZ.of_Z 1) = 1).
-rewrite ZnZ.of_Z_correct; auto with zarith.
-assert (F6: N - 1 = (R1 * mkProd_pred dec)%positive * mkProd' dec).
-rewrite Zpos_mult.
-rewrite <- Zmult_assoc; rewrite mkProd_pred_mkProd; auto with zarith.
-simpl in H1; rewrite Zpos_mult in H1; rewrite <- H1; rewrite Ppred_Zminus;
- auto with zarith.
-assert (m_spec: mod_spec w_op (znz_of_Z w_op N)
- (make_mod_op w_op (znz_of_Z w_op N))).
-apply make_mod_spec; auto with zarith.
-match goal with |- context[all_pow_mod ?x ?y ?z ?t ?u] =>
- generalize (fst_all_pow_mod x w_op op_spec _ F3 _ m_spec
- u (znz_of_Z w_op a) (R1*mkProd_pred dec) z t);
- generalize (snd_all_pow_mod x w_op op_spec _ F3 _ m_spec u z t);
- fold bb w_op;
- case (all_pow_mod x y z t u); simpl fst; simpl snd
-end.
-intros prod aNm1; intros H5 H6.
-case_eq (ZnZ.to_Z aNm1).
-intros; discriminate.
-2: intros; discriminate.
-intros p; case p; clear p.
-intros; discriminate.
-intros; discriminate.
-intros If6.
-case_eq (ZnZ.to_Z (ZnZ.gcd prod (znz_of_Z w_op N))).
-intros; discriminate.
-2: intros; discriminate.
-intros p; case p; clear p.
-intros; discriminate.
-intros; discriminate.
-intros If7.
-match goal with |- context[if ?x then _ else _] =>
- case_eq x; intros If8; auto
-end.
-2: intros; discriminate.
-intros If9.
-match goal with H: (?X ?< ?Y) = true |- _ =>
- generalize (is_lt_spec X Y); rewrite H; clear H; intros H
-end.
-assert (U1: N - 1 = mkProd dec * R1).
-rewrite <- Ppred_Zminus in H1; auto with zarith.
-rewrite H1; simpl.
-repeat rewrite Zpos_mult; auto with zarith.
-assert (HH:Z_of_N s = R1 / (2 * mkProd dec) /\ Zpos r = R1 mod (2 * mkProd dec)).
-apply mod_unique with (2 * mkProd dec);auto with zarith.
-apply Z_mod_lt; auto with zarith.
-rewrite <- Z_div_mod_eq; auto with zarith.
-rewrite H3.
-rewrite (Zpos_xO (mkProd dec)).
-simpl Z_of_N; ring.
-case HH; clear HH; intros HH1 HH2.
-apply PocklingtonExtra with (F1:=mkProd dec) (R1:=R1) (m:=1);
- auto with zmisc zarith.
-case (Zle_lt_or_eq 1 (mkProd dec)); auto with zarith.
-simpl in H2; auto with zarith.
-intros HH; contradict If3; rewrite <- HH.
-apply Zodd_not_Zeven; red; auto.
-intros p; case p; clear p.
-intros HH; contradict HH.
-apply not_prime_0.
-2: intros p (V1, _); contradict V1; apply Zle_not_lt; red; simpl; intros;
- discriminate.
-intros p Hprime Hdec; exists (Zpos a);repeat split; auto with zarith.
-apply trans_equal with (2 := If6).
-rewrite H5.
-rewrite pow_mod_pred_spec with (2 := m_spec); auto with zarith.
-rewrite F1.
-rewrite m_spec.(power_mod_spec) with (t := a); auto with zarith.
-change (znz_of_Z w_op a) with (ZnZ.of_Z a).
-change (znz_of_Z w_op N) with (ZnZ.of_Z N).
-rewrite F1; rewrite F4.
-rewrite <- Zpower_mod; auto with zarith.
-rewrite <- Zpower_mult; auto with zarith.
-rewrite mkProd_pred_mkProd; auto with zarith.
-rewrite U1; rewrite Zmult_comm.
-rewrite Zpower_mult; auto with zarith.
-rewrite <- Zpower_mod; auto with zarith.
-change (znz_of_Z w_op a) with (ZnZ.of_Z a).
-change (znz_of_Z w_op N) with (ZnZ.of_Z N).
-rewrite F1; rewrite F4; rewrite Zmod_small; auto with zarith.
-rewrite Zmod_small; auto with zarith.
-rewrite m_spec.(power_mod_spec) with (t := a); auto with zarith.
-match goal with |- context[?X mod ?Y] =>
- case (Z_mod_lt X Y); auto with zarith
-end.
-change (znz_of_Z w_op a) with (ZnZ.of_Z a).
-change (znz_of_Z w_op N) with (ZnZ.of_Z N).
-rewrite F1; rewrite F4; rewrite Zmod_small; auto with zarith.
-rewrite pow_mod_pred_spec with (2 := m_spec); auto with zarith.
-match goal with |- context[?X mod ?Y] =>
- case (Z_mod_lt X Y); auto with zarith
-end.
-rewrite Zmod_small; auto with zarith.
-rewrite m_spec.(power_mod_spec) with (t := a); auto with zarith.
-match goal with |- context[?X mod ?Y] =>
- case (Z_mod_lt X Y); auto with zarith
-end.
-change (znz_of_Z w_op a) with (ZnZ.of_Z a).
-change (znz_of_Z w_op N) with (ZnZ.of_Z N).
-rewrite F1; rewrite F4; rewrite Zmod_small; auto with zarith.
-match type of H6 with _ -> _ -> ?X =>
- assert (tmp: X); [apply H6 | clear H6; rename tmp into H6];
- auto with zarith
-end.
-rewrite F1.
-change (znz_of_Z w_op 1) with (ZnZ.of_Z 1).
-rewrite F5; rewrite Zmod_small; auto with zarith.
-rewrite pow_mod_pred_spec with (2 := m_spec); auto with zarith.
-change (znz_of_Z w_op a) with (ZnZ.of_Z a).
-change (znz_of_Z w_op N) with (ZnZ.of_Z N).
-repeat (rewrite F1 || rewrite F4).
-rewrite m_spec.(power_mod_spec) with (t := a); auto with zarith.
-change (znz_of_Z w_op a) with (ZnZ.of_Z a).
-change (znz_of_Z w_op N) with (ZnZ.of_Z N).
-repeat (rewrite F1 || rewrite F4).
-rewrite Zpos_mult; rewrite <- Zpower_mod; auto with zarith.
-rewrite Zpower_mult; auto with zarith.
-change (znz_of_Z w_op a) with (ZnZ.of_Z a).
-change (znz_of_Z w_op N) with (ZnZ.of_Z N).
-repeat (rewrite F1 || rewrite F4).
-rewrite Zmod_small; auto with zarith.
-change (znz_of_Z w_op a) with (ZnZ.of_Z a).
-change (znz_of_Z w_op N) with (ZnZ.of_Z N).
-repeat (rewrite F1 || rewrite F4).
-rewrite Zmod_small; auto with zarith.
-rewrite (power_mod_spec m_spec) with (t := a); auto with zarith.
-match goal with |- context[?X mod ?Y] =>
- case (Z_mod_lt X Y); auto with zarith
-end.
-change (znz_of_Z w_op a) with (ZnZ.of_Z a).
-change (znz_of_Z w_op N) with (ZnZ.of_Z N).
-repeat (rewrite F1 || rewrite F4); auto.
-rewrite Zmod_small; auto with zarith.
-change (znz_of_Z w_op N) with (ZnZ.of_Z N); auto.
-auto with zarith.
-change (znz_of_Z w_op a) with (ZnZ.of_Z a) in H6.
-change (znz_of_Z w_op N) with (ZnZ.of_Z N) in H6.
-change (znz_of_Z w_op 1) with (ZnZ.of_Z 1) in H6.
-rewrite F5 in H6; rewrite F1 in H6; rewrite F4 in H6.
-case in_mkProd_prime_div_in with (3 := Hdec); auto.
-intros p1 Hp1.
-rewrite <- F6 in H6.
-apply Zis_gcd_gcd; auto with zarith.
-change (rel_prime (a ^ ((N - 1) / p) - 1) N).
-match type of H6 with _ = ?X mod _ =>
- apply rel_prime_div with (p := X); auto with zarith
-end.
-apply rel_prime_mod_rev; auto with zarith.
-red.
-pattern 1 at 4; rewrite <- If7; rewrite <- H6.
-pattern N at 2; rewrite <- F1.
-apply ZnZ.spec_gcd; auto with zarith.
-assert (foldtmp: forall (A B: Set) (f: A -> B -> A) (P: A -> Prop) l a b,
- In b l -> (forall x, P (f x b)) ->
- (forall x y, P x -> P (f x y)) ->
- P (fold_left f l a)).
-assert (foldtmp0: forall (A B: Set) (f: A -> B -> A) (P: A -> Prop) l a,
- P a ->
- (forall x y, P x -> P (f x y)) ->
- P (fold_left f l a)).
-intros A B f P l; elim l; simpl; auto.
-intros A B f P l; elim l; simpl; auto.
-intros a1 b HH; case HH.
-intros a1 l1 Rec a2 b [V|V] V1 V2; subst; auto.
-apply foldtmp0; auto.
-apply Rec with (b := b); auto with zarith.
-match goal with |- context [fold_left ?f _ _] =>
- apply (foldtmp _ _ f (fun k => Zdivide (a ^ ((N - 1) / p) - 1) k))
- with (b := (p, p1)); auto with zarith
-end.
-rewrite <- HH2.
-clear F0; match goal with H: ?X < ?Y |- ?X < ?Z =>
- replace Z with Y; auto
-end.
-repeat (rewrite Zpos_plus || rewrite Zpos_mult || rewrite times_Zmult).
-rewrite Zpos_xO; ring.
-rewrite <- HH1; rewrite <- HH2.
-apply check_s_r_correct with sqrt; auto.
-Qed.
-
-(* Simple version of pocklington for primo *)
-Definition test_spock N a dec :=
- if (2 ?< N) then
- let Nm1 := Ppred N in
- let F1 := mkProd dec in
- match (Nm1 / F1)%P with
- | (Npos R1, N0) =>
- if (1 ?< a) then
- if (a ?< N) then
- if (N ?< F1 * F1) then
- let op := cmk_op (Peano.pred (nat_of_P (get_height 31 (plength N)))) in
- let wN := znz_of_Z op (Zpos N) in
- let wa := znz_of_Z op (Zpos a) in
- let w1 := znz_of_Z op 1 in
- let mod_op := make_mod_op op wN in
- let pow := mod_op.(power_mod) in
- let ttimes := mod_op.(mul_mod) in
- let pred:= mod_op.(pred_mod) in
- let gcd:= ZnZ.gcd in
- let A := pow_mod_pred _ mod_op (pow wa R1) dec in
- match all_pow_mod _ mod_op w1 A dec with
- | (p, aNm1) =>
- match ZnZ.to_Z aNm1 with
- (Zpos xH) =>
- match ZnZ.to_Z (gcd p wN) with
- (Zpos xH) => true
- | _ => false
- end
- | _ => false
- end
- end else false
- else false
- else false
- | _=> false
- end
- else false.
-
-Lemma test_spock_correct : forall N a dec,
- (forall k, In k dec -> prime (Zpos (fst k))) ->
- test_spock N a dec = true ->
- prime N.
-unfold test_spock;intros N a dec H.
-match goal with |- context[if ?x then _ else _] =>
- case_eq x; intros If1; auto
-end.
-2: intros; discriminate.
-match goal with H: (?X ?< ?Y) = true |- _ =>
- generalize (is_lt_spec X Y); rewrite H; clear H; intros H
-end.
-generalize (div_eucl_spec (Ppred N) (mkProd dec));
- destruct ((Ppred N) / (mkProd dec))%P as (R1,n).
-simpl fst; simpl snd; intros (H1, H2).
-destruct R1 as [ |R1].
-intros; discriminate.
-destruct n.
-2: intros; discriminate.
-match goal with |- context[if ?x then _ else _] =>
- case_eq x; intros If2; auto
-end.
-match goal with H: (?X ?< ?Y) = true |- _ =>
- generalize (is_lt_spec X Y); rewrite H; clear H; intros H
-end.
-2: intros; discriminate.
-(*
-set (bb := pred (nat_of_P (get_height 31 (plength N)))).
-set (w_op := cmk_op bb).
-assert (op_spec: znz_spec w_op).
-unfold bb, w_op; apply cmk_spec; auto.
-assert (F0: N < Basic_type.base (znz_digits w_op)).
- apply Zlt_le_trans with (1 := plength_correct N).
- unfold w_op, Basic_type.base.
- rewrite cmk_op_digits.
- apply Zpower_le_monotone; split; auto with zarith.
- generalize (get_height_correct 31 (plength N)); unfold bb.
- set (p := plength N).
- replace (Z_of_nat (pred (nat_of_P (get_height 31 p)))) with
- ((Zpos (get_height 31 p) - 1) ); auto with zarith.
- rewrite pred_of_minus; rewrite inj_minus1; auto with zarith.
- rewrite <- Zpos_eq_Z_of_nat_o_nat_of_P; auto with zarith.
- generalize (lt_O_nat_of_P (get_height 31 p)); auto with zarith.
-*)
-set (bb := Peano.pred (nat_of_P (get_height 31 (plength N)))).
-set (w_op := cmk_op bb).
-assert (op_spec: ZnZ.Specs w_op).
-unfold bb, w_op; apply cmk_spec; auto.
-match goal with |- context[if ?x then _ else _] =>
- case_eq x; intros If3; auto
-end.
-match goal with H: (?X ?< ?Y) = true |- _ =>
- generalize (is_lt_spec X Y); rewrite H; clear H; intros H
-end.
-match goal with |- context[if ?x then _ else _] =>
- case_eq x; intros If4; auto
-end.
-match goal with H: (?X ?< ?Y) = true |- _ =>
- generalize (is_lt_spec X Y); rewrite H; clear H; intros H
-end.
-assert (F0: N < DoubleType.base (ZnZ.digits w_op)).
- apply Zlt_le_trans with (1 := plength_correct N).
- unfold w_op, DoubleType.base.
- rewrite cmk_op_digits.
- apply Zpower_le_monotone; split; auto with zarith.
- generalize (get_height_correct 31 (plength N)); unfold bb.
- set (p := plength N).
- replace (Z_of_nat (Peano.pred (nat_of_P (get_height 31 p)))) with
- ((Zpos (get_height 31 p) - 1) ); auto with zarith.
- rewrite pred_of_minus; rewrite inj_minus1; auto with zarith.
- rewrite <- Zpos_eq_Z_of_nat_o_nat_of_P; auto with zarith.
- generalize (lt_O_nat_of_P (get_height 31 p)); auto with zarith.
-assert (F1: ZnZ.to_Z (ZnZ.of_Z N) = N).
-rewrite ZnZ.of_Z_correct; auto with zarith.
-assert (F2: 1 < ZnZ.to_Z (ZnZ.of_Z N)).
-rewrite F1; auto with zarith.
-assert (F3: 0 < ZnZ.to_Z (ZnZ.of_Z N)); auto with zarith.
-assert (F4: ZnZ.to_Z (ZnZ.of_Z a) = a).
-rewrite ZnZ.of_Z_correct; auto with zarith.
-assert (F5: ZnZ.to_Z (ZnZ.of_Z 1) = 1).
-rewrite ZnZ.of_Z_correct; auto with zarith.
-assert (F6: N - 1 = (R1 * mkProd_pred dec)%positive * mkProd' dec).
-rewrite Zpos_mult.
-rewrite <- Zmult_assoc; rewrite mkProd_pred_mkProd; auto with zarith.
-simpl in H1; rewrite Zpos_mult in H1; rewrite <- H1; rewrite Ppred_Zminus;
- auto with zarith.
-assert (m_spec: mod_spec w_op (znz_of_Z w_op N)
- (make_mod_op w_op (znz_of_Z w_op N))).
-apply make_mod_spec; auto with zarith.
-match goal with |- context[all_pow_mod ?x ?y ?z ?t ?u] =>
- generalize (fst_all_pow_mod x w_op op_spec _ F3 _ m_spec
- u (znz_of_Z w_op a) (R1*mkProd_pred dec) z t);
- generalize (snd_all_pow_mod x w_op op_spec _ F3 _ m_spec u z t);
- fold bb w_op;
- case (all_pow_mod x y z t u); simpl fst; simpl snd
-end.
-2: intros; discriminate.
-intros prod aNm1; intros H5 H6.
-case_eq (ZnZ.to_Z aNm1).
-intros; discriminate.
-2: intros; discriminate.
-intros p; case p; clear p.
-intros; discriminate.
-intros; discriminate.
-intros If5.
-case_eq (ZnZ.to_Z (ZnZ.gcd prod (znz_of_Z w_op N))).
-intros; discriminate.
-2: intros; discriminate.
-intros p; case p; clear p.
-intros; discriminate.
-intros; discriminate.
-intros If6 _.
-assert (U1: N - 1 = mkProd dec * R1).
-rewrite <- Ppred_Zminus in H1; auto with zarith.
-rewrite H1; simpl.
-repeat rewrite Zpos_mult; auto with zarith.
-apply PocklingtonCorollary1 with (F1:=mkProd dec) (R1:=R1);
- auto with zmisc zarith.
-case (Zle_lt_or_eq 1 (mkProd dec)); auto with zarith.
-simpl in H2; auto with zarith.
-intros HH; contradict If4; rewrite Zpos_mult_morphism;
- rewrite <- HH.
-apply Zle_not_lt; auto with zarith.
-intros p; case p; clear p.
-intros HH; contradict HH.
-apply not_prime_0.
-2: intros p (V1, _); contradict V1; apply Zle_not_lt; red; simpl; intros;
- discriminate.
-intros p Hprime Hdec; exists (Zpos a);repeat split; auto with zarith.
-apply trans_equal with (2 := If5).
-rewrite H5.
-rewrite pow_mod_pred_spec with (2 := m_spec); auto with zarith.
-rewrite F1.
-rewrite m_spec.(power_mod_spec) with (t := a); auto with zarith.
-change (znz_of_Z w_op N) with (ZnZ.of_Z N).
-change (znz_of_Z w_op a) with (ZnZ.of_Z a).
-rewrite F1; rewrite F4.
-rewrite <- Zpower_mod; auto with zarith.
-rewrite <- Zpower_mult; auto with zarith.
-rewrite mkProd_pred_mkProd; auto with zarith.
-rewrite U1; rewrite Zmult_comm.
-rewrite Zpower_mult; auto with zarith.
-rewrite <- Zpower_mod; auto with zarith.
-change (znz_of_Z w_op N) with (ZnZ.of_Z N).
-change (znz_of_Z w_op a) with (ZnZ.of_Z a).
-rewrite F1; rewrite F4; rewrite Zmod_small; auto with zarith.
-change (znz_of_Z w_op N) with (ZnZ.of_Z N).
-change (znz_of_Z w_op a) with (ZnZ.of_Z a).
-rewrite Zmod_small; auto with zarith.
-rewrite m_spec.(power_mod_spec) with (t := a); auto with zarith.
-match goal with |- context[?X mod ?Y] =>
- case (Z_mod_lt X Y); auto with zarith
-end.
-change (znz_of_Z w_op N) with (ZnZ.of_Z N).
-change (znz_of_Z w_op a) with (ZnZ.of_Z a).
-rewrite F1; rewrite F4; rewrite Zmod_small; auto with zarith.
-rewrite pow_mod_pred_spec with (2 := m_spec); auto with zarith.
-match goal with |- context[?X mod ?Y] =>
- case (Z_mod_lt X Y); auto with zarith
-end.
-rewrite Zmod_small; auto with zarith.
-rewrite m_spec.(power_mod_spec) with (t := a); auto with zarith.
-match goal with |- context[?X mod ?Y] =>
- case (Z_mod_lt X Y); auto with zarith
-end.
-change (znz_of_Z w_op N) with (ZnZ.of_Z N).
-change (znz_of_Z w_op a) with (ZnZ.of_Z a).
-rewrite F1; rewrite F4; rewrite Zmod_small; auto with zarith.
-match type of H6 with _ -> _ -> ?X =>
- assert (tmp: X); [apply H6 | clear H6; rename tmp into H6];
- auto with zarith
-end.
-rewrite F1.
-change (znz_of_Z w_op 1) with (ZnZ.of_Z 1).
-rewrite F5; rewrite Zmod_small; auto with zarith.
-rewrite pow_mod_pred_spec with (2 := m_spec); auto with zarith.
-change (znz_of_Z w_op N) with (ZnZ.of_Z N).
-change (znz_of_Z w_op a) with (ZnZ.of_Z a).
-repeat (rewrite F1 || rewrite F4).
-rewrite m_spec.(power_mod_spec) with (t := a); auto with zarith.
-change (znz_of_Z w_op N) with (ZnZ.of_Z N).
-repeat (rewrite F1 || rewrite F4).
-rewrite Zpos_mult; rewrite <- Zpower_mod; auto with zarith.
-rewrite Zpower_mult; auto with zarith.
-change (znz_of_Z w_op N) with (ZnZ.of_Z N).
-repeat (rewrite F1 || rewrite F4).
-rewrite Zmod_small; auto with zarith.
-rewrite Zmod_small; auto with zarith.
-rewrite m_spec.(power_mod_spec) with (t := a); auto with zarith.
-match goal with |- context[?X mod ?Y] =>
- case (Z_mod_lt X Y); auto with zarith
-end.
-change (znz_of_Z w_op N) with (ZnZ.of_Z N).
-change (znz_of_Z w_op a) with (ZnZ.of_Z a).
-repeat (rewrite F1 || rewrite F4).
-rewrite Zmod_small; auto with zarith.
-change (znz_of_Z w_op N) with (ZnZ.of_Z N) in H6.
-change (znz_of_Z w_op a) with (ZnZ.of_Z a) in H6.
-change (znz_of_Z w_op 1) with (ZnZ.of_Z 1) in H6.
-rewrite F5 in H6; rewrite F1 in H6; rewrite F4 in H6.
-case in_mkProd_prime_div_in with (3 := Hdec); auto.
-intros p1 Hp1.
-rewrite <- F6 in H6.
-apply Zis_gcd_gcd; auto with zarith.
-change (rel_prime (a ^ ((N - 1) / p) - 1) N).
-match type of H6 with _ = ?X mod _ =>
- apply rel_prime_div with (p := X); auto with zarith
-end.
-apply rel_prime_mod_rev; auto with zarith.
-red.
-pattern 1 at 4; rewrite <- If6; rewrite <- H6.
-pattern N at 2; rewrite <- F1.
-apply ZnZ.spec_gcd; auto with zarith.
-assert (foldtmp: forall (A B: Set) (f: A -> B -> A) (P: A -> Prop) l a b,
- In b l -> (forall x, P (f x b)) ->
- (forall x y, P x -> P (f x y)) ->
- P (fold_left f l a)).
-assert (foldtmp0: forall (A B: Set) (f: A -> B -> A) (P: A -> Prop) l a,
- P a ->
- (forall x y, P x -> P (f x y)) ->
- P (fold_left f l a)).
-intros A B f P l; elim l; simpl; auto.
-intros A B f P l; elim l; simpl; auto.
-intros a1 b HH; case HH.
-intros a1 l1 Rec a2 b [V|V] V1 V2; subst; auto.
-apply foldtmp0; auto.
-apply Rec with (b := b); auto with zarith.
-match goal with |- context [fold_left ?f _ _] =>
- apply (foldtmp _ _ f (fun k => Zdivide (a ^ ((N - 1) / p) - 1) k))
- with (b := (p, p1)); auto with zarith
-end.
-intros; discriminate.
-Qed.
-
-Fixpoint test_Certif (lc : Certif) : bool :=
- match lc with
- | nil => true
- | (Proof_certif _ _) :: lc => test_Certif lc
- | (Lucas_certif n p) :: lc =>
- let xx := test_Certif lc in
- if xx then
- let yy := gt2 p in
- if yy then
- match p with
- Zpos p1 =>
- let zz := Mp p in
- match zz with
- | Zpos n' =>
- if (n ?= n')%P then
- let tt := lucas p1 in
- match tt with
- | Z0 => true
- | _ => false
- end
- else false
- | _ => false
- end
- | _ => false
- end
- else false
- else false
- | (Pock_certif n a dec sqrt) :: lc =>
- let xx := test_pock n a dec sqrt in
- if xx then
- let yy := all_in lc dec in
- (if yy then test_Certif lc else false)
- else false
- | (SPock_certif n a dec) :: lc =>
- let xx :=test_spock n a dec in
- if xx then
- let yy := all_in lc dec in
- (if yy then test_Certif lc else false)
- else false
- | (Ell_certif n ss l a b x y) :: lc =>
- let xx := ell_test n ss l a b x y in
- if xx then
- let yy := all_in lc l in
- if yy then test_Certif lc else false
- else false
- end.
-
-Lemma test_Certif_In_Prime :
- forall lc, test_Certif lc = true ->
- forall c, In c lc -> prime (nprim c).
-intros lc; elim lc; simpl; auto.
-intros _ c H; case H.
-intros a; case a; simpl; clear a lc.
-intros N p l Rec H c [H1 | H1]; subst; auto with arith.
-intros n p l; case (test_Certif l); auto with zarith.
-2: intros; discriminate.
-intros H H1 c [H2 | H2]; subst; auto with arith.
-simpl nprim.
-generalize H1; clear H1.
-case_eq (gt2 p).
-2: intros; discriminate.
-case p; clear p; try (intros; discriminate; fail).
-unfold gt2; intros p H1.
-match goal with H: (?X ?< ?Y) = true |- _ =>
- generalize (is_lt_spec X Y); rewrite H; clear H; intros H
-end.
-unfold Mp; case_eq (2 ^ p -1); try (intros; discriminate; fail).
-intros p1 Hp1.
-case_eq (n ?= p1)%P; try rewrite <- Hp1.
-2: intros; discriminate.
-intros H2.
-match goal with H: (?X ?= ?Y)%P = true |- _ =>
- generalize (is_eq_eq _ _ H); clear H; intros H
-end.
-generalize (lucas_prime H1); rewrite Hp1; rewrite <- H2.
-case (lucas p); try (intros; discriminate; fail); auto.
-intros N a d p l H.
-generalize (test_pock_correct N a d p).
-case (test_pock N a d p); auto.
-2: intros; discriminate.
-generalize (all_in_In l d).
-case (all_in l d).
-2: intros; discriminate.
-intros H1 H2 H3 c [H4 | H4]; subst; simpl; auto.
-apply H2; auto.
-intros k Hk.
-case H1 with (2 := Hk); auto.
-intros x (Hx1, Hx2); rewrite Hx2; auto.
-intros N a d l H.
-generalize (test_spock_correct N a d).
-case test_spock; auto.
-2: intros; discriminate.
-generalize (all_in_In l d).
-case (all_in l d).
-2: intros; discriminate.
-intros H1 H2 H3 c [H4 | H4]; subst; simpl; auto.
-apply H2; auto.
-intros k Hk.
-case H1 with (2 := Hk); auto.
-intros x (Hx1, Hx2); rewrite Hx2; auto.
-intros N S l A B x y l1.
-generalize (all_in_In l1 l).
-generalize (ell_test_correct N S l A B x y).
-case ell_test.
-case all_in; auto.
-intros H1 H2 H3 H4 c [H5 | H5]; try subst c; simpl; auto.
-apply H1.
-intros p Hp; case (H2 (refl_equal true) p); auto.
-intros x1 (Hx1, Hx2); rewrite Hx2; auto.
-intros; discriminate.
-intros; discriminate.
-Qed.
-
-Lemma Pocklington_refl :
- forall c lc, test_Certif (c::lc) = true -> prime (nprim c).
-Proof.
- intros c lc Heq;apply test_Certif_In_Prime with (c::lc);trivial;simpl;auto.
-Qed.
-
diff --git a/coqprime/num/W.v b/coqprime/num/W.v
deleted file mode 100644
index d26e2657e..000000000
--- a/coqprime/num/W.v
+++ /dev/null
@@ -1,200 +0,0 @@
-
-(*************************************************************)
-(* This file is distributed under the terms of the *)
-(* GNU Lesser General Public License Version 2.1 *)
-(*************************************************************)
-(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
-(*************************************************************)
-
-Set Implicit Arguments.
-Require Import CyclicAxioms DoubleCyclic BigN Cyclic31 Int31.
-Require Import ZArith ZCAux.
-
-(* ** Type of words ** *)
-
-
-(* Make the words *)
-
-Definition mk_word: forall (w: Type) (n:nat), Type.
-fix 2.
-intros w n; case n; simpl.
-exact int31.
-intros n1; exact (zn2z (mk_word w n1)).
-Defined.
-
-(* Make the op *)
-Fixpoint mk_op (w : Type) (op : ZnZ.Ops w) (n : nat) {struct n} :
- ZnZ.Ops (word w n) :=
- match n return (ZnZ.Ops (word w n)) with
- | O => op
- | S n1 => mk_zn2z_ops_karatsuba (mk_op op n1)
- end.
-
-Theorem mk_op_digits: forall w (op: ZnZ.Ops w) n,
- (Zpos (ZnZ.digits (mk_op op n)) = 2 ^ Z_of_nat n * Zpos (ZnZ.digits op))%Z.
-intros w op n; elim n; simpl mk_op; auto; clear n.
-intros n Rec; simpl ZnZ.digits.
-rewrite Zpos_xO; rewrite Rec.
-rewrite Zmult_assoc; apply f_equal2 with (f := Zmult); auto.
-rewrite inj_S; unfold Zsucc; rewrite Zplus_comm.
-rewrite Zpower_exp; auto with zarith.
-Qed.
-
-Theorem digits_pos: forall w (op: ZnZ.Ops w) n,
- (1 < Zpos (ZnZ.digits op) -> 1 < Zpos (ZnZ.digits (mk_op op n)))%Z.
-intros w op n H.
-rewrite mk_op_digits.
-rewrite <- (Zmult_1_r 1).
-apply Zle_lt_trans with (2 ^ (Z_of_nat n) * 1)%Z.
-apply Zmult_le_compat_r; auto with zarith.
-rewrite <- (Zpower_0_r 2).
-apply Zpower_le_monotone; auto with zarith.
-apply Zmult_lt_compat_l; auto with zarith.
-Qed.
-
-Fixpoint mk_spec (w : Type) (op : ZnZ.Ops w) (op_spec : ZnZ.Specs op)
- (H: (1 < Zpos (ZnZ.digits op))%Z) (n : nat)
- {struct n} : ZnZ.Specs (mk_op op n) :=
- match n return (ZnZ.Specs (mk_op op n)) with
- | O => op_spec
- | S n1 =>
- @mk_zn2z_specs_karatsuba (word w n1) (mk_op op n1)
- (* (digits_pos op n1 H) *) (mk_spec op_spec H n1)
- end.
-
-(* ** Operators ** *)
-Definition w31_1_op := mk_zn2z_ops int31_ops.
-Definition w31_2_op := mk_zn2z_ops w31_1_op.
-Definition w31_3_op := mk_zn2z_ops w31_2_op.
-Definition w31_4_op := mk_zn2z_ops_karatsuba w31_3_op.
-Definition w31_5_op := mk_zn2z_ops_karatsuba w31_4_op.
-Definition w31_6_op := mk_zn2z_ops_karatsuba w31_5_op.
-Definition w31_7_op := mk_zn2z_ops_karatsuba w31_6_op.
-Definition w31_8_op := mk_zn2z_ops_karatsuba w31_7_op.
-Definition w31_9_op := mk_zn2z_ops_karatsuba w31_8_op.
-Definition w31_10_op := mk_zn2z_ops_karatsuba w31_9_op.
-Definition w31_11_op := mk_zn2z_ops_karatsuba w31_10_op.
-Definition w31_12_op := mk_zn2z_ops_karatsuba w31_11_op.
-Definition w31_13_op := mk_zn2z_ops_karatsuba w31_12_op.
-Definition w31_14_op := mk_zn2z_ops_karatsuba w31_13_op.
-
-Definition cmk_op: forall (n: nat), ZnZ.Ops (word int31 n).
-intros n; case n; clear n.
-exact int31_ops.
-intros n; case n; clear n.
-exact w31_1_op.
-intros n; case n; clear n.
-exact w31_2_op.
-intros n; case n; clear n.
-exact w31_3_op.
-intros n; case n; clear n.
-exact w31_4_op.
-intros n; case n; clear n.
-exact w31_5_op.
-intros n; case n; clear n.
-exact w31_6_op.
-intros n; case n; clear n.
-exact w31_7_op.
-intros n; case n; clear n.
-exact w31_8_op.
-intros n; case n; clear n.
-exact w31_9_op.
-intros n; case n; clear n.
-exact w31_10_op.
-intros n; case n; clear n.
-exact w31_11_op.
-intros n; case n; clear n.
-exact w31_12_op.
-intros n; case n; clear n.
-exact w31_13_op.
-intros n; case n; clear n.
-exact w31_14_op.
-intros n.
-match goal with |- context[S ?X] =>
- exact (mk_op int31_ops (S X))
-end.
-Defined.
-
-Definition cmk_spec: forall n, ZnZ.Specs (cmk_op n).
-assert (S1: ZnZ.Specs w31_1_op).
-unfold w31_1_op; apply mk_zn2z_specs; auto with zarith.
-exact int31_specs.
-assert (S2: ZnZ.Specs w31_2_op).
-unfold w31_2_op; apply mk_zn2z_specs; auto with zarith.
-assert (S3: ZnZ.Specs w31_3_op).
-unfold w31_3_op; apply mk_zn2z_specs; auto with zarith.
-assert (S4: ZnZ.Specs w31_4_op).
-unfold w31_4_op; apply mk_zn2z_specs_karatsuba; auto with zarith.
-assert (S5: ZnZ.Specs w31_5_op).
-unfold w31_5_op; apply mk_zn2z_specs_karatsuba; auto with zarith.
-assert (S6: ZnZ.Specs w31_6_op).
-unfold w31_6_op; apply mk_zn2z_specs_karatsuba; auto with zarith.
-assert (S7: ZnZ.Specs w31_7_op).
-unfold w31_7_op; apply mk_zn2z_specs_karatsuba; auto with zarith.
-assert (S8: ZnZ.Specs w31_8_op).
-unfold w31_8_op; apply mk_zn2z_specs_karatsuba; auto with zarith.
-assert (S9: ZnZ.Specs w31_9_op).
-unfold w31_9_op; apply mk_zn2z_specs_karatsuba; auto with zarith.
-assert (S10: ZnZ.Specs w31_10_op).
-unfold w31_10_op; apply mk_zn2z_specs_karatsuba; auto with zarith.
-assert (S11: ZnZ.Specs w31_11_op).
-unfold w31_11_op; apply mk_zn2z_specs_karatsuba; auto with zarith.
-assert (S12: ZnZ.Specs w31_12_op).
-unfold w31_12_op; apply mk_zn2z_specs_karatsuba; auto with zarith.
-assert (S13: ZnZ.Specs w31_13_op).
-unfold w31_13_op; apply mk_zn2z_specs_karatsuba; auto with zarith.
-assert (S14: ZnZ.Specs w31_14_op).
-unfold w31_14_op; apply mk_zn2z_specs_karatsuba; auto with zarith.
-intros n; case n; clear n.
-exact int31_specs.
-intros n; case n; clear n.
-exact S1.
-intros n; case n; clear n.
-exact S2.
-intros n; case n; clear n.
-exact S3.
-intros n; case n; clear n.
-exact S4.
-intros n; case n; clear n.
-exact S5.
-intros n; case n; clear n.
-exact S6.
-intros n; case n; clear n.
-exact S7.
-intros n; case n; clear n.
-exact S8.
-intros n; case n; clear n.
-exact S9.
-intros n; case n; clear n.
-exact S10.
-intros n; case n; clear n.
-exact S11.
-intros n; case n; clear n.
-exact S12.
-intros n; case n; clear n.
-exact S13.
-intros n; case n; clear n.
-exact S14.
-intro n.
-simpl cmk_op.
-repeat match goal with |- ZnZ.Specs
- (mk_zn2z_ops_karatsuba ?X) =>
- generalize (@mk_zn2z_specs_karatsuba _ X); intros tmp;
- apply tmp; clear tmp; auto with zarith
-end.
-(*
-apply digits_pos.
-*)
-auto with zarith.
-apply mk_spec.
-exact int31_specs.
-auto with zarith.
-Defined.
-
-
-Theorem cmk_op_digits: forall n,
- (Zpos (ZnZ.digits (cmk_op n)) = 2 ^ (Z_of_nat n) * 31)%Z.
-do 15 (intros n; case n; clear n; [try reflexivity | idtac]).
-intros n; unfold cmk_op; lazy beta.
-rewrite mk_op_digits; auto.
-Qed.